FTDI Pattern Generator | User Guide Page | 7

[image: image3.png]Format View Help

Edit.

File.

@
e

@
oBormman

o
Ao

oRornnnn

B

odorrmmin

Ao

o

Ao

oRormrrn

B

oXorrmmn

HIo A

o Fommmrn

HOO MMM

CoOHHMAM

HOO MMM

CoOHHMAM

ComHHHAN

@
H

Sodnmenon

HoomHnmE
coommnmd
ARo
oRorrmmn
AZordnmn
oZorrrmn
B
R
ARorrrm
oRorrrmn
AEorrnmn
R
ARorrrmn
o@orrrmn
HOOH A
COOHHHMH
O
OHOHHHmH
COHMHHmH

®
g
Cornmenor

FTDI Pattern Generator

User Guide

Contents

3Version Notes

3FTDI Pattern Generator

3FTDI Pattern Format File

4Perforce Locations

4FTDI Pattern Generator DLL Function Prototypes

4openUSBPort

5initializeDevice

5modifyBaudRate

5writeRegister

5readRegister

6closeUSBPort

6closeAllPorts

6importFTHandle

6exportFTHandle

6restartFTHandle

7DLLVersion

Version Notes

0.1 – Initial creation
0.2 –Slight modifications to document

0.3 – Support for 3-wire SPI (3-wire SPI – Write and Read on same pin)

1.12 – Added function for exporting FT handle
FTDI Pattern Generator

FTDI Pattern Generator can be used for formatting (parsing) and sending any communication protocol (like SPI) using FTDI port. It uses a pattern text file which specifies the communication protocol to be followed. FTDI pattern generator uses FTDI’s Synchronous Bit Bang mode. FTDI chips which support Synchronous bit bang can use FTDI pattern Generator for writing and reading back. FTDI chips which supports only bit bang(asynchronous bit bang) can be used only for write.

FTDI Pattern Format File

FTDI Pattern to be followed is passed to the DLL as a text file. It contains two sections – Write and Read. Each section contains 8 rows, representing 8 pins of a FTDI port. The 1st column represents the pin index (starting from 0 and this column is just used as reference for pin number. It should always be in proper order starting from 0, 1, 2...). The format file will contain multiple columns, each column representing the 8-bits (1 byte) that will be written to the 8 pins of FTDI port.
[image: image1.png]I3 TEXAS
INSTRUMENTS

For example, the clock pin (In fig below, Pin 0) will be represented by alternating 1’s and 0’s representing the clock signal. For write function, the FTDI pattern generator gets the address and data, and forms a byte array (each byte representing 1 column) and writes to the port. For read function, it will get the address from and will extract the data bits from the bytes the port receives.
· “Ax” indicates “bit x of the address to be written” for both the read and write case. The address is always written for both reading and writing. Example: A5 refers to 5th address bit(starting from A0)

· “Dx” indicates “bit x of the data to be written” for writing and “bit x of the data to be read” in the read case. The data is written for writing and read for reading.

· The address length and data length for each device is extracted from the file based on the largest address bit and largest data bit (i.e. A31 indicates a 32 bit address).

· Except for the pin from where the read bits are received, all other pins are configured to be output pins.
· The write and read pin can even be same. (3-wire SPI).

· To retain the current state of a pin (before writing/reading) use “X” in the 2nd column (column next to the pin index). The current state of the pin will be obtained and the entire row of that pin will be replaced with its current state(“0” or “1”)

Note:
In the Simple GUI Plugin Template, each “block” in the low level page needs to have its own pattern format text file, with the name of the pattern file same as its block name. The pattern files needs to be placed under “Pattern Files” folder.
FTDI Pattern Generator DLL Function Prototypes

openUSBPort

int openUSBPort(char* devDesc,unsigned long baudRate,int* EVMIndex)
· devDesc – Device Description of the port to be opened

· baudRate - Baud Rate to be set for the port

· EVMIndex (O/P) – Returns the EVM Index for the port

Opens Port Handle based on device description specified by the user. Please note that the EVMIndex refers to the FTDI Port opened.
initializeDevice

int initializeDevice(char* fileName,int EVMIndex, int* DeviceIndex)

· fileName – Path of the Format Text File

· EVMIndex – EVM index of the port already opened

· DeviceIndex(O/P) – Specifies the device index(of the format file provided) for the corresponding EVM Index.

When user provides the FTDI Format File and the EVM index which it corresponds to, the function saves the format and returns the device Index. A single EVM Index (single port) can have multiple devices(multiple formats). Each format saved can be accessed by specifying the EVM Index and Device Index. Please note that this DeviceIndex refers to the format file, of the port specified by the EVMIndex.
modifyBaudRate

int modifyBaudRate(int EVMIndex,unsigned long baudRate)

· EVMIndex – The port’s EVM index for which the baud rate needs to be changed.

· baudRate – Baud rate to be set.

Used to set/change the baud rate of the port.

writeRegister

int writeRegister(int EVMIndex, int devIndex, unsigned long int address, unsigned long int data)

· EVMIndex – EVM index of the port already opened

· devIndex – Device Index for that particular EVM Index

· address – Address of the register to be written specified in U32 format

· data – Data of the register to be written specified in U32 format

Generates the FTDI Pattern specified by the EVM index and Device Index for the address and data provided, and writes to the port.

readRegister

int readRegister(int EVMIndex, int devIndex, unsigned long int address, unsigned long int* data)

· EVMIndex – EVM index of the port already opened

· devIndex – Device Index for that particular EVM Index

· address – Address of the register to be read specified in U32 format

· data(O/P) – Data of the register read back specified in U32 format

Generates the FTDI Pattern specified by the EVM index and Device Index for the address provided, and writes to the port. It reads and decodes back the data sent.

closeUSBPort

int closeUSBPort(int EVMIndex)

· EVMIndex – EVM index of the port to be closed

Closes the FT_Handle of the EVM Index provided by user.

closeAllPorts

int closeAllPorts()

Closes all the FT_Handles opened.
importFTHandle

int importFTHandle(FT_HANDLE ftHandleIn,unsigned long baudRate,int* EVMIndex)

· ftHandle(I/P) – External Ft_Handle to be passed to FTDI Pattern Generator

· baudRate – Baud Rate to be set for the FT Handle received.

· EVMIndex(O/P) – EVM Index for the FT Handle imported.

Used to pass an already opened FT_Handle to FTDI Pattern Generator.

exportFTHandle

int exportFTHandle(int EVMIndex, FT_HANDLE* ftHandleOut)

· EVMIndex(I/P) – EVM Index of the FT Handle to be exported

· ftHandle(O/P) – FT_Handle of the port specified by the EVMIndex to be passed out
Used to pass out an already opened FT_Handle from FTDI Pattern Generator.
restartFTHandle
int restartFTHandle (int EVMIndex)

· EVMIndex – EVM index of the port whose handle has to be closed and reopened.

Used to restart a port specified by the EVM Index’s FT Handle.
DLLVersion
float DLLVersion ()
Returns the FTDI Pattern Generator DLL’s Version.
[image: image2.png]Technology for Innovators® = Wi TeExas INSTRUMENTS

[image: image2.png]