
National Semiconductor Page 1 of 37

 Strategic Applications

WaveVision-5 System Developers' Guide

Robbie Shergill
Ken Tateno
Rev. 0.91
July 17 2009

1.0 Overview

This document provides a comprehensive set of requirements and guidelines for engineers
developing hardware or software within the WaveVision-5 system. The complete developers' guide
is constituted of a set of documents. This document is the parent document and the following
supporting documents are part and parcel of the complete developers' guide:

1. SigPathData Interface specification.
2. WV5 HSP and FB Port Specification.
3. WV5 Core Naming Convention.
4. WV5 Core image_map Spec.

Those looking for an overview of the WaveVision system for general informational purposes should
consult "An Introduction to the WaveVision Signal Path Evaluation System".

An engineer wanting to design a DUT (device under test) board need only refer to Section 5 of this
document. Section 7 describes some basic utilities that are necessary when developing
hardware/software in the WV5 environment. In order to also customize the WaveVision-5 software
to provide the appropriate device control to the user, one would need to refer to Section 8 as well.
Controller board designers are guided to the SigPathData Interface Specification in Section 6.

In this document, the strict requirements use the terms "shall" and "shall not", while the guidelines
use other terms such as "should".

With respect to software, this document applies to rev. 5.0.5.175 of the WV5 GUI installation and
later.

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 2 of 37

2.0 References

a) WaveVision5 Software Users' Guide.

b) WaveVision-5.1 Capture Board Users' Guide.

c) Programmer's Guide to WV5_DLL API.

d) Programmer's Guide to WV5 C-Script.

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 3 of 37

3.0 Contents

1.0 Overview 1

2.0 References 1

3.0 Contents 2

4.0 Definitions 3

5.0 Designing the DUT Board 4

6.0 Designing Hardware to Comply with WV5 Core 11

7.0 WaveVision5 As A Development Platform 12

8.0 WV5 Core Software 15

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 4 of 37

4.0 Definitions

DUT Board: A board that plugs into a standardized WaveVision-5.x digital

controller board. It may be a device evaluation board or a signal-
path reference board.

WV5 FB Port The standard means to connect with National signal-path eval

boards. Based on the FutureBus connector. The "port" spec
defines the signals in addition to the mechanical and electrical
specification.

WV5 HSP Port The standard means to connect with higher-speed National

signal-path eval boards that utilize serial data/clock interfaces.
Based on the HMZd connector. The "port" spec defines the
signals in addition to the mechanical and electrical specification.

SigPathData Interface Standardized logical interface between the micro-controller and

the rest of the hardware on the controller boards (primarily the
FPGA - when present).

SPI-1.x A "standardized" implementation of the SPI interface within

National.

WV5 Core Lower-level software and firmware residing below the application

software and above the hardware boundary marked by the
SigPathData interface. See Figure 6.

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 5 of 37

5.0 Designing the DUT Board

IMPORTANT NOTE: To guarantee compliance of a DUT board design with the WV5 controller card
hardware, the schematic of the WV5 board should not be relied upon. This document and its associated documents
form the definitive specification for compliance.

5.1 DUT Board Mechanicals

The mechanical requirements center around the positioning and the orientation of the connectors.
The X-Y dimensions of the DUT board are not specified by this document.

There are 3 possible connector arrangements: a board with the FB (FutureBus) connector only; a
board with the HMZd connector only; and a board with both connectors. The following three
diagrams show the exact placement of the connectors from the mating edge of the DUT board that
must be followed for each of these cases.

Figure 1: A board with the FB connector only (units of inches)
The 3.80 x 3.90 inch dimensions of the board are unimportant to the specification.

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 6 of 37

Figure 2: A board with the HMZd connector only (units of mils)

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 7 of 37

Figure 3: A board with both FB and HMZd connectors

Note that the HMZd connector's critical dimension is from the edge of the board to the center of
the connector's footprint (=150-144.81 =5.19mm) while the critical dimension shown for the FB
connector is from the board edge to the drill hole centers (= 150-146.91 = 3.09mm).

