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Introduction 

              

Scope

Objectives

• Understand why control is useful

• Know the language, the key ideas and the concepts

• Review the basic mathematical theory

• Understand how to formulate and interpret specifications

• Be able to design simple feedback controllers

• Appreciate the limitations of control 

Dynmical systems can be classified in various ways.  This seminar concerns the control of 
linear time invariant systems.   

While the system to be controlled is always continuous in time, the controller may be either 
continuous time (analogue) or discrete time (digital). 

Welcome to this control theory seminar. 

 

What is Control?

• Stability
• Steady state accuracy
• Satisfactory transient response
• Satisfactory frequency response
• Reduced sensitivity to disturbances

The finite dynamics of the system make perfect tracking impossible - compromises must be made. 

“A control system is considered to be any system which exists for the purpose of regulating or 
controlling the flow of energy, information, money, or other quantities in some desired fashion.”

r(t)

t

r(t)

Control 
System

t

y(t)

y(t)

Among the characteristics a good control system should possess are...

William L. Brogan, Modern Control Theory, 1991
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Modelling Paradigms

• The process of sampling converts a continuous time to a discrete time system representation

• State selection is required to arrive at an equivalent state space representation.

In this seminar we will consider two different modelling paradigms: input-output and state space.  
Each may be used to model continuous time or discrete time systems. 

y(s) = G(s)u(s) y(z) = G(z)u(z)

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

x(k+1) = Fx(k) + Gu(k)
y(t) = Hx(k) + Ju(k)

Sampling

Sampling

State SelectionState Selection

Continuous Time Discrete Time

Input - Output

State Space
.

 

Notation

The independent variable may be omitted where the meaning is obvious from the context.  

u
yG =

Matrices and vectors are represented by non-italic bold case.  Matrices are upper case.  

y(t) = Ax(t)

Signals are always represented by lower case symbols and transfer functions by upper case symbols, 
regardless of the how they are expressed.  

y(s) = G(s) u(s)

g(t) = L   -1{ G(s) }

Differentiation will be denoted using prime or dot notation as appropriate: 

)(tx)(tx′

 Important points are marked with a blue quad-bullet.  Keywords are highlighted in this colour.

0.0
Slides with associated tutorials are marked in the lower left corner.
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Control Theory Seminar
1. Fundamental Concepts

• Linear Systems
• The Laplace Transform
• Dynamic Response
• Classification of Systems

“Few physical elements display truly linear characteristics.... however, by assuming an ideal, linear physical 
element, the analytical simplification is so enormous that we make linear assumptions wherever we can possibly 
do so in good conscience.”

Robert H. Cannon, Dynamics of Physical Systems, 1967

 

Linear Systems

Physical systems are inherently non-linear.  Examples of non-linearity include:

• Viscous drag coefficients depend on flow velocity

• Amplifier outputs saturate at supply voltage

• Coulomb friction present in mechanical moving objects

• Temperature induced parameter changes

We study linear systems because of the range of tractable mathematical methods available.

Complex non-linear phenomena cannot be predicted by linear models:

• Multiple equilibria

• Domains of attraction

• Chaotic response

• Limit cycles

Linearisation of a non-linear model about an operating point can help to understand local behaviour.
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Linearity

This is the homogeneous property of a linear system 

If a scaling factor is applied to the input of a linear system, the output is scaled by the same amount. 

y1af1

k

u

y1b

f2 y2a

f1

y2bf2

t

t

t

y1a

y1b

y2a

y2b

u(t)

The additive property of a linear system is 

f (k u) = k f (u)

f (u1 + u2) = f (u1) + f (u2)

 

Terminology of Linear Systems

Homogeneous and additive properties combine to form the principle of superposition, which all 
linear systems obey 

ub
dt
dub

dt
udbya

dt
dya

dt
yda m

m

mn

n

n 0101 ...... +++=+++

 If all the coefficients a0, a1, ... an and b0, b1, ... bm are (real) constants, this equation is termed a 
constant coefficient differential equation, and the system is said to be linear, time invariant (LTI).

)()()( 22112211 ufkufkukukf ±=±

The dynamics of a linear system may be captured in the form of an ordinary differential equation...

...or, using a more compact notation...

any(n) + ... + a1y′ + a0y = bmu(m) + ... + b1u′ + b0u
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Convolution

∫
∞−

−==
t

dutgtutgty τττ )()()(*)()(

 If the impulse response g(t) of a system is known, it’s output y(t) arising from any input u(t) can be 
computed using a convolution integral

The impulse response of a system is it’s response when subjected to an impulse function, δ (t).

u(t) y(t)

t

δ (t)

t

g(t)

y(t)u(t)

System

This integral has a distinctive form, involving time reversal, multiplication, and integration over an infinite 
interval. It is cumbersome to apply for every u(t).

 

The Laplace Transform

...where s is an arbitrary complex variable.

If f (t) is a real function of time defined for all t > 0, the Laplace transform f (s) is...  

{ } dtetftfsf st−
∞

∫
+

==
0

)()()( L

{ } )()()()( 22112211 sfksfktfktfk ±=±LLinearity

{ } )()()()( 210 21 sfsfdftf
t

=−∫ τττLConvolution

)(lim)(lim
0

sfstf
st →∞→

=Final value theorem

Shifting theorem { } )()( sfeTtf sT−=−L

The Laplace transform converts time functions to frequency dependent functions of a complex variable, s.
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Poles & Zeros

The dynamic behaviour of the system is characterised by the two polynomials:

For zero initial conditions, the differential equation can be written in Laplace form as...

The m roots of β(s) are called the zeros of the system

The n roots of α(s) are called the poles of the system

α(s) = ansn + ... + a1s + a0

β(s) = bmsm + ... + b1s + b0

( ansn + ... + a1s + a0 ) y(s) = ( bmsm + ... + b1s + b0 ) u(s)

ansn y(s) + ... + a1s y(s) + a0 y(s) = bmsm u(s) + ... + b1s u(s) + b0 u(s)

α(s) y(s) = β(s) u(s)

any(n)(t) + ... + a1 y′(t) + a0 y(t) = bmu(m)(t) + ... + b1 u′(t) + b0 u(t)

 

The Transfer Function

01

01

...
...

)(
)(

)(
)()(

asasa
bsbsb

s
s

su
sysG n

n

m
m

+++
+++

===
α
β

)(
)(

s
s

α
βThe ratio is called the transfer function of the system.

The quantity n – m is called the relative degree of the system.  Systems are classified 
according to their relative degree, as follows...

G(s)u(s) y(s)

The transfer function of a system is the Laplace transform of its impulse response

• strictly proper if m < n

• proper if m ≤ n

• improper if m > n

y(t) = g(t)*u(t) = L    -1{ G(s) u(s) }

 

6



1 – Fundamental Concepts 

              

Transient Response

q

q

rsrsrs
sy

+
++

+
+

+
=

εεε ...)(
2

2

1

1

tr
q

tr
n

tr
n

trtr qnn eeeeety −−
+

−−− ++++++= + εεεεε .....)( 121
121

This rational function yields q terms through partial fraction expansion

The time response is a sum of exponential terms, where each index is a denominator root.

Since all ai, bi are real, r1...rq are always either real or complex conjugate pairs

)(
))...()((
))...()(()(

21

21 su
pspsps
zszszsksy

n

m

+++
+++

=

Numerator & denominator can be factorised to express the transfer function in terms of poles & zeros.

The n terms in y(t) with roots originating from G(s) comprise the transient response, while the q-n
terms originating from u(s) comprise the steady state response.  

Transient response Steady state response

yc(t) yp(t)

 

Stability

tr
n

trtr
c

neeety −−− +++= εεε ...)( 21
21

The transient response is defined by the first n exponential terms in y(t)

...where each complex root is of the form  ri = σi ± jωi

Therefore the transient part of the response will include oscillatory terms, the amplitude of each being 
constrained by an exponential.

For real systems complex roots always arise in conjugate pairs, so terms involving complex 
exponential pairs arise in the time response. 

...)( 11
11 ++= −− trtr

c eety εε

( ) ...sin)( 111
1 ++= φωσ teAty t

c

For stability we require that the real part (σi) of every ri in G(s) be negative.

For stability we require that the transient part of the response decays to zero, i.e. yc(t)→0 as t→∞.
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First Order Systems

)()()( tutyty =+′τ

1
1

)(
)(

+
=

τssu
sy

)()()( susysys =+τ

The dynamics of a classical first order system are defined by the differential equation

Taking Laplace transforms and re-arranging to find the transfer function...

The output y(t) for any input u(t) can be found using the method of Laplace transforms.









