
PAGE 1

KCU105 DAC38RF82 JESD REFERENCE DESIGN USER GUIDE

Table of Contents

I. DESCRIPTION…………………………………………………………………………………….2

II. HARDWARE SETUP………………………………………………………………………….......2

III. COMPILING VIVADO PROJECT……………………………………………………………...3
1. Restore the Vivado project………………………………….……………………........……3

2. Compiling the project…………………………………………………….…….…...............3

IV. TESTING WITH DAC38RF82.……………………………….……………...........................….3

1. Configure DAC………………………………………………………………….…….3

2. Programming using Vivado Hardware Manager…………………………………...…4

3. Setting the FMC voltage……………………………………………………………….........9

4. Checking Results in Chipscope………………………………………………….…………11

5. Scope and Spectrum Analyser……………………………………………………………..13

V. FIRMWARE INFORMATION………………………………………………………………….14

 1. Generation of Sinewave…………………………………………………………...………..14

 2. Changing the Sinewave frequency…………………………………………………………15

VI. STATUS LEDS……………………………………………………………………………….……18

PAGE 2

I. DESCRIPTION

The design “KCU105_DAC38RF82_7p68G.zip” is developed for KCU105 board for the mode:

84111 of DAC38RF82. It has JESD Base IP and JESD PHY IP to get the tone generated within

the firmware and sends it to the DAC38RF82 after conversion to conform to the JESD protocol.

The design is compiled for 7.68G lane rate. The design has a simple transport layer specific for

that mode (84111) that receives the samples generated by the DDS compiler in firmware and, re-

order the bits and give out 16 samples every clock cycle. The results can be verified using

Chipscope or using a Scope (or a spectrum analyzer). This document gives a brief on the

compilation and verification process involved.

NOTE: This version of the FW is a fixed line rate firmware and hence will work only at 7.68G.

For any other line rate the firmware needs to be recompiled for that specific linerate.

Section II discusses about how the hardware setup should be connected. Section III discusses on

how to extract the project from .zip file and the compilation process involved. Section IV

discusses on how to get the DAC data in Chipscope. Section V describes the technical

information about the firmware. Section VI discusses the LED debug signals added in project.

Signals Description Direction

CLK_IN1_D
Constant 300Mhz clock coming from an on-board

crystal

Input
refclk Reference clock from the DAC38RF82 EVM

sysref SYSREF Signal from the DAC38RF82 EVM

Txp_in/Txn_in
Serial Data to the DAC

(LVDS lines)

tx_dataout

Transport Layer data out (20 samples for every

link clock)

Output from the transport

module

tx_tready
Ready signal indicating JESD BASE IP is ready

for data
Output from JESD BASE IP

DAC38RF82 RevE EVM is used for testing.

PAGE 3

II. HARDWARE SETUP

Connect the KCU105 board with DAC38RF82. Please use the HPC FMC to connect the devices.

Connect the Digilent port or the JTAG cable to the PC in order to download the firmware.

Additionally UART port must also be connected to the PC to make any configurations.

Connect a clock of 384Mhz of 6dBm to SMA J4 and remove the shunt connecting pin1 and 2 of

jumper JP10. Keep all other hardware settings in the default configuration.

Also connect a Scope or Spectrum Analyzer to the DAC EVM.

III. COMPILING VIVADO PROJECT

1. Extracting the zip file.

 Right click the KCU105_DAC38RF82_7p68G.xpr.zip file and then press “Extract

All”. After extracting, open the project using Vivado 2016.1. The project file is

KCU105_ DAC38RF82_7p68G.xpr\prj_MyKcu105_TI\ prj_MyKcu105_TI.xpr

2. Compiling the project.

 In Vivado, on the left you will see the Flow Navigator. Press the generate Bitstream

option under “Program and Debug” to generate the output “.bit” file.

 Once the generation is over a .bit file will be generated, along with with .ltx file

(required for chipscope).

 The bit file generated is “mySystem_wrapper.bit”. The name of the .ltx file is

debug_nets.ltx. These are the files that must be loaded when the device is to be

programmed.

 These files are generated at the location -

KCU105_DAC38RF82_7p68G.xpr\prj_MyKcu105_TI\prj_MyKcu105_TI.runs\impl

_1\

IV. TESTING WITH DAC38RF82

1. Configure DAC
 The reference clock from DAC should be stable before downloading firmware. So, the

DAC has to be configured first before we program the board.

