

Schematic Basic Information

- Multi-layered PCB w/ground planes, etc.
- VREFM12P5 = -12.50v Generated by a string of REF5025 voltage reference ICs followed by a OPA828 inverting op-amp
- VP15P0_DAC = +15.0v, VM15P0_DAC= -15.0v (each generated by a linear regulator)
- For this test circuit, there is no load on the output DAC_3
- There are 8 identical DAC circuits on this PCB (all exhibit exactly the same behavior described below)
- The scope images shown below appear "noisy", this is due to the common 16-bit digital bus which is active even when no new data is latched into each of the 8 DACs. That is not the subject of the settling time issue.
- During all the images shown below, all VREF and power supply voltages are perfectly stable and do not show any "bumps"

What appears to be the problem

IMAGE #1: When the digital value input to the DAC represents a "large" jump (Decimal 65,536 to 20,000 for the DAC falling edge scenario), the DAC output takes a very long time to settle to its final value (≈2msec or more).

IMAGE #2: When we change the step to a small range (Decimal 30,00 to 20,000), this phenomenon does not exist.

IMAGES #3 & 4: Timescale is changed to 200nsec/div to show the "short term" settling time of the op-amp output to be within the 0.5µsec data sheet spec.

Discussion

- The downwards slope in IMAGE #1 gets less steep with smaller DAC steps, and bigger with bigger steps (bigger steps take longer to reach the correct final output voltage value).
- In all cases the correct final voltage value is reached if we wait long enough
- The same behavior occurs on the DAC output rising edge (e.g., a smaller DAC value going to a larger DAC value) but the effect is not as strong as for falling edges.
- In our application, we intend to change the DAC output every 2µsec, and need to generate a voltage range from 0 to +12V.
- We did not use the recommended OPA277 due to its low Gain-BW. Is it possible that the OPA828 is the culprit?

	Contraction in the local division of			Bigital Storage Os
Image #4	Trigger # Cu	rsors 📐 Measure 🕅 Math	Analysis	SIGLENT Trig'd
			Y	270 1928Hz
			1	Type Edge
				Source
				C2
				Siope
				Falling
				Holdoff None
				Coupling
				DC
				Noise Reject
Digital code 30	,000 → 20,000			Zone
200mV/div	· ·		ļ	
200nsec/div "Short term" se	ettling time fas	ster		
with a smaller i				
			ł	>2.00000V(1) Mean
>2.287059V(1)		805366V(1) Base .64796(1) ROV	3.805368V(1) Amplitude Period	est Freq
>991.33413mV(†) Rise ***		93ns		Timebase ESR Trigger Cr DC T 0.00s 200ns/div Normal 4.11V 04:35.40 20.0kpts 10.0GSa/s Edge Falling 2024/9/1
DCIM C3 DCIM 200mV/ 10X 200mV/ -3.80V FULL 11.9V				570
-3.80V FULL 11.9V				and a second