+
= −

1
1)()( 1

τs
suty L

...where the parameter τ represents the time constant of the system.

The response following a unit step input is: τ
t

ety
−

−=1)(

 

First Order Step Response

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

y(t)

0.63

0.98

0.693

y(t) = 1 – e-t

t1 t2

tr

For t > 4τ  the output lies 
within 2% of final value

The 10% to 90% rise time 
is approximately 2.2τ  

A tangent to y(t) meets the 
final value τ seconds later

y(t) reaches 50% of final 
value at t ≈ 0.7τ 

y(t) reaches 63% of final 
value at t ≈ τ 

Unit step response for first order system with τ = 1.
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Second Order Systems

)()()(2)( 22 tutytyty nnn ωωζω =+′+′′

Linear constant coefficient second-order differential equations of the form

02 22 =++ nnss ωζω...from which we get the characteristic equation

ζ is called the damping ratio

ωn is called the un-damped natural frequency

Dynamic behaviour is defined by two parameters:

22

2

2)(
)(

nn

n

sssu
sy

ωζω
ω

++
=The transfer function of the second order system is

12 −±−= ζωζω nnsThe poles of the second-order linear system are at

are important because they often arise in physical modelling.

 

Classification of Second Order Systems

21 ζωζω −±−= nn js

over-damped

10 << ζ

1=ζ

1>ζ

0=ζ

ns ω−=

12 −±−= ζωζω nns

njs ω±=

under-damped

critically damped

un-damped

Damping ratio Roots Classification

t

y(t)

1

2

0

    2
1.875
 1.75
1.625
  1.5
1.375
 1.25
1.125
    1
0.875
 0.75
0.625
  0.5
0.375
 0.25
0.125
    0

Dynamic response of the second order system is classified according to damping ratio.
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The Under-Damped Response

In the under-damped case (0 < ζ < 1) we have a pair of complex conjugate roots at

21 ζωζω −±−= nn js

21 ζωω −= nd

σ
τ 1

=

ωd is the damped natural frequency of the system:

τ is the time constant of the system:

djs ωσ ±−=Real and imaginary parts are denoted

The under-damped step response is of the form

)sin(1)( φω
ω
ω σ +−= − tety d

t

d

n ...where φ = cos-1ζ

 

Transient Decay Envelope

)sin(1)( φω
ω
ω σ +−= − tety d

t

d

n

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

t (seconds)

y(t)

1 – ce-σt

1 + ce-σt

The under-damped unit step response comprises an oscillation of frequency ωd and phase φ, 

constrained within a decaying exponential envelope determined by σ and ζ.

Unit step response with ωn = 1 & ζ = 0.125

n

nc
ω
ω

=
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Second Order Step Response

Characteristics of the unit step response of the under-damped (ζ = 0.25) second order system
15.0

1
2 ++ ss

 

 

t

y(t)

1

0

Mp

2π
ωd

1+ce −σt

ωd1+e
πσ−

tp

Peak overshoot

Decay envelope

Damped frequency

Overshoot delay

ωd

π

ts

Settling time

1±δ

σ δ
1 ln c

 

Step Response Specifications

Plots show variation in rise time, over-shoot, and settling time for a second order system with ωn = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4
Step Response Parameter Variation vs. Damping Ratio

R
is

e 
Ti

m
e 

(s
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on
ds

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

O
ve

rs
ho

ot
 (%

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

Damping Ratio

Se
ttl

in
g 

Ti
m

e 
(s

ec
on

ds
)
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Effect of LHP Zero

)(1)()(1 ty
z

tyty ′+=

0
0

0.5

1

1.5

2

t

)(1)(1 sG
z
ssG 






 +=

For a unit step input )(1)()(1)( 11 sys
z

sysG
s

sy +==

The effect of adding a LHP zero is to add a derivative term to the step response of the original system

Adding a LHP zero at s = -z to the original transfer function:

Taking inverse Laplace transforms

 In general, rise time is decreased and overshoot increased by a LHP zero

y1(t)
y(t)

 

Effect of RHP Zero

1
1

−
−

≥
stfus e

yy α

ε

0
-1

-0.5

0

0.5

1

1.5

t

yus

ts

ε

The step response of a stable plant with n real RHP zeros will cross it’s starting value at least n times.

yf = final value

ts = settling time
ε = error bound

α = Re(z)

The effect of adding an RHP zero is to increase rise time (make the response slower) and induce 
undershoot

)(1)()(2 ty
z

tyty ′−=Similarly, adding a RHP zero at s = z changes the response according to

Peak under-shoot is bounded by:

y2(t)
y(t)
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Effect of Zero Location on Transient Response

Effect on step response of adding a zero pair to a stable system

Im

Re
1-1-5 2.5

j5

-2.5 5

j2.5

 

Time Delay Approximation

True delay
2nd order Padé
8th order Padé

1
)(

2

+
=

−

s
esG

s

n

n

s

s
n

s
ne







 +







 −

≈−

2
1

2
1

θ

θ
θ

Time delay can be approximated by a rational transfer function with n real RHP zeros...

The Padé approximation is only valid at low frequencies, so it is important to compare the true and 
modelled responses to choose the right approximation order and check its’ validity.

Plot shows 2nd & 8th order Padé 
approximations to the transfer function

t-0.2

0

0.2

0.4

0.6

0.8

1

1.2

20
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Frequency Response

• The phase is shifted by  φ = β − α

)(
0

0 ωjG
u
y

=

0

0

u
y

If the steady state sinusoid u(t) = u0 sin(ωt + α) is applied to a linear system G(s), the output is

Amplitude and phase change from input to output are determined by G(jω):

• The amplitude is modified by

)( ωφ jG∠=

G(s)u(t) y(t)

y(t) = y0 sin(ωt + β)

 

Frequency Response

Im

Re
z2

r3

θ1

r2

r4

r1

z1

p1

p2

jω0

θ4

θ3

θ2

ω increasing

)()(
)()()(

21

21

psps
zszssG

++
−+

=

43

21
0 )(

rr
rrjG =ω

Response of G(s) at each frequency can be determined directly from the pole-zero map

)()(
)()(
)()()( 00

2010

2010
0

ωω
ωω
ωω

ω jGjG
pjpj
zjzjsG js ∠=

++
−+

==

43210 )( θθθθω −−+=∠ jG

For example, at frequency ω0 the transfer function

Modulus and argument are found from:

has response
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First Order Bode Asymptotes

log ω

| G(jω) | 
(dB)

log ω

∠ G(jω)

ωc

-20

0

0

-20 dB/decade

1 octave

3dB1dB

1dB

1 octave

1 decade 1 decade

~5.5º

~5.5º

~5.5º

~5.5º -45º/decade

 

Second Order Bode Asymptotes

Plots shown for damping ratios: 0.025 ≤ ζ ≤ 2

log ω

log ω

| G(jω) | 
(dB)

∠ G(jω)

0

0

-π

ωn

1 decade 1 decade

0.1ωn 10ωn -90º/decade

-40 dB/decade
−40
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Resonant Peak

2
10:21 2 <<−= ζζωω nr

0.025
  0.1
0.175
 0.25
0.325
  0.4
0.475
 0.55
0.625
  0.7
0.775
 0.85
0.925
    1

ζ

The resonant peak occurs at frequency

212
1

ζζ −
=rMResonant peak magnitude is given by

The resonant peak ωr approaches ωn as damping ratio approaches zero:  ωr → ωn as  ζ → 0

| G(jω) | 

0

log ω
ωn

ωr

1.1

All-Pass Transfer Functions

0.240.360.48

0.62

0.76

0.88

0.97

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2

0.4

0.6

0.8

1

1.2

1.4

0.120.240.360.48

0.62

0.76

0.88

0.97

0.12

Im

Re

1
1

+
−

s
s

2
2

2

2

++
+−

ss
ss

An all-pass transfer function Gap passes all frequencies with the same attenuation.

Such a transfer function has pole-zero symmetry about the imaginary axis.

i.e. if s0 is a zero, then –s0 is a pole.

Examples are:

-1

-0.5

0

0.5

M
ag

ni
tu

de
 (d

B
)

10
-2

10
-1

10
0

10
1

10
2

0
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360

Ph
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e 
(d
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)

Frequency  (rad/s)

1
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Minimum Phase Systems

s
1

A minimum phase transfer function Gmp meets the following criteria:

• No time delay

• No RHP zeros

• No poles on the imaginary axis (except the origin)

• No unstable poles

A non-minimum phase transfer function exhibits more negative phase.

Any stable, proper, real-rational transfer function G can always be written in terms of minimum-
phase and all-pass transfer functions:  G = GapGmp

Examples are:
1+s

s
2

2
2

2

++
+
ss

s
1

For a minimum phase system, total phase variation is 
2

)( πmn − over  0 < ω < ∞.  

 

Phase Area Formula

)log(
)(log

2
)(

ω
ωπω

d
jGdjG ≈∠

For minimum phase systems, gain and phase curves on the Bode plot are approximately related 
through a derivative:

2
πθ p=For a constant gain slope p, the phase curve has the asymptotic value

-80
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-40

-20
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20

M
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B
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π
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π
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π
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π
4

π
2-θ ≈ 

π
2θ ≈ 
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Control Theory Seminar
2. Feedback Control

• Effects of Feedback
• The Nyquist Plot
• Phase Compensation
• Sensitivity & Tracking
• Robustness

“...by building an amplifier whose gain is deliberately made, say 40 decibels higher than necessary, and then feeding 
the output back to the input in such a way as to throw away that excess gain, it has been found possible to effect 
extraordinary improvement in constancy of amplification and freedom from non-linearity.”

Harold S. Black, Stabilized Feedback Amplifiers, 1934

 

Effects of Feedback

• Change the gain or phase of the system over some desired frequency range

• Cause an unstable system to become stable

• Reduce the effects of load disturbance and noise on system performance

• Reduce the sensitivity of the system to parameter changes

When properly applied, feedback can...

• Reduce or eliminate steady state error

• Linearise a non-linear component

+
_ OutputInput

Sensor

PlantController

Feedback (also called “closed loop control”) is a simple but tremendously powerful idea which has 
revolutionised many engineering applications.   

 

18



2 – Feedback Control 

              

Notation

r = reference input

e = error signal

u = control effort

y = output

ym = feedback

H = sensor

F = controller

G = plant

+
_ yr

H

GFe

ym

u

Signals Transfer Functions

 

Negative Feedback

Combining error and output equations gives  y = FG (r – Hy)

FGH
FG

r
y

+
=

1
The closed loop transfer function is

The open loop transfer function is L = FGH

Error equation is  e = r - Hy Output equation is  y = FGe

+
_ yr

H

GFe

y (1 + FGH) = FGr
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The Closed Loop Transfer Function

1

1

α
β

=GDefine the transfer functions of the forward and feedback elements as  F = k, 
2

2

α
β

=Hand

2

2

1

1

1

1

1
α
β

α
β
α
β

k

k

r
y

+
=

2121

21

ββαα
αβ
k

k
r
y

+
=The closed loop transfer function is

+
_ yr

2

2

α
β

1

1

α
β

k

 

Closed Loop Stability

2121

21

ββαα
αβ
k

k
r
y

+
=

The criterion for closed loop, or external stability is that the closed loop transfer function must 
contain no RHP poles

Equivalently, there should be no RHP roots of  α1(s)α2(s) + k β1(s)β2(s) = 0

i.e. there should be no RHP zeros in  1 + L(s)

In this section we examine stability from the point of view of the frequency domain.  A time domain 
view of stability is dealt with in section 3. 

L
FG

r
y

+
=

1
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Encirclement & Enclosure

Im

Re

Γ

A

B

A

B

Im

Re

Γ

A complex point or region is encircled if it is found inside a closed path

A complex point or region is enclosed if it is found to the left of the path when the path is traversed 
in the CCW direction

A encircled & enclosed A encircled but not enclosed

B not encircled or enclosed B enclosed but not encircled

 

Multiple Encirclements

Im

Re
A

B

Γ

Im

Re
A

B

Γ

A encircled once
B encircled twice

A enclosed
B enclosed

A not enclosed
B not enclosed

A encircled once
B encircled twice

A point in the complex plane can be encircled multiple times.
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Mapping

Im

Re

Im

Re

s0

∆(s0)

∆(s) planes plane

s1

∆(s1)

A complex function of a complex variable cannot be plotted on a single set of axes. We need two 
separate complex planes: the s plane and the function plane. The correspondence between points 
in the two planes is called mapping.

The transfer function ∆(s) uniquely maps points in the s plane to points in the ∆(s) plane.

If each point in the s plane maps to one (and only one) point in the function space, the function is 
called single valued. A transfer function is an example of a single valued complex function.

 

Contour Mapping

Depending on ∆(s), the direction of Γ∆ can be the same as, or opposite to that of Γs.

Let ∆(s) be a single valued function, and Γs represent an arbitrary closed contour in the s plane. 

If Γs does not pass through any poles of ∆(s), then its image Γ∆ is also closed.

Im

Re

s1
s2

s3

Im

∆(s1)

Γs

Γ∆

∆(s2)

∆(s3)

s plane ∆(s) plane

Re
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Principle of the Argument

1.  N > 0   (Z > P) : Γ∆ encircles the origin N times in the same direction as Γs

The principle of the argument states that Γ∆ will encircle the origin of the ∆(s) space exactly N times

Assuming that Γs encircles Z zeros and P poles of ∆(s), define the integer N :

N = Z - P

2.  N = 0   (Z = P) : Γ∆ does not encircle the origin of the ∆(s) space

3.  N < 0   (Z < P) : Γ∆ encircles the origin N times in the opposite direction to Γs

The direction of encirclement is as follows:

 

Determination of N
Im

Re

Γ∆

Im

Re

Γ∆

Im

Re

Γ∆

Im

Re

Γ∆

∆(s) plane

∆(s) plane
N = -2 N = 0

N = 0

N = -3

∆(s) plane

∆(s) plane

• By convention, counter-clockwise encirclement is regarded as positive.
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The Nyquist Path

Any RHP pole or zero of ∆(s) is enclosed by the Nyquist path 

Indentations on the imaginary axis are necessary to ensure Γs does note pass through any poles of ∆(s)

Im

Re

Γs

∞

+ j∞

- j∞

Poles of ∆(s)

s plane

 

The Nyquist Plot
The Nyquist plot is the image of the loop transfer function L(s) as s traverses the Γs contour. 

Since we are interested in roots of  1 + L(s) we examine enclosure relative to the point [-1,0]

Im

Re

L(jω0)

-1

Im

Re

Γs

∞

Critical point

Nyquist path Nyquist plot

s= jω0

| L(jω0) |

∠ L(jω0)

+ j∞

- j∞

ΓL

s plane

L(s) plane
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Nyquist Stability Criterion

Recall, for closed loop (external) stability we require no RHP zeros in 1 + L(s).  i.e. N = -P

The simplified Nyquist stability criterion for minimum phase systems states that the feedback 
system is stable if the Nyquist plot does not enclose the critical point. 

For closed loop stability, the Nyquist plot must encircle the critical point once for each RHP pole in 
L(s), and any encirclement must be made in the opposite direction to Γs. 

For minimum phase systems:  N = 0

 

Enclosure of the Critical Point

Note: The convention of CCW traversal of the Nyquist path means the direction of ΓL follows 
decreasing positive frequency.  

Im

Re

ω increasing

L(jω)

-1

-j

Im

Re

ω increasing

L(jω)

-1

-j

Critical point enclosed

Closed loop unstableClosed loop stable

Critical point not enclosed
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Nyquist’s Paper

Nyquist had the critical point at +1.  Bode changed it to -1.

Nyquist, H. 1932. Regeneration Theory. Bell System
Technical Journal, 11, pp. 126-147

Nyquist’s paper changed the process of feedback control from trial-and-error to systematic design.

 

Relative Stability

πω +∠= )( cjLPMPhase Margin (PM) is defined as: ... where ωc is the gain crossover frequency

)(
1

πωjL
GM =Gain Margin (GM) is defined as: ... where ωπ is the phase crossover frequency

The proximity of the L(s) curve to the critical point is a measure of relative stability, which is often 
used as a performance specification on the feedback system

Im

Re

ω increasing

L(jωc)

θm

L(jω)

-1

-j

L(jωπ)

| L(jωc) |
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Stability Margins
Gain & phase margins can be read directly from the Bode plot. 

A rule-of-thumb for minimum phase systems is that the closed loop will be stable if the slope of | L(jω) |
is -2 or less at the cross-over frequency (ωc).  This follows from the phase area formula.

| L(jω) |

log ω

∠ L(jω)

ωπ

ωπ

ωc

ωc

−π

0 dB

Phase Margin

Gain Margin

log ω

− π
2

 

Phase Compensation
When relative stability specifications cannot be met by gain adjustment alone, phase compensation
techniques may be applied to change the Nyquist curve in some frequency range.