 Open DAC38RF82 GUI v2p0 and perform the follow actions:

PAGE 4

o Reset the DAC. Toggle the Reset Pin.

o Load the Default Register Settings.

o Set the following values:

 DAC Clock Frequency: 6144 Mhz

 # of DACs : Dual DAC

 # of IQ pairs per DAC : 1 IQ pair

 # of serdes lanes per DAC : 4 lanes

 Desired Interpolation : 8x

 Check the PLL enable checkbox for On-chip PLL

o Press the Configure DAC button.

o Press on PLL Auto tune

o Finally press on Reset DAC JESD Core & SYSREF TRIGGER.

2. Programming with Vivado Hardware Manager

In order to program the KCU105 we need to follow a series of steps. Please make sure you

follow the order while programming it.

1) Make sure to configure the DAC EVM before programming the device.

PAGE 5

2) Open Device manager and check for the COM ports. (Make sure you have connected to

the UART port of the board)

In this case, we have COM Port 8 (Enhanced) and COM Port 7 (Standard).

3) Open both the COM ports using any Utility (like Hercules). For Standard COM Port(in this

case COM port 7), make sure of the below settings while opening the port.

PAGE 6

4) Open the Vivado Hardware manager. It can be opened from the GUI start screen (or) the

Vivado flow navigator under “Program and Debug”.

 (OR)

PAGE 7

PAGE 8

5) Press on Open Target and then press on Auto connect.

If you cannot auto connect, then press on “Open New Target” from the drop down list. Click

Next twice and you should see the following.

PAGE 9

6) After that Right click on the KCU105 device part number that is listed and press on Program

Device.

In the Pop-up. Select the “mySystem_wrapper.bit” generated earlier in the Bitstream file path.

In the Debug Probes file path mention the “debug_nets.ltx” file which was also previously

generated. Then press “Program”.

3. Setting the FMC voltage

We need to set the FMC voltage of the KCU to 1.8V before we capture. In order to set this

please make sure that you have connected the UART of the board to the PC. This setting needs

to be done only once after the KCU has been connected and turned ON. For subsequent captures,

this section can be skipped.

Enhanced COM Port
 Once firmware is downloaded, we need to set the FMC voltage to 1.8v in the

enhanced port.

 To do that, in the Hercules where we have opened the Enhanced COM port, enter 0 to

go the Main menu

 The main menu items will be displayed. Enter 4 to Adjust FPGA Mezzanine Card

(FMC) settings

 Again enter 4 to Set FMC VADJ to 1.8V.

PAGE 10

 To read the voltage value, go back to the main menu by entering 0. Then enter 2 to

“Get the Power system Voltages” and enter 7 to “Get the VADJ1D8 voltage”.

PAGE 11

4. Checking Results in Chipscope

Once the development kit is programmed, user can view the results in Chipscope (Vivado

Hardware Manager) which probes signals from the board.

Signals which are currently probed are

 Tx_sync - Active low SYNC signal from JESD Base IP. If SYNC is established, this signal

will be high.

 Transport_layer_DAC38RF82_84111_0_tx_dataout[255...0] – A 256 bit bus of data

coming from the Transport layer. It contains sixteen 16-bit samples in each clock cycle.

 Sample_0….Sample_3 – The output samples coming from each DDS compiler (see

Firmware Information section).

 Concat_OP – The concatenated signals of Sample_0 to Sample_3 signals to create a 64-bit

bus. This bus consists of four 16-bit samples, with the Sample_0 output being in the LSB

position.

Other signals can also be probed. Each time, signals are added/removed from Chipscope, the

project has to be compiled again.

The hw_ila_1 window is shown below.

The Transport_layer_DAC38RF82_84111_0_tx_dataout[255...0] can be grouped into 8 lanes

of 32 bits each. This will make viewing much easier . This can be done by selecting the required

signals (select 0 to 31 for lane0, 32 to 63 for lane_1 etc.,) and right-clicking and selecting “New

Virtual bus”. Then name the new bus. After grouping into 8 lanes you will get something

similar to the image below.

PAGE 12

The Concat_OP is a 64-bit bus consisting of four 16-bit samples. In this mode 4 samples are

divided across 2 lanes for every clock cycle. Hence the output of the transport layer is a 256 bit

bus, which contains sixteen 16-bit samples for 8 lanes.

It is possible to view the output of each DDS as a 20Mhz wave, within the chipscope.

The procedure:

1. Right click -> Radix -> Signed decimal

2. Right click -> Waveform Style -> Analog

The transport layer is implemented only for the mode 84111.

PAGE 13

From the DAC datasheet, the sample format can be obtained as follows

Sample Pattern for one frame of 84111

Transport_layer_DAC38RF82_84111_0_tx_dataout follows the following sequence

 The first link clock , Transport_layer_DAC38RF82_84111_0_tx_dataout signal contains

16 samples. All the even lanes (0,2,4,6) contain MSB 8 bits of a sample (15:8) and all the
Odd lanes (1,3,5,7) contain the LSB 8 bits of a sample (7:0)

 Each lane contains MSB/LSB of 4 samples with the 1st sample of each cycle being the LSB
for each lane.

5. Scope and Spectrum Analyzer

The 20 Mhz tone as seen in the Scope output:

Bytes 0

Nibbles 0 1

Lane RX0 A-i0[15:8]

Lane RX1 A-i0[7:0]

Lane RX2 A-q0[15:8]

Lane RX3 A-q0[7:0]

Lane RX4 B-i0[15:8]

Lane RX5 B-i0[7:0]

Lane RX6 B-q0[15:8]

Lane RX7 B-q0[7:0]

PAGE 14

The 20 Mhz tone as seen in the Spectrum Analyser:

V. FIRMWARE INFORMATION

This FW (and Transport Layer) has been made specifically for 84111 mode. A sinewave is being

generated within the FW. This Sine wave is being sent continuously (free-running) to the DAC

from the FPGA.

1. Generation of Sinewave:

 A DDS Compiler is being used within the FW in order to generate the Sinewave. In this

design, a Sine wave of frequency of 20 Mhz is being generated.

 The DDS compiler will require a sampling clock as input. In this firmware, the sampling

frequency of the DDS compiler is 192 Mhz.

 For every link clock cycle we need to send 32 bits of data to the JESD Base IP. Hence we

use 4 instances of DDS compiler modules to generate 4 waves of 20 Mhz each. However

each instance is offset by an equal value (for this mode the phase offset is one-fourth of

the output wave i.e., 20/4 = 5Mhz) such that in each link clock 4 samples of a 20 Mhz

Sinewave is generated. All four of these samples are concatenated (Concat_OP signal)

and given as an input to the transport layer.

 The concatenated output (Concat_OP) consists of four 16-bit samples. In this mode 4

samples are divided across 2 lanes for every clock cycle. Hence the output of the

transport layer is a 256 bit bus, which contains sixteen 16-bit samples for 8 lanes.

 The DAC sampling rate for this lane rate (7.68G) is 768 Msps. Each DDS Compiler

instance generates a 20Mhz wave w.r.t a sampling rate of 192 MHz. Therefore when we

PAGE 15

combine the outputs of 4 of such instances for a single cycle, a sine wave of 20 Mhz is

generated for a sampling rate of 768 Msps.

 In this design, the DDS compilers generate a free running sine wave output. Hence every

clock cycle is a start of frame. Thus the output of the transport layer is directly connected

to the JESD TX Base IP.

2. Changing the Sinewave frequency:

 In order to change the generated Sinewave frequency, we need to change the phase offset

and phase increment values.

(calculation has been presented for 20 Mhz sinewave case)

o Phase offset = [2^Phase width /(Sampling frequency/Required frequency)]/4

 = [2^16/(192/20)]/4

 = [65536/9.6]/4

 = 6826.667/4

 = 1706.6667

By rounding off to the nearest integer we get 1707 which is 6AB in hexadecimal

or 11010101011 in binary.

o Phase increment = 2^Phase width /(Sampling frequency/Required frequency)

 = 2^16/(192/20)

 = 65536/9.6

 = 6826.667

By rounding off to the nearest integer and making it a multiple of phase offset, we

get 6828 which is 1AAC in hexadecimal or 1101010101100 in binary.

For more detailed information about the DDS compiler module please refer to the Xilinx

document Pg141 available at the following link:

https://www.xilinx.com/support/documentation/ip_documentation/dds_compiler/v6_0/pg141-

dds-compiler.pdf

PAGE 16

PAGE 17

PAGE 18

VI. STATUS LEDS

Two signals have been added in the top module for debugging

tx_sync: This signal refers to the SYNC out from JESD Base IP and is given to LED D0 on

board. It will be OFF if SYNC is lost. Under normal process, this LED will be ON

txoutclk: This signal indicates if the link clock (lane rate/40 clock) generated from the PHY

module. This is connected to LED D4.

Apart from the above two LEDs, few other signals (if any) are assigned to LED mainly to

prevent logic deletion by Fitter tool and it can be ignored

Note: Both the LEDs are active high

PAGE 19

