Using internal current excitation and built in voltage reference

V_{REF} = 2.048 V; 5ppm/°C drift; Long term drift 1000h = 110ppm

 $I_{DAC} = 100uA$; 50 ppm/°C drift

 $R_{RTD(37^{\circ}C)} = 1143.9\Omega$, resistance of PT1000 on 37.00°C

$$V_{ADC} = V_{REF} \frac{\text{CODE}}{2^n}$$
, ADC conversion formula

$$V_{ADC} = R_{RTD} * I_{REF}$$

$$R_{RTD} * I_{DAC} = V_{REF} \frac{\text{CODE}}{2^n}$$

$$R_{RTD} = \frac{V_{REF}}{I_{DAC}} * \frac{\text{CODE}}{2^n}$$

If we analyze scenario where PT1000 temperature remains the same (37.00°C) but ambient temperature where electronics is located rises +20°C then $V_{REF+20^{\circ}C}$ and $I_{DAC+20^{\circ}C}$ because of temperature drift will be:

$$V_{REF+20^{\circ}C} = V_{REF} \pm V_{REF} * 5ppm * 20 = V_{REF} \pm V_{REF} * 0.0001 = V_{REF} (1 \pm 0.0001)$$

$$I_{DAC+20^{\circ}C} = I_{DAC} \pm I_{DAC} * 50ppm * 20 = I_{DAC} \pm I_{DAC} * 0.001 = I_{DAC} (1 \pm 0.001)$$

Measured code at ambient temperature +20°C will be:

$$CODE_{+20^{\circ}C} = \frac{V_{ADC} * 2^{n}}{V_{REF+20^{\circ}C}} = \frac{I_{DAC+20^{\circ}C} * R_{RTD(37^{\circ}C)} * 2^{n}}{V_{REF+20^{\circ}C}}$$

Because we don't know the ambient temperature and during calculation we will consider standard values of I_{DAC} and V_{REF} calculated $R_{RTD+20^{\circ}C}$ on rised ambient electronics temperature of +20°C will be:

$$R_{RTD+20^{\circ}C} = \frac{V_{REF}}{I_{DAC}} * \frac{CODE_{+20^{\circ}C}}{2^{n}} = \frac{V_{REF}}{I_{DAC}} * \frac{I_{DAC+20^{\circ}C} * R_{RTD(37^{\circ}C)} * 2^{n}}{V_{REF+20^{\circ}C} * 2^{n}}$$

If we calculate extreme condition where $I_{DAC+20^{\circ}C} = I_{DAC}(1+0.001)$ and $V_{REF+20^{\circ}C} = V_{REF}(1-0.0001)$

$$R_{\text{RTD}+20^{\circ}\text{C}} = \frac{V_{\text{REF}}}{I_{\text{DAC}}} * \frac{I_{DAC}(1+0.001) * R_{\text{RTD}(37^{\circ}\text{C})} * 2^{\text{n}}}{V_{REF}(1-0.0001) * 2^{\text{n}}} = R_{\text{RTD}(37^{\circ}\text{C})} \frac{1.001}{0.9999} = 1145.16$$

Which gives us measured temperature of 37.33°C which is error of +0.33°C

Using ratiometric measurement

 R_{REF} with temperature drift of \pm 5ppm and long term drift 0.04% 10 000h at 70°C

$$R_{RTD} = R_{REF} * \frac{\text{CODE}}{2^n}$$

If we analyze same scenario where PT1000 temperature remains the same (37.00°C) but ambient temperature where electronics is located rises +20°C then R_{REF} because of temperature drift will be:

$$R_{REF+20^{\circ}C} = R_{REF} \pm R_{REF} * 5ppm * 20 = R_{REF} (1 \pm 0.0001)$$

Measured code will be

$$CODE_{+20^{\circ}C} = \frac{R_{RTD} * 2^n}{R_{REF} + 20^{\circ}C}$$

Because we don't know the ambient temperature and during calculation we will consider standard values of R_{REF} , calculated $R_{RTD+20^{\circ}C}$ on rised ambient electronics temperature of +20°C will be:

$$R_{RTD+20^{\circ}C} = R_{REF} * \frac{CODE_{+20^{\circ}C}}{2^{n}} = R_{RTD} * \frac{R_{REF}}{R_{REF+20^{\circ}C}} = R_{RTD} * \frac{R_{REF}}{R_{REF}(1 \pm 0.0001)}$$
$$= R_{RTD} \frac{1}{1 + 0.0001}$$

$$R_{RTD+20^{\circ}C} = 1143.79\Omega$$

Which gives us measured temperature of 36.97°C which is error of +0.03°C which is 10 times lower error than previous measurement