5.1.1 FB Connector Orientation

Though available in 24-pin sections, the FutureBus (FB) connector shall be used in the full 96-pin
configuration and oriented on the DUT board as illustrated in the following diagram.

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 8 of 37

Figure 4: FB Connector orientation on the DUT board

D
U

T
B

oa
rd

W
V

-5
.1

B
oa

rd
U

SB
HM

Zd
(m

ale
)

HM
Zd

(fe
ma

le) FB
(m

ale
)

FB (fe
ma

le)

TO
P

 V
ie

w

{F
oo

tp
rin

t}

124 23

A
 B

 C
 D

D
 C

 B
 A

A
 B

 C
 D

D
 C

 B
 A

E
nd

 V
ie

w
(lo

ok
ing

 in
to

th
e

co
nn

ec
to

r)

124 23

124 23

(p
ins

)
(so

ck
ets

)

Im
po

rta
nt:

 P
in

#s
 fo

llo
w

Ty
co

 co
nn

ec
tor

 sp
ec

.
Sa

me
 #s

 ar
e u

se
d f

or
 ac

tua
l p

ins
 of

 th
e l

ay
ou

t li
br

ar
y

ele
me

nt
an

d t
he

 sc
he

ma
tic

 el
em

en
t p

ind
s i

n t
he

 W
V5

de
sig

n.
Bu

t W
V5

.1
bo

ar
d s

ilk
-sc

re
en

 an
d s

ch
em

ati
c

lab
els

us
e t

he
 op

po
sit

e n
um

er
ic

or
de

r –
wh

ich
 is

 w
ro

ng

an
d n

ot
to

be
 fo

llo
we

d.

No
te:

Th
e +

3.3
V

an
d +

5V
 po

we
r,

Gr
ou

nd
 an

d I
2C

lin
es

 ar
e f

ixe
d i

n f
un

cti
on

. T
he

 re
st

of
the

 lin
es

 on
the

 F
B

co
nn

ec
tor

 co
nn

ec
t to

 th
e F

PG
A

so
 th

ey
 ar

e
co

nfi
gu

ra
ble

 th
ou

gh
 m

an
y o

f th
em

 ar
e d

es
ign

ate
d

for
 ce

rta
in

pr
efe

re
d r

ole
 –

su
ch

 as
 cl

oc
k l

ine
s,

the
da

ta
lin

es
 an

d t
he

 4
SP

I li
ne

s s
ho

wn
 he

re
. R

efe
r t

o
Th

e s
ign

al
de

fin
itio

n d
oc

um
en

t fo
r d

eta
ils

W
V

5-
FB

 C
on

ne
ct

or
 O

ri
en

ta
ti

on

22
I2C SP

I
PW

R
GN

D
SI

G

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 9 of 37

5.1.2 HMZd Connector Orientation

End View
(looking into the

WV5 board connectors)

A1 A10

FutureBus Connector
HMZd Connector

Figure 5: HMZd Connector Orientation on the DUT board

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 10 of 37

5.2 DUT Board Electricals

5.2.1 Power

The DUT board design is free to use local power supply or the +5.0V and +3.3V power supplied
over the FB Connector and the +3.3V power supplied over the HMZd connector. The board
identification EEPROM, which is required to be present on the DUT board, must be powered by
the +3.3V power supplied by the WaveVision-5 capture board.

Following are the current limits of the WV5 connector power supplies:

FB +5.0V = 2.0 Amps
FB & HSP +3.3V = 500 mA

A DUT board may be designed with either or both of the two standard connectors - the FB
(FutureBus) port and the HSP port - which is based on the HMZd connector.

5.2.2 FB Port

The FB Port uses the FutureBus 96-pin connector. The female side (receptacle) is installed on the
DUT board. This port is used as the primary means for interfacing parallel data from a DUT or
reference board to WV5 in the case of ADC-based channels; and in the other direction in the case of
DAC-based channels. The interface provides up to 36 data/clock lines - four of which are especially
designated for carrying source synchronous data clock. Thus one can implement two channels of up
to 16 single-ended data signals each with a single-ended or differential clock signal. Alternatively,
when higher speeds are required, a fully differential data path may be implemented with up to 16
differential (LVDS) pairs carrying data along with two differential (LVDS) clock signals. The port
also provides several lower speed connections for control and status. An I2C bus is carried to
connect with the DUT identification EEPROM required by the WaveVision system as well as to
communicate with such devices as temp sensors. An SPI bus is also defined. DUT presence detect
and power enable facilities are also provided for.