Im

Re

ω increasing

L1(jω) 
(stable)

-1

-jL2(jω) 
(unstable)

Nyquist plot of 
compensated loop

Meets steady state 
requirements but is 

unstable

Meets relative stability  
spec but not steady state 

requirements

The terms “controller” and “compensator” are used interchangeably.
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Phase Compensation Types

log ω
ωm

θm

ωz ωp

0

∠ F(jω)

log ω
ωm

θm

ωzωp

0

∠ F(jω)

• Start with gain k1 and introduce phase lead at high frequencies to achieve specified PM, GM, Mp, ...etc.

• Start with gain k2 and introduce phase lag at low frequencies to meet steady-state requirements

• Start with gain between k1 and k2 and introduce phase lag at low frequencies and lead at high 
frequencies (lag-lead compensation)

log ω

ωm1

∠ F(jω)

θm1

ωp1

0

 

θm2
 

ωm2
ωp2ωz1 ωz2

...where (ωz < ωp )
p

z

s
ssF

ω
ω

+
+

=)(

...where (ωz > ωp )
p

z

s
ssF

ω
ω

+
+

=)(

))((
))(()(

21

21

pp

zz

ss
sssF

ωω
ωω

++
++

=

For unity gain: ωp1 ωp2 = ωz1 ωz2

 

Phase Lead Compensation
The first order phase lead compensator has one pole and one zero, with the zero frequency lower 
than that of the pole.

The simple lead compensator transfer function is: ...where (ωz < ωp )
p

z

s
ssF

ω
ω

+
+

=)(

log ω

log ω

| F(jω) | 

ωm

∠ F(jω)

θm

ωz ωp

0

0

αc
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Lead Compensator Design

α
ω

cm
1

=
1
1sin

+
−

=
α
αθm

m

m

θ
θα

sin1
sin1

−
+

=

The passive phase lead compensator is given by

Fix α using

...where α > 1

Maximum phase lead of

cs
cssF

+
+

=
1

11)( α
α

log ω
ωm

∠ F(jω)

θm

ωz ωp

0

,  then calculate c using
αωm

c 1
=

Note that cross-over frequency will typically fall so the process will need to iterate to find an acceptable 
design.

occurs at frequency 

2.1, 2.2  

A Problem with Stability Margins

)5.006.0()1(
)55.01.0(38.0)( 2

2

+++
++

=
ssss

sssL

-1
Re

Im

L(jω)

PM

-j

Care should be taken when relying solely on gain and phase margins to determine stability and 
performance.  These evaluate the proximity of L(jω) to the critical point at (at most) two frequencies, 
whereas the closest point may occur at any frequency and be considerably less than that at either GM 
or PM, as the example below illustrates.

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

1.2

Time (seconds)

A
m

pl
itu

de

In this example, although gain and phase margins are adequate (GM infinite, PM ≈ 70 deg.), 
simultaneous change of both gain and phase over a narrow range of frequency leads to poor relative 
stability.  The step response exhibits a fast rise time but with considerable oscillation.
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Error Ratio

LFGHr
e

+
=

+
=

1
1

1
1

The error ratio is also called the sensitivity function as it determines loop sensitivity to disturbance

The error ratio plays a fundamental role in feedback control

L
S

+
=

1
1

+
_ yr

H

GFe

 

Feedback Ratio

The feedback ratio or complementary sensitivity function is

L
L

FGH
FGH

r
ym

+
=

+
=

11

The feedback ratio determines the reference tracking accuracy of the loop

L
LT
+

=
1

+
_

H

GF yr

ym

The closed loop transfer function is related to T by:
H
T

r
y

=
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S + T = 1

L
LT
+

=
1L

S
+

=
1

1

1
1
1

=
+
+

=+
L
LTS

Sensitivity function is: Complementary sensitivity function is:

The shape of L(jω) means we cannot maintain a desired S or T over the entire frequency range
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Frequency  (rad/sec)
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Control with Output Disturbance

Superposition allows reference and disturbance effects to be included in y...

Substituting S and T gives

+
+

+
_ yr GF

d

e

Consider the case of a unity feedback loop with disturbance acting at the output...

y = d + FG (r – y)

y = S d + T r

 S determines the ability of the loop to reject disturbance acting at the output

 T determines the ability of the loop to track a reference input
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Bandwidth

10 -3 10 -2 10 -1 10 0 10 1 10 2
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ωB ωBT

0.707

Control not effectiveControl effective

|S(jω)||T(jω)|

Frequency  (rad/sec)

Bandwidth (ωΒ & ωBT) can be defined in terms of the frequencies at which | S | & | T | first cross

• Below ωΒ performance is improved by control

• Between ωΒ and ωBT control affects response but does not improve performance

• Above ωBT control has no significant effect

2
1

 

Closed Loop Properties from the Nyquist Plot

( ))(1)()( ωωω jLjLjT +∠−∠=∠

)(1
)()(
ω

ωω
jL

jLjT
+

=

The vectors |L(jω0)| and |1+L(jω0)| can be obtained directly from the Nyquist plot for any frequency ω0

Closed loop magnitude is given by:

Closed loop phase is given by:

For the unity feedback system...

-1
Re

Im

L(jω)

1

L(jω0)

T(jω0)

L(jω0)
(1 + L(jω0))

|1 + L(jω
0 )|

|T(jω
0 )|

|L(jω
0)|

T(jω0)

T(jω0)
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Nyquist Diagram: Sensitivity Function

2
1

L
S

+
=

1
1 21

2
1

<+⇒> LS

Peaking & bandwidth properties of the sensitivity function can be inferred from the Nyquist diagram.

Sensitivity bandwidth reached when first crosses

11 <+ L

from below:

Sensitivity peaking occurs when

-1
Re

Im

1

Sensitivity bandwidth 
reached when L(jω) first 

crosses this circle

Sensitivity peaking when 
L(jω) lies inside this circle

1

j

-j

√2

 

Nyquist Diagram: Tracking Performance

2
1

L
LT
+

=
1

LLT 21
2

1
>+⇒<Tracking bandwidth reached when first crosses from above:

Tracking peaking occurs when Re{ L(jω) } < -0.5

Peaking & bandwidth of the tracking response can also be determined from the Nyquist diagram.
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Tracking performance peaking when 

L(jω) lies to the left of this line
Tracking performance bandwidth reached when 
L(jω) first crosses this line

-3 dB3 dB

2-2 -1.5-2.5-3
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Loop Shape from the Nyquist Plot
Key features of the S & T curves such as peaking and bandwidth are available from the Nyquist plot.

The trajectory of L(jω) can be determined from the S & T curves, since

-1
Re

Im

L(jω)

-0.5

-3 dB
Tpk1

Tpk2

Spk1

SB
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1

√2
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1
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)()(1)( ccc jSjTjL ωωω =⇔=For example, at cross-over:
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Tpk1 Tpk2Spk1

SB TB

| S |

| T |
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The Sensitivity Integral

∑∫
=

∞

=
N

i
ipdjS

10

)Re()(ln πωω

If L(s) is non-minimum phase or has a pole excess of at least 2, then for closed-loop stability 

...where L has N RHP poles at locations s = pi

For a stable open loop 0)(ln
0

=∫
∞

ωω djS

Equal areas

| S(jω) |

log ω

1

0
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The Waterbed Effect
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Sensitivity magnitude plots for with k varying from 0.1 to 1.5

• The sensitivity integral means that any increase in bandwidth (|S| < 1 over larger frequency range) 
must come at the expense of a larger sensitivity peak.  This is known as the waterbed effect. 

• Sensitivity improvement in one frequency range must be paid for by sensitivity deterioration in another.

 

Maximum Peak Criteria

∞== SjSM S )(sup ω
ω

∞== TjTMT )(sup ω
ω

The maximum peaks of sensitivity and complementary sensitivity are:

Typical design requirements are: MS < 2 (6dB) and MT < 1.25 (2dB)

Phase margin and gain margin are loosely related to the | S | & | T | peaks
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High Gain Feedback

+
_ yr GF u

FSrr
FG
Fu =

+
=

1

One of the benefits of negative feedback is that it generates an implicit inverse model of the plant 
under high gain conditions.  To see this, consider the unity feedback loop... 

FGS
FG

FGT =
+

=
1

Since , we have FS = G-1T, and the above equation can be written

When the loop gain FG is large, T ≈ 1 and we have  u = G-1r, as we should for perfect control. 

The control effort u = F (r – y) can be written in terms of the sensitivity function

u = G-1Tr

y = G u = G G-1 r = r

 

Nominal Performance Specification

The infinity norm of the sensitivity function S provides a good indication of closed loop performance, 
since it captures the magnitude of the worst case loop error ratio over all frequency. 

The response of dynamic systems varies with frequency, hence our design objectives should also 
vary with frequency.

One way to achieve this is to define a frequency dependent weighting function which bounds | S | at 
every frequency.

)(
)(sup

ω
ω

ω r
eS =∞

+
_

y(ω0)

GF

e(ω0)
r(ω0)
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Plant Model Sensitivity

FG
FGT
+

=
1

G
ST

FG
FGFFGF

dG
dT
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−+
= 2)1(

)1(

GdG
TdTS

/
/

=

For the unity feedback system, tracking performance is given by

The sensitivity function S represents the relative sensitivity of the closed loop to relative plant model error

If we differentiate T with respect to the plant G, we find ...

+
_ yr GF

 

Sensitivity and Model Error

( )ε+= 1~ GG

( )ε++=+ 11~1 FGL

εT
SS

+
=

1
~

Let the model error in G be represented by the multiplicative output term ε. 

Therefore loop sensitivity including model error is: 

The major effect of model error is in the cross-over region, where  S ≈ T

εFGFGL
S

++
=

+
=

1
1

~1
1~
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Effect of Plant Model Error
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The effect of plant model error is most severe 
around cross-over - exactly where the stability 
and performance properties of the loop are 
determined.

εT
SS

+
=

1
~

Evaluating and accounting for model 
uncertainty is therefore an important step in 
design.   

The process of modelling plant uncertainty and 
designing the control system to be tolerant of it 
is known as robust control.

 

Internal Model Principle

rGrGy == −1~

The basis of the Internal Model Principle is to determine the plant model G and set F = G-1

i.e. perfect control is achieved without feedback!

• Information about the plant may be inaccurate or incomplete

• The plant model may not be invertible or realisable

• Control is not robust, since any change in the process results in output error

The practical value of this approach is limited because...

r GF u y

r GG -1 u y~

~ ~

In open loop control:  y = FGr
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Internal Model Control

QH
QGF

−
=⇒ −

1
1

• RHP zeros give rise to RHP poles – i.e. the controller will be unstable

FGH
FGQ

+
=

1

An alternative to shaping the open loop is to directly synthesize the closed loop transfer function. The 
approach is to specify a desirable closed loop shape Q, then solve to find the corresponding controller.

• Time delay becomes time advance – i.e. the controller will be non-causal

In principle, any closed-loop response can be achieved providing the plant model is accurate and 
invertible, however the plant might be difficult to invert because...

• If the plant is strictly proper, the inverse controller will be improper

This method is known as Internal Model Control (IMC), or Q-parameterisation. 

2.3  

Non-Minimum Phase Plant Inversion

HGf
GfGGF

n

n
nm −

= −−

1
11

Step 1:  factorise G into invertible and non-invertible (i.e. non-minimum phase) parts:  G = GmGn

∏
=

−

+
−

=
q

i i

is
n zs

zseG
1

θ...where the non-invertible part is given by 

Step 2:  write the desired closed loop transfer function to include Gn:  Q = f Gn

Step 3:  substitute into the controller equation:

HGf
fGF

n
m −

= −

1
1

This is an all-pass filter with delay. Any new LHP poles in Gn can be cancelled by LHP zeros in Gm

Non-minimum phase terms cancel to leave an equation which does not require inversion of Gn
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Control Theory Seminar
3. Transient Response

• Transient Specifications
• Steady State Error
• PID Controllers
• Root Locus Analysis

“It don’t mean a thing if it ain’t got that swing.”
Duke Ellington (1899 – 1974)

 

Transient Response Specifications

• Transient response tuning is typically a compromise between competing objectives

• Optimality only possible when some form of performance index is specified

• Results are highly subjective: different users may select very different controller settings

t
ts

yss ± δ

tr
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yss

0

y(t)

0.9yss

1

Peak overshoot 
(20% typ.)

Decay ratio 
(<0.3)

Steady state error
(small)

Mp

Error bound 
(2% typ.)

Settling time 
(small)

Rise time 
(small)

D = A
B
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Transient Performance Index

A performance index can be defined based on the integral of the closed loop error:

dtte∫
∞

0

2)(IES = Integral of the Error Squared

dtte∫
∞

0

|)(|IAE = Integral of the Absolute Error

ITAE = Integral of Time x Absolute Error dttet∫
∞

0

|)(|

t0

y(t)

1

Transient error
e(t0) = r(t0) - y(t0)

t0

 

Quality of Response
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0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.02

0.04

IA
E

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

IT
A

E

Damping Ratio

0.001

0.0005

Performance index plotted against variation of a key parameter typically yields a convex curve with a 
well defined minimum

The parameter setting which yields minimum performance index represents an optimal controller choice

 

41



Control Theory Seminar  

 

Classification by Type
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A canonical feedback system with open-loop transfer function

...where n ≥ 0 is called a “type n” system.

The type number denotes the number of integrators in the open-loop transfer function, L(s)

Closed loop steady state error will be zero, finite or infinite, depending on the type number, n
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Type 0 Systems
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Error ratio is given by:

Steady state error following a step input is found by applying the final value theorem to e(s)

For a type 0 system there is always a steady state error following a step input which is 
inversely related to loop gain, k

r +
_ yke β (s)

α (s)

 

Type 1 Systems
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Error ratio is given by:

Again, steady state error following a step input is found from the final value theorem:

The presence of an integrator in the loop eliminates steady state error following a step input

To avoid steady state error L(s) must contain at least as many integrators as r(s)

r +
_ yke β (s)

α (s)
1
s
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Response Type Summary
Type 0

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Step Response Plot for a Type 0 System

Time (s)

O
ut

pu
t

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10
Ramp Response Plot for a Type 0 System

Time (s)

O
ut

pu
t

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100
Parabolic Response Plot for a Type 0 System

Time (s)

O
ut

pu
t

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Step Response Plot for a Type 1 System

Time (s)

O
ut

pu
t

0 5 10 15 20 25 30
0

5

10

15

20

25

30
Ramp Response Plot for a Type 1 System

Time (s)

O
ut

pu
t

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

900
Parabolic Response Plot for a Type 1 System

Time (s)

O
ut

pu
t

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Step Response Plot for a Type 2 System

Time (s)

O
ut

pu
t

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35
Ramp Response Plot for a Type 2 System

Time (s)

O
ut

pu
t

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100
Parabolic Response Plot for a Type 2 System

Time (s)

O
ut

pu
t

Type 2Type 1

Position

Velocity

Acceleration

s
1

s3
1

s2
1

r(s) =

r(s) =

r(s) =

 

PID Controllers

dt
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t
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PID (Proportional + Integral + Derivative) controllers allow intuitive tuning of the transient response.

The parallel PID form is:

r

y

ue + +

+

+
_

ki

kp

∫

d
dt

kd

• The proportional term kp directly affects loop gain

• Integral action increases low frequency gain and reduces/eliminates steady state errors, 
however this can have a de-stabilizing effect due to increased phase lag

• Derivative action introduces a predictive type of control which tends to damp oscillation & 
overshoot but can lead to large control effort
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PID Control Action

Many guidelines exist (Ziegler-Nichols, Cohen-Coon, etc.) but PID tuning is typically an iterative process.

3.1

t

y(t)

e(t)

t
t1t0 t1 + kd

0

e(t1)

e(t1)
.∫ e(τ) dτ

t1

t0

0

1

e(t) = r(t) - y(t)

r(t)

dt
tdekdektektu d

t

ip
)()()()( ++= ∫

∞−

ττ

Transient response

Transient error

 

Optimal PID Tuning
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Optimal controller settings can be sought based on a transient response “cost” function such as ITAE.

A simple minimum search algorithm reveals the controller terms which yield the smallest cost function.

Pairs of tuning parameters, such as proportional and integral gain terms, can be found in this way.  
For larger numbers of tuning parameters, iteration using multiple plots is required.  
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Integrator Windup

Commanded  (upid)

Applied  (usat)

0 1 2 3 4 5 6 7 8 9 10
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0 1 2 3 4 5 6 7 8 9 10
-0.5
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1

Windup Anti-windup

If a component in the loop saturates control will be lost.  The integrator continues to accumulate error, 
increasing corrective effort even though the plant output does not change.  This effect is called windup.

Modern industrial PID controllers incorporate an anti-windup feature which clamps the integrator input 
when saturation occurs.
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+
_

+

ki kp

+
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∫
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Output saturationAnti-windup reset
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ud
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PID Controller Refinements
Practical PID controllers incorporate various refinements to improve performance and avoid specific 
difficulties.  Some of these are shown below.

r
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+
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+ +

+
+

_
+

_

ki kp

+
_

∫

d
dt

kd

kw

Independent set-point 
weighting

Output saturation

Anti-windup reset

Derivative term filtering

Derivative acts on output 
feedback only
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Complex Pole Interpretation

The decay parameter and damped natural frequency are the real and imaginary components of the poles

Un-damped natural frequency and transient phase represent the modulus and argument of the poles

Recall, for the under-damped second order case poles are located at 21 ζωζω −±−= nn js

φ = cos-1ζ

−φ

Im

Re−σ

−jωd

jωd

ζωn

ωn

ωn

21 ςω −n

 

Influence of Pole Location on Transient Response

Plot shows unit step response of second order system with varying pole location.  Stable poles positioned further to the left
exhibit faster decay, while those with larger imaginary part have a higher frequency of oscillation.

Im

Re
-0.5-1-4 0.5

j1.5

j8

j4

-2.5
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Constant Parameter Loci

Poles located further to the left have faster decay rate

Poles with larger imaginary component are more oscillatory

Im

Re
ωd8

−σ1−σ2−σ3−σ4−σ5−σ6

ωd9

ωd10

ωd11

ωd12

ωd13

−ωd8

−ωd9

−ωd10

−ωd11

−ωd12

−ωd13

Horizontal lines indicate 
constant damped natural 

frequency (ωd)

Vertical lines indicate constant 
decay parameter (σ)

Note: decay rate and settling time 
are not linearly related.

 

Constant Parameter Loci

This is the usual grid drawn on a pole-zero map to aid in transient response estimation.
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Concentric circles about 
the origin indicate constant 

un-damped natural 
frequency (ωn)

Radial lines from the origin 
indicate constant damping 

ratio (ζ)
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 In a root locus plot, the closed loop pole paths are plotted in the complex plane as some free 
parameter (often loop gain, k) is varied 

Root Locus Design

We have seen how key properties of the transient response can be inferred from the location of 
poles in the complex plane.

The root locus design method is a graphical procedure for determining the transient response of 
the closed loop.

Recall, closed loop poles are the roots of  α1α2 + k β1 β2 = 0

• When k = 0 the roots are  α1α2 = 0 i.e. at open loop poles  

• As k → ∞ the roots tend towards  β1β2 = 0 i.e. at open loop zeros 

• For 0 < k < ∞  the roots follow well defined paths called "loci"

 

Root Locus Plots
Every root locus begins at an open loop pole when k = 0, and either ends at an open loop zero or 

follows an asymptote to infinity

Example root locus plot for system with two closed loop zeros and five poles (i.e. relative degree three)

Im

Re

k → ∞

k = 0

k → ∞

k → ∞

k = ∞

At each value of k, features of the closed loop transient response can be inferred from location of the 
dominant poles.
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Root Locus Example

Association of step response with closed loop root location for varying controller gain.

)22()5.2(
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Root locus plot for the open 
loop transfer function
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High Gain Asymptotes

The number of high gain asymptotes is equal to the relative degree of L(s), n – m.

Asymptotes are distributed symmetrically around a focal point on the real axis.  The angle of 
separation of the asymptotes and their point of intersection on the real axis depend on the relative 
degree of the closed loop transfer function. 

mn

zp
x i

i
i

i

−

−
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∑∑ )Re()Re(

Im
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focal point

n-m
2πθ = 

θ

θ
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Root Loci Asymptotes

Re

Im

Re

Im

Re

Im

Re

Im

Re

Im

Re

Im

3

5

1

4

2

6

High gain root locus asymptotes shown by closed loop relative degree 

Note that for relative degree of 3 or greater loci move into the RHP, causing instability at high gain

 

Properties of the Root Loci

Im

Re

k → ∞

k = 0

k → ∞

k → ∞

k = ∞

Maximum value of k 
which gives stable 

response

Complex roots yield an 
oscillatory transient 

response

Root loci are always 
symmetrical about the 
real axis

Transient response is 
dominated by those roots 

closest to the imaginary 
axis

Roots lying about five times 
further left than dominant 

roots have negligible effect on 
transient response

k = 0

k = ∞

Real roots contribute an 
exponential response

The number of root loci in the s plane is the same as the order of L(s)
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RHP Zero: High Gain Instability
As open loop gain increases, each root locus tend towards either an infinite asymptote or an open 
loop zero. i.e. for proper systems, each zero accommodates a closed loop pole at infinite gain.

For each RHP zero one locus crosses into the RHP, so at sufficiently high gain the closed loop will 
become unstable

Im

Re

k → ∞

k = 0

x

π

Maximum value of k 
which gives stable 
response

k → ∞

k → ∞

k = 0

 

Pole-Zero Cancellation

When a pole and zero lie on top of one another their combined effect on closed loop response is zero.

Poles and zeros which lie close to one another generate a short locus which has little overall effect on 
the closed loop response.

Pole-zero cancellation means placing controller poles and zeros to cancel out undesirable poles 
and zeros in the plant.  Additional controller poles & zeros can then be placed in more desirable 
locations in the complex plane. 

k→∞

01)( ∠=
+
+

=
qs
qssG

3.2, 3.3  
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Tuning Multiple Parameters
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Interpretation of the root loci may be difficult if more than one parameter is varied. Simulation packages 
contain no native tools to display root loci for multiple free parameters, or root contours.

The presence of closed loop zeros means tuning choices should be supported by other data.

 

Root Locus Example

Root-locus for a fixed roll angle of 30°. The speed is increased from 6 m/s (□) to 60 m/s (*).

“The Stability of Motorcycles Under Acceleration,” 
by D J N Limebeer, R S Sharp and S Evangelou, 

Journal of Applied Mechanics, Vol. 69, 2002 
Original publisher: ASME
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Control Theory Seminar
4. Discrete Time Systems

• Sampled systems
• The z Transform
• Complex Plane Mapping
• Aliasing
• Discrete Transformations

“...in recent times, almost all analogue controllers have been replaced by some form of computer control.  This is a 
very natural move since control can be conceived as the process of making computations based on past observations 
of a systems behaviour.  The most natural way to make these computations is via some form of computer.”

Goodwin, Graebe & Salgado, Control System Design, 2000

 

The Digital Control System

+
_ y(t)r(k)

H(s)

G(s)F(z)e(k) u(k)
Hold u(t)

Sampler
ym(t)ym(k)

Continuous timeDiscrete time

+
_

r(k)

F(z)e(k) u(k) Hold u(t)Samplerym(t) ym(k)

t

ym(t)

k

ym(k)

k

u(k)

t

u(t)
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The Sampler

T
fs

1
=

• The sampler converts a continuous function of time ym(t) into a discrete time function ym(kT)

• Almost all samplers operate at a fixed rate 

• The dynamic properties of the signal are changed as it passes through the sampler

• The T is implicit in notation, so for example ym(k) is equivalent to ym(kT)

ym(t) ym(k)

t

ym(t)

k

ym(k)

Sampler

T

1 2 3 4 5 6 700

 

Unit Pulse Response

k

e(k)

k

f (k)

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 ...

Unit pulse input e(k) Controller response f (k)

1

0
-3 -2 -1

0
-3 -2 -1

Controller

The unit pulse response f (nT) is the response of the controller output following an input which has 
unit value at time kT = 0, and zero at all other times.

Providing the controller is stable, its unit pulse response will converge as k becomes large.

The transient properties of the controller are captured in the sequence f (k).
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Digital Controller Operation

T = 0: u(0) = f (0)e(0)

T = 1:  u(1) = f (1)e(0) + f (0)e(1)

T = 2:  u(2) = f (2)e(0) + f (1)e(1) + f (0)e(2)

T = 3:  u(3) = f (3)e(0) + f (2)e(1) + f (1)e(2) + f (0)e(3)

T = n: u(n) = f (n)e(0) + f (n-1)e(1) + ..........................  + f (0)e(n)

The sequence of events which take place inside the digital controller is tabulated below. 

k

e(k) u(k)

k

f (k)

k
0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 40 1 2 3 ... ...

Input e(k) Unit pulse response f (k) Output u(k)

The input sequence e(k) is convolved with the unit pulse response f (k) to form the controller output u(k)

 

Discrete Convolution

Once the unit pulse response f (nT) is known, the controller output u(nT) arising from any arbitrary input 
e(nT) can be found using a convolution summation.

∑
=

−=
n

k
TknfkTenTu

0
)]([)()(

The design task is to find the f (nT) coefficients which deliver a desired output u(nT) for some e(nT).

T = n: u(n) = f (n)e(0) + f (n-1)e(1) + ..........................  + f (0)e(n)

The digital controller computes this n-term sum-of-products for each input sample.

In practice, the number of terms (n) in the sequence is limited by the available computation time 
and memory.
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The Delta Function

)()()( afdttfat =−∫
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∞−

δ

t
a

δ (t - a)

0

f (t)

If a delta impulse is combined with a continuous signal the result is given by the screening property

The delta function, denoted δ (t), represents an impulse of infinite amplitude, zero width, and unit area.

t
0

δ (t)

 

Impulse Modulation

t

t

t

T 2T 3T 4T 5T

T
δT(t)

f(t)

f*(t)

T 2T 3T 4T 5T 10T
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The z Transform

∑
∞

−∞=

−=
n

snTenTfsf )()(*

Applying the screening property of the delta function at each sample instant, we find

)()()(* nTtnTftf
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−= ∑
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δ
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nznTfzf )()(

[ ]...)2()2()()()()0()()()2()2(...)(* +−+−++++++= TtTfTtTftfTtTfTtTfsf δδδδδL

The shifting theorem allows us to take the Laplace transform of this series term-by-term...

The z transform of f (t) is found from the above series after making the substitution z = esT

 

Properties of the z Transform
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• Final value theorem:

{ } )()( zfzknf k=+Z• Time shift:

{ } ∑
∞
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nznTfnTfzf )(ˆ)()( Z

Note: Compare the above properties with those of the Laplace transform.
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Transfer Functions
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An equivalent sampled data system can be found using a discrete transformation, which yields a 
transfer function in the complex variable z.

A linear continuous time system may be represented in transfer function form as
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• Poles & zeros are in different positions in the complex plane

• The relative degree may not be the same

• Dynamic performance is different

Comparing the continuous time and discrete time representations of the same system:

 

The Difference Equation
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Normalizing for the term involving the highest denominator power (α0) gives

Applying the shifting property of the z-transform term-by-term yields the difference equation

The 2-pole 2-zero transfer function is written

Re-arranging to find an expression for u(z)...

u(z) = e(z) { b0 + b1 z -1 + b2 z-2 }- u(z) { a1 z-1 + a2 z-2 }

u(z) { 1 + a1 z-1 + a2 z-2 } = e(z) { b0 + b1 z -1 + b2 z-2 }

u(z) = b0 e(z) + b1 z -1 e(z) + b2 z-2 e(z) - a1 z-1 u(z) - a2 z-2 u(z)

u(k) = b0 e(k) + b1 e(k – 1) + b2 e(k – 2) - a1 u(k – 1) - a2 u(k – 2)
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Discrete Time Stability
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κ κ

k u(k)

1 be(0)

be(1) + abe(0)2

be(2) + abe(1) + a2be(0)

be(3) + abe(2) + a2be(1) + a3be(0)

3

4

Consider the first order transfer function

u(k) = be(k - 1) + au(k - 1)

The evolution of the time sequence is:

n

The corresponding difference equation is:

The presence of the aκ term means that the output u(k) will remain bounded (stable) as k → ∞
providing | a | ≤ 1.  This is the stability constraint for discrete time systems.

. . .

. . .

 

Common z Transforms
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Complex Poles

))((
)(

2

ωω jj aezaez
zzG −−−

=

As for continuous time systems, discrete time complex poles always arise in conjugate pairs.

The transient part of the response is given by
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= − ωω

εε
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zy

...where the residual ε1 has the form Ae jθ

The time sequence is always oscillatory and of the form

 In order that y(k) remain bounded, every pole in G(z) must be constrained by | a | ≤ 1 .

y(k) = Ba k sin( kω + θ ) + ...

 

Common z Transforms
Data f (nT) z-planeF(z)
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Frequency Response
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The response of the discrete time system G(z) at frequency ω = ω0 is evaluated by TjezzG 0)( ω=

Phase is found from...
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Discrete Time Bode Plot
The frequency response of a discrete time system may be represented in Bode plot form, however 
the maximum unique frequency is limited by the sampling theorem.  Typically only those frequencies 
below the Nyquist limit (ωN) are shown.
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-20

0

20

40

60

80

M
ag

ni
tu

de
 (d

B
)

10
2

10
3

10
4

10
5

10
6

10
7

10
8

-225

-180

-135

-90

-45

0

45

Ph
as

e 
(d

eg
)

Frequency  (rad/s)
ωN

Notice that the relative stability of the discrete time system may change due to phase delays 
introduced by the sampler and hold processes. 
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Nyquist Analysis of Discrete Time Systems
Nyquist analysis can be used with discrete time systems in a similar way to continuous systems.  The 
region of unstable roots of L(z) is shown shaded in the diagram below. 

Recall, if the open loop is stable we look for enclosure of the critical point by the above contour after 
mapping by L(z). If the open loop is unstable, we determine closed loop stability by counting 
encirclements of the critical point relative to the number of unstable poles of 1 + L(z).

Re

Im
z plane

1

∞

Re

Im
s plane

∞

 

Discrete Time Nyquist Plot

Continuous time

Discrete time

The frequency response of discrete time systems may be representation using the Nyquist plot, in the 
same way as continuous time systems.

Plot shows the Nyquist curve for the system                         together with its discrete time equivalent

after transformation by the matched pole-zero method for a sample rate of 2Hz.
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1
2 ++ ss
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z Plane Mapping

Equivalent regions shown cross-hatched
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Complex Plane Mapping
z = esT = e(a+jb)T = eaTejbT = rejϕPoints in the s-plane are mapped according to:
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The Nyquist Frequency

The Nyquist frequency represents the highest unique frequency in the discrete time system

Uniqueness is lost for higher continuous time frequencies after sampling
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Aliasing

Loss of uniqueness means an infinite number of congruent strips are mapped into the unit circle.
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Discrete Frequency Ambiguity

Both f1 & f2 give rise to exactly the same set of samples. After sampling it is impossible to determine 
which frequency was sampled. In fact, any of an infinite number of possible sine waves could have 
produced these samples. This effect is known as aliasing.

f1 = sin (5t + 0.32) f2 = sin (35t)

 

Frequency Response of a Sampled System
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The sampler is periodic so can be represented by the Fourier series

...where the Fourier coefficients are given by

dtet
T

C
T

T

tjn
n

s∫
−

−=
2/

2/

)(1 ωδOnly one term is within range of the integration, so

[ ]
T

e
T

C T
Tn

11 2/
2/

0 == −

We can integrate this easily using the screening property of the delta function
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The sampled signal is given by
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Frequency Response of a Sampled System
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We can now find the Laplace transform of the sampled system
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The integral term is the same as the Laplace transform of y(t), but with a change of complex variable
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The frequency response of the samples signal is:

Each term in the infinite summation corresponds to the response of the continuous system, shifted 
along the frequency axis by ±nωs
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Frequency Response of a Sampled System
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Anti-Aliasing
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sωTo prevent aliasing, we need to attenuate the input signal to less than 1 converter bit at       before sampling.

Filter constraints can be relaxed if a faster sample rate is selected.
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Pole Location vs. Step Response

Unit step response as a function of pole location for a second order system.

Im

Re

j

1-1

 

68



4 – Discrete Time Systems 

              

Complex Plane Grid
Lines of constant decay parameter (σ ) and damped natural frequency (ωd )
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Complex Plane Grid
Lines of constant damping ratio (ζ ) and un-damped natural frequency (ωn)
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Sample to Output Delay

td = sample to output delay

t

y(t)

t

u(t) td td td

k k+1 k+2

y(k)

y(k+1)
y(k+2)

u(k)

u(k+1)

u(k+2)

k k+1 k+2

Continuous time feedback 
signal

Time delay imposed by ADC 
and control law computation

Line of effective control effort

Line of desired control effort

Reconstructed output 
signal

 

Time Delay
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0
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1

t

 Phase lag is indistinguishable from delay in the time domain:  Delay in the time domain translates 
into frequency dependent phase lag in the frequency domain.

From the shifting property of the Laplace transform we know that { } )()( syety sφφ −=−L

The influence of time delay is to change the phase of the signal by –ωφ, while the amplitude is unaffected.

Consider a continuous signal y(t) to which a fixed delay φ is applied. 
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Time Delay
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Reconstruction

u(k) Hold u(t)

t

u(t)

k

u(k)

Hold functions attempt to reconstruct a smooth continuous time signal from a discrete time sequence. 

t
k-1k-2 kk-3k-4k-5k-6 k+5k+3 k+4k+2k+1

u(t)

k-7

The only practical hold function considered is the Zero Order Hold (ZOH) which delivers a piece-wise 
constant output over the unknown interval  kT ≤ t ≤ (k + 1)T

The frequency response of the Zero Order Hold is modelled by that of a unit pulse over the sampling 
interval T.
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Zero Order Hold
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This can be simplified using the exponential form of the sine function

This is a complex number expressed in polar form, where the angle is given by

The Zero Order Hold contributes a frequency dependent phase lag to the loop response

The frequency response of the Zero Order Hold can be modelled by that of a unit pulse over the 
sampling interval T.

 

Discrete Time Controller Design

F(z)e(k) u(k)

The result of discrete time controller design is a difference equation involving current and previous 
terms in e(k) and u(k). 

There are two approaches to the discrete time design:

• In design by emulation, we transform an existing controller design into the z domain, then 
find a corresponding difference equation.  The following methods are common:

– Pole-zero matching
– Numerical approximation
– Hold Equivalent

• In direct digital design, we carry out the entire controller design in the z domain using one 
of the methods previously described (Nyquist, root locus, ...etc.).  

In general, direct design methods yield superior performance for the same sample rate, however 
access to computer design tools is very desirable.
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Pole – Zero Matching
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1. Transform the poles & zeros of the transfer function using z = esT

2. Map any infinite zeros to z = -1 (but maintain a relative degree of 1)

3. Match the gain of the transformed system at z = 1 to that of the original at s = 0
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Numerical Approximation
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Forward Approximation Method
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Using the shifting property of the z-transform:

The integral portion can be approximated by a rectangle area:

t
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T
zs 1−

←

The forward approximation method implies we can find the z-transform 
directly from the Laplace transform by making the substitution: 
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The forward approximation rule maps the ROC of the s plane into the 
region shown. The unit circle is a subset of the mapped region, so stability 
is not necessarily preserved under this mapping. 

 

Backward Approximation Method
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The backward approximation method implies we can find the z-transform directly from the Laplace 
transform by making the substitution: 

Approximating the unknown area using a rectangle of height a{e(k+1) - u(k+1)}...

Application of the shifting theorem and simple algebra leads to...

The backward approximation rule maps the ROC of the s plane into a 
circle of radius 0.5 within the z plane unit circle. Pole-zero locations are 
very distorted under this mapping.

t
k k+1
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Trapezoidal Approximation Method
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The trapezoidal approximation method implies we can find the z-transform directly from the Laplace 
transform by making the substitution: 

Approximating the unknown area using a trapezoid...

Application of the shifting theorem and simple algebra leads to...

Trapezoidal approximation maps the ROC of the s plane exactly into the 
unit circle.

1
12

+
−

←
z
z

T
s

Re

Im

j

-1 1

-jThis method is also known as Tustin’s method or the bi-linear transform.

 

Numerical Approximation Methods
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Frequency Warping

z = 2 + sT
2 - sT

z = esT

The Tustin transformation maps the entire 
LHP inside the unit circle.  Pole & zero 
frequencies are said to be warped by the 
transformation.

The correct transformation maps only the 
primary strip inside the unit circle.
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Frequency Warping

The Tustin transformation is:
1
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Evaluating the frequency response of the equivalent discrete time system...
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Compared with the continuous time system, we see that the frequency response of the discrete time 
system has been “warped” by the above formula.

This effect can be compensated by pre-warping the pole-zero frequencies of the original system prior 
to transformation by the Tustin method.  

The frequency response of the continuous time prototype  F(s) = s is evaluated as

ωω jsF js ==)(
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Pre-Warping

The technique of  pre-warping changes the s-plane location of each pole such that it is mapped by the 
Tustin transformation to the correct place in the z-plane.
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1. Re-write the desired characteristic in the form

2. Replace ω1 by a, such that   

3. Transform using the Tustin method

For systems with multiple critical frequencies which must be preserved, each frequency must be warped 
using the formula in step 2 prior to design in the continuous domain.

4. Match the gain of the original system at s = 0 with that of the transformed system at z = 1

4.3  

Step Invariant Method

2. Find the corresponding z-transform of the response

Invariant methods emulate the response of the continuous system to a specific input.

1. Determine the output of the output of the continuous time system for the selected hold input

3. Divide by the z-transform of the selected input

The step invariant method is also known as the ZOH equivalent method.

Invariant methods capture the gain & phase characteristics of the respective hold unit.

u(z) = Z {u(t)}

F(s) u(s) =1
s

F(s)
se(s) =

F(z)
z

z-1e(z) =

f (t)e(t) = 1(t) u(t) = L   -1{ u(s) }

F(z) = (1-z-1) Z {u(t)}
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Ramp Invariant Method

The ramp invariant method emulates the response of the continuous system to a ramp input.

The ramp invariant method is also known as the FOH equivalent method.

Except for the input reference the method is identical to the step invariant method.

u(z) = Z {u(t)}

F(s) u(s) =1
s2

F(s)
s2e(s) =

F(z)Tz
(z-1)2e(z) =

f (t)e(t) = 1(t)

F(z) = Z {u(t)}
Tz

(z-1)2

u(t) = L   -1{ u(s) }

 

Phase Error Comparison

matched
forward
backward
Tustin
pre-warp
ZOH
FOH

Comparison of phase performance for various discrete transformation methods.
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Summary of Emulation Design Methods

Matched pole-zero Relatively easy hand calculation with good performance, but computation 
delay imposes significant phase lag.

Forward approximation Easiest method for hand calculation, but performance is very dependent 
on sample rate.  Can potentially convert a stable design into an unstable 
one.

Backward approximation Produces significant phase error at low frequencies due to warping of the 
stability region during mapping.

Tustin’s method Best compromise between ease-of-calculation and performance.  Pre-
warping enables phase to be preserved at specific frequencies.

Step invariant Most accurate, since it accounts for phase shift induced by the ZOH unit.  
Used for direct digital design methods.

Ramp invariant Best overall performance, but need access to design tools for 
computation.

 

Recommendations

• If a zero order hold element is present, use the step invariant (ZOH equivalent) method once in 
the design.  This will capture phase lag effects introduced by the ZOH.

• If multiple elements must be transformed and the ZOH effect has already been accounted for, 
use the ramp invariant (FOH equivalent) method for the remaining elements. 

• If computer design tools are not available, Tustin’s method represents a good compromise 
between performance and ease of calculation.  Remember to account for ZOH phase effects 
separately. 
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Direct Digital Design

• In direct design we begin by transforming the plant model into discrete form using the step invariant 
method. This captures the action of the ZOH element which precedes the plant.

• Standard design techniques (root locus, phase compensation, etc.) can then be used to synthesize 
the controller.

• The design cycle iterates as many times as necessary until a satisfactory controller is found.

• For the same sample rate, control performance with the direct method is usually significantly better 
than with emulation methods.

H(z)

+
_ y(z)r(z) ZOH G(s)F(z)

G(z)

4.4, 4.5  

Discrete Time Control
• Sampling

– The sampling process changes the frequency characteristics of the feedback signal.  
Understanding of the relationship between s- and z-planes is key to good digital design.

– Careful selection of sample rate is the first and most critical step in design.

• Controller design
– Emulation techniques allow legacy analogue controller designs to be re-used.  Trade-offs 

exist between computational complexity and performance of each method.

– Design in the digital domain yields superior performance for the same sample rate.  
Classical design techniques (Bode, Nyquist, root locus, ...) can be used, with modifications 
to account for the discrete time nature of the signals and sub-systems.

– State space design methods for continuous and discrete time systems are similar.

• Time delay
– Conversion and computational delays are unavoidable in practice.  These contribute a net 

phase lag to the open loop response which is proportional to frequency.  Phase margin is 
eroded!

– Reconstruction using zero order hold contributes a further phase lag.
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Internet support.ti.com/sc/pic/euro.htm 
 
 

Japan 
Fax  International   +81-3-3344-5317 

Domestic   0120-81-0036 
 

Internet/Email  
International  support.ti.com/sc/pic/japan.htm 
Domestic  www.tij.co.jp/pic 
 
Asia 
Phone 
International    +91-80-41381665 

 
Domestic    Toll-Free Number 

Australia   1-800-999-084 
China    800-820-8682 
Hong Kong   800-96-5941 
India    1-800-425-7888 
Indonesia   001-803-8861-1006 
Korea    080-551-2804 
Malaysia   1-800-80-3973 
New Zealand   0800-446-934 
Philippines   1-800-765-7404 
Singapore   800-886-1028 
Taiwan   0800-006800 
Thailand   001-800-886-0010 

 
Fax   +886-2-2378-6808 
Email   tiasia@ti.com 

ti-china@ti.com 
 

Internet  support.ti.com/sc/pic/asia.htm 
 

 

 
 
 
 
 
 
 
 
 

© 2013 Texas Instruments Incorporated 

 

TEXAS INSTRUMENTS 

http://www.tij.co.jp/pic
mailto:ti-china@ti.com

	front cover - 1d
	TOC - 1d
	numbered 1d
	introduction
	section 1
	section 2
	section 3
	section 4
	recommended reading

	blank
	notice
	back cover



