EMI-RFI Considerations in Precision Linear Circuits

By Thomas Kuehl – Senior Applications Engineer Precision Analog – Linear products

EMIRR content based on work by
Chris Hall – Applications Engineer
Precision Analog – Data Conversion products
and
John Caldwell – Applications Engineer
Precision Analog – Linear Products

EMI-RFI

first things first

- TI's interest in EMI-RFI is simply one of providing assistance to our customers who must prevent or resolve EMI-RFI issues affecting the performance of our products in their circuit application
- I would like to acknowledge the contributions of some of the people who have provided industry a wealth of information about EMI-RFI
 - The Designers Guide to Electromagnetic Compatibity, EDN -William D.
 Kimmel, PE, and Daryl D. Gerke, PE, Kimmel Gerke Associates, Ltd
 - Electromagnetic Compatibility Engineering A Wiley and Sons
 Publication Henry W. Ott Henry Ott Consultants
 - Audio Systems Group, Inc. Jim Brown

EMI-RFI

EMI – Electromagnetic Interference

RFI – Radio frequency Interference

Why are EMI and RFI a concern?

- Radio spectrum pollution
- Compatibility within circuits
- System disturbance, malfunction or possibly damage
- Regulatory conformance

EMI or RFI?

Both are sources of radio frequency (RF) disturbance

- RFI radio frequency interference
 - Often a narrowband RF source
 - RF is often intentionally radiated
- EMI electromagnetic interference
 - Often a broadband RF source
 - RF is often unintentionally radiated
- Terms are often used interchangeably

EMI can propagate by one or more types of fields

- Electric Field (E) Force created by uneven charge distribution
- Magnetic Induction Field (H) Force created by moving charges
- Electromagnetic Field Created whenever charges are accelerated

Source http://www.w8ji.com/radiation and fields.htm

The necessary elements for EMI

Radiated EMI will be converted to conducted EMI when it is intercepted by conductors!

Sources of electromagnetic energy

RF generating sources

Intentional radiators

- Cell phones & personal electronics
- Transmitters & transceivers
- Wireless routers, peripherals
- Wireless instrumentation

Unintentional radiators

- System clocks & oscillators
- Processors & logic circuits
- Switching power supplies
- Switching amplifiers
- Electromechanical devices
- Electrical power line services

How radio frequency energy comes about in circuits

It's about edge rates

The coupling medium for conducted emissions

The coupling medium for radiated emissions

Electric-field strength and power density

Emission source limits

Conducted Emissions - 10kHz to 30MHz

Freq (MHz)	Class A dBuV	Class B dBuV
0.45 - 1.6	60	48
1.6 - 30	69.5	48

Sources: SynQor app. note 00-08-02 Rev. 04 & www.cclab.com/engnotes/eng290.htm

Radiated Emissions - 30MHz to 1GHz

measurement distance 10m

Freq (MHz)	Class A dBuV/m	Class B dBuV/m
30 - 80	39	29.5
88 - 216	43.5	33
216 - 960	46.4	35.6
960 - 1000	49.5	43.5

Typical RF field levels

Analog receptors of electromagnetic energy

Operational amplifier voltage-offset shift resulting from conducted RF EMI

in a 50Ω system $-10 dBm = 100 mV_{pk}$ $0 dBm = 318 mV_{pk}$ $+10 dBm = 1.0 V_{pk}$

Radiated EMI and its affect on an ECG EVM

dc rectification by op-amp junctions can produce a voltage offset shift

Bipolar operational amplifier

- Op amp ESD cell and transistor junctions can rectify RFI-EMI
- Resulting dc level is within the bandwidth of the amplifier
- The pulsating dc is filtered by the op-amp bandwidth
- Bandwidth of the op amp is too low to amplify RFI-EMI

Taming the EMI environment

- Minimize EMI radiation from the source
- Reduce the coupling medium's effectiveness
- Reduce receptor circuit's susceptibility to EMI

Normal (differential) and common-mode EMI

Normal mode EMI

- normal mode EMI propagates via unintentional loop antennas developed within circuits and wiring
- current level, EMI frequency and loop area determine the antenna's effectiveness
- The EMI induced current is proportional to the loop area

Common-mode EMI

- the majority originates from capacitively coupled (conducted) normal mode EMI
- the higher the frequency the greater the coupling between conductors
- may propagate directly via cabling acting as monopole antennas.
- power chords commonly can act as antennas
- electronic equipment is 10 to 100x more sensitive to common-mode EMI than normal mode EMI

Normal mode EMI appears as a differential signal applied across the inputs Vcc

Common-mode EMI produces equal signal levels at each input Vcc

System ground or independent return path

Normal and common-mode current flow within a circuit

System ground or independent return path

- The load, common-mode EMI current lcm1_{emi} and normal mode EMI current lnm_{emi} all flow through the Zload
- Icm2_{emi} circulates through the source return line and the system ground, but not through the Zload
- The EMI fields develop at strength and reciprocity is applicable

Basis adopted from Butler Winding, "Common Mode Choke Theory for Our Custom Built Coils"

The common-mode transformer

an effective common-mode EMI filter

System ground or independent return path

- The common-mode transformer is a balanced structure having equal turns and winding sense
- The magnetomotive force created by I_load is equal and opposite to that created by I_load '. Therefore, I_load flows through the transformer with no cancelation. This applies to Inm_{emi} as well.
- Icm1_{emi} and Icm2_{emi} flow through windings A and B in the same direction and encounter the same level of inductive reactance greatly reducing their amplitude.
- The reduction in Icm_{emi} currents results in a corresponding reduction the EMI fields

Normal mode and common-mode filtering

T1 - normal mode transformer

T2 - common-mode transformer

Inm_{EMI} and Inm_{EMI} encounter the winding impedance

- The common-mode transformer functions as described previously
- Normal mode EMI cancelation in a specified frequency range may be needed
- The normal mode transformer windings are wound such that normal currents encounter inductive reactance restricting normal model current flow
- Some common-mode transformers are intentionally designed to have high flux leakage inductance. The leakage inductance acts in series with the load providing inductive reactance and normal mode EMI filtering

Common-mode transformer styles

Power line application

Common Mode Choke				
Typical Design:	Toroid			
Core Types:	Toroid, Split Core			
Core Materials:	Ferrite, Si steel tape wound core			
AC Current:	Up to 20 Amps, rms			
DC Current:	Up to 20 Amps			
Voltage:	Up to 500 Vrms			
Line Frequency:	Typically 50/60 Hz.			
EMI Frequency Range:	Application specific			
Inductance	Application specific			
Leakage Inductance:	Application specific			
Hipot	Up to 2,500 Vac, 1-sec			
Mounting:	Thru Hole, SMT, Bracket			

Signal path application

Impedance Characteristics of NTM1210

Insertion Loss Characteristics of NTM1210

Ferrites for EMI suppression

Ferrite surrounding the cable actually forms a common-mode transformer

Filtering conducted RF-EMI

50/60Hz ac line filter example

Mode	150kHz	500kHz	1MHz	5MHz	10MHz	20MHz	30MHz	
Common	6	20	28	42	45	45	48	dB
Differential	10	13	30	50	50	40	40	dB

Attenuation characteristics for ac line filter (SAE GA1B-10)

Input RC filtering as applied to an instrumentation amplifier

Differential Mode

$$f_{-3dB} = [2\pi(R_A + R_B)(C_A + C_B/2)]^{-1}$$

let $R_B = R_A$ and $C_C = C_B$
 $f_{-3dB} = 343Hz$

Common Mode

$$f_{-3dB} = [2\pi \cdot R_A \cdot C_B)]^{-1}$$

let $R_B = R_A$ and $C_C = C_B$
 $f_{-3dB} = 7.2kHz$

X2Y[®] Capacitor Architecture

The X2Y® capacitor in application

Newer op-amps have built-in EMI filtering

Simplified CMOS Op-amp **Built-in input EMI Filter** +Vss HIH Dynamic. Load Çdm Out R_{\$}2 NIN I 1k and ₩ Op-amp Cdm input stage Ccm ± 2.5pF Com CM fc(-3dB) 63.7MHz MNDM fc(-3dB) 31.8MHz -V33

100k

1M

Filter response

NN

100M

10M

Frequency (Hz)

EMIRR- a measure quantifying an operational amplifier's ability to reject EMI

- EMIRR Electromagnetic Interference Rejection Ratio
- Defined in National Semiconductor's application note AN-1698
- Measured as a dB voltage ratio of output offset voltage change in response to an injected RF voltage having a defined level
- Provides a definitive measure of EMI rejection across frequency allowing for a direct comparison of the EMI susceptibility of different operational amplifiers

EMIRR IN+

- EMI testing of operational amplifier pin functions has shown that the input pins are the most sensitive to EMI and produce the largest offset shift
- EMIRR IN+ is the EMI rejection ratio of the non-inverting input. The term EMIRR IN+ has become nearly synonymous with EMIRR
- The operational amplifier is connected as a unity-gain buffer during the test. An RF signal with a specified drive level is applied to the non-inverting input

EMIRR IN+ equation

EMIRR IN+
$$(dB) = 20 \cdot \log \left(\frac{V_{RF_PEAK}}{|\Delta V_{OS}|} \right) + 20 \cdot \log \left(\frac{V_{RF_PEAK}}{100mV_P} \right)$$

- V_{RF_PEAK} = peak amplitude of the applied RF signal @ op-amp input
- ΔV_{os} = resulting "input-referred" DC offset voltage shift @ op-amp output
- 100*m*V_P = standard EMIRR input level (-10 dBm)

Higher EMIRR IN+ equates to lower amplifier EMI sensitivity

EMIRR IN+ equation solved for |∆Vos|

$$\left| \Delta V_{OS} \right| = \frac{1}{10^{\left(\frac{EMIRR\ IN + (dB)}{20}\right)}} \cdot \left(\frac{V_{RF_PEAK}^{2}}{100mV_{P}}\right)$$

- Use this equation to solve for |∆V_{os}| of a unity gain amplifier if V_{RF_PEAK} and EMIRR IN+ are known such as when a plot is provided
- EMIRR IN+ is frequency dependant
- Doubling V_{RF_PEAK} Quadruples |∆V_{OS}|!
- For example: 100mV_P RF signal at 1.8GHz produces an EMIRR IN+ of 60 dB. The associated voltage offset shift would be 100uV

The EMIRR IN+ test set-up

See TI Application Report SBOA128 for details

EMIRR IN+ measurement results for TI CMOS rail-to-rail operational amplifiers

Model	<u>GBW</u>	<u>Filter</u>	<u>Model</u>	<u>GBW</u>	<u>Filter</u>
OPA333/2333	350kHz	Yes	OPA376/377	5.5MHz	Yes
OPA378	500kHz	Yes	OPA348/2348	1MHz	No

EMIRR testing applied to instrumentation amplifiers

Test Configuration

Bipolar supplies (+/-V), reference pin grounded, RF level -10dBm

Differential measurement

- RF signal applied to noninverting input
- Inverting input grounded

Common-mode Measurement

RF signal applied to both inputs

EMIRR testing applied to instrumentation amplifiers INA118 – INA333 differential mode comparison

INA118

- 3 op-amp current feedback design
- Av range 1 to 10kV/V
- 70kHz BW, G = 10V/V
- Iq 350uA
- circa 1994
- no internal EMI filter

INA333

- 3 op-amp CMOS auto-zero design
- Av range 1 to 1kV/V
- 35kHz BW, G = 10V/V
- Iq 50uA
- 2008 introduction
- internal EMI filter

EMIRR testing applied to instrumentation amplifiers INA118 – INA333 common-mode comparison

INA118

- 3 op-amp current feedback design
- Av range 1 to 10kV/V
- 70kHz BW, G = 10V/V
- Iq 350uA
- 1994 introduction
- no internal EMI filter

INA333

- 3 op-amp CMOS auto-zero design
- Av range 1 to 1kV/V
- 35kHz BW, G = 10V/V
- Iq 50uA
- 2008 introduction
- internal EMI filter

Instrumentation amplifier EMIRR performance comparison

TI - INA333competitor Acompetitor Bcompetitor C

Differential mode EMIRR

Common-mode EMIRR

Shielding and screening

Minimizing the medium's effectiveness

Shielding Effectiveness (S.E.)

of enclosed material

Emission Suppression

 $S.E_{dB (Em. Supp.)} \approx A_{dB}$

Susceptibility

 $S.E_{dB (Sus.)} \approx A_{dB} + R_{dB (appropriate)}$

where: A: absorption loss in dB

R: reflection loss in dB

From: COTS Journal, *January 2004 – "Design Considerations In Building Shielded Enclosures."*

Noisy Neighbors - Electrostatic Noise

Without Shield

- Noise is capacitively coupled into high impedance node
- I = C * (ΔV / ΔΤ)
- Changing capacitance (distance) or voltage creates a current
- Circuit can "see" you moving
- Vibrations create ΔC

With Shield

- Inserting a "plate" between the two plates breaks the field path.
- Plate does not have to be ferrous, just conductive (aluminum).

Shielding and screening

Minimizing medium's effectiveness

Metal Shielding

Magnetic field f < 20kHz

Ferrous metals

- steel
- Mu-metal nickel, iron

RF fields 10kHz < f < 1GHz

Non-ferrous metals

- Al foil $I_{Loss} > 90dB$
- \bullet Cu, Ni I_{Loss} 40-60dB
- Vacuum plating

 $I_{Loss} > 80dB$

• Electroless deposition

 $I_{Loss} > 80dB$

From: EDN EMI/EMC guide

A loop – the path current follows

Loops

- dc, ac and EMI signal may share loop paths
- EMI-RFI will take the path of least impedance
- The current loop may act as a loop antenna coupling EMI/RFI in, or out, of the circuit

The common-mode return loop may be difficult to predict

Balanced analog and digital circuitry reduces common-mode response

Balanced digital logic: LVDS, PECL, HSTL

Balanced differential analog circuitry

Circuit plans to help minimize EMI

- Strive for a zero impedance ground
- Design for a differential signal environment, both logic and analog
- Minimize PCB loops that act as EMI antennas
- Use X2Y capacitors for filtering and decoupling
- Make use of common-mode transformers
- Use balanced lines and traces

PC board tips to help reduce EMI's affect in circuits

- Minimize path inductance, especially ground which may be the return for many signals.
- Use a continuous ground plane. Avoid slots in the plane. They increase path length increasing the inductance.
- Place potential EMI sources on one end of board, potential receptors on the other end.
- Extend balanced line concepts to the board; especially, in the low-level signal circuits.

A PB board that failed radiated EMI testing in several hundred MHz range

Board layout includes TI dual CMOS op amp

- 1-4 long ground return paths increases return impedance and loop areas
- 5,6 long, unbalanced input traces
- 7, 8 Decoupling capacitors are too distant and have long traces
- No ground plane!
- RFI EMI performance likely wasn't considered during board layout

In conclusion EMI/RFI

- May constitute an operational, regulatory or liability concern
- Is best considered as part of the design process
- Requires a source, medium and receptor
- Propagates by conduction and/or radiation
- Most often appears as a dc offset shift in precision linear circuits
- Can most often be resolved by reducing the effectiveness of an EMI source or medium and responsiveness of a receptor circuit

A happy IC - EMI free!

Appendix

The ground return environment may be complex

Current paths must be carefully considered to avoid long loops

Balanced line helps keep induced common-mode EMI from differential conversion

- balanced line presents induced EMI as an equal level, same phase signal to amplifier input
- the common-mode rejection of the amplifier or transformer will act upon the common-mode EMI
- twisting the line improves balance by equalizing the field exposure of both wires