Other than the I2C bus and the DUT presence detect and power enable signals, all other signals of
this port connect to the FPGA on the WaveVision-5 capture board. The table below specifies the
functionality as well as the exact pin assignment of the signals. The DUT board designer is given the
flexibility to provision the data, clock and general-purpose control signals as he wishes - thanks to
the programmability provided by the WV5 FPGA. However, the power, ground, I2C and SPI
signals must abide by the pin assignment shown in the table below. It is also highly recommended
that the data strobe (clock) signal(s) be placed on the designated pins for best performance.

The data and clock signals on this port are capable of up to 200 mega-transfers/sec (100 MHz
DDR) operation in CMOS mode and up to 500 mega-transfers/sec (250 MHz DDR) in the LVDS
mode.

Unused pins that are inputs to the WV5: shall be tied to ground if CMOS; shall be left floating
if LVDS.
Unused pins that are outputs of theWV5: shall be left open if CMOS; shall be terminated
into 100-ohms if LVDS.

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 11 of 37

Refer to the WV5 HSP and FB Port Specification document for details of this port.

5.2.3 High Speed Port (HSP)

The HSP port uses the Tyco HMZd 60-pin connector. The female side (receptacle) is installed on
the DUT/reference board; the male side is present on the WaveVision-5 capture board.

This port is intended to carry very high-speed signals that are often serial and almost always
differential LVDS pairs. The interface provides up to 12 serial data lines in either direction and up to
four serial clock lines in the signal-path to WV-5 direction (i.e., ADC application). In a DAC
application, it is expected that the source-synchronous clock will be carried on the lines designated
as data lines. When less than the maximum number of data or clock lines are employed on a given
signal-path board design, the designer shall utilize the port starting from the pin A10 side and
proceed in a contiguous manner.

+3.3V power, I2C bus, and four general-purpose I/O lines are provided. DUT presence detect and
power enable facilities are also provided for. The power, ground, DUT power enable and the I2C
bus must be located as shown in the table below. In addition, if an SPI bus is implemented over the
general-purpose lines, then the assignment is recommended to be as follows: B7: SCSb, B8: SDI or
SDI/O, B9: SDO or DIR, B10: SCLK. It is recommended that the SPI bus should be routed
through the FB port if that port is utilized.

Finally, it is strongly recommended that the clock signals be carried over the pins indicated in the
specification.

Refer to the WV5 HSP and FB Port Specification document for details of this port.

5.3 Identification EEPROM

A WV5-compliant DUT board shall include an identification EEPROM that complies with the
requirements specified in the SigPathData Interface Specification.

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 12 of 37

6.0 Designing Hardware to Comply with WV5 Core

When designing a DUT or Reference Board that plugs into a digital controller card like the
WaveVision-5.1, one must comply with the mechanical, electrical and functional requirements for
these boards that are described in Section 5 of this document. However, there is another, higher
level of board design one can do which includes the controller logic. In this case, the designer is
interfacing directly with the WV5 Core. Referring to Figure 6, here you must comply with the
SigPathData standard interface. Requirements of this interface are specified in its own document
(SigPathData Interface Specification) - which is included here by reference.

WV5 DLL

SigPath USB I/F
Firmware

SigPath Data &
Control Hardware

Windows USB Drivers

WaveVision-5
GUI

SensorVision
GUI

USB

WV5 DLL API

SigPathData Interface

WV5-DLL
Script

Other User
Interface Apps

WV5 Core

Examples:
• WaveVision-5.1 high-speed data capture board
• “Big Gig” Reference Design
• USI-2 controller for Sensor reference designs

Figure 6: WaveVision5 High-Level Architecture

An essential part of making a DUT board compliant with the WV5 system is the inclusion of the
identification EEPROM as this is the way the WV5 software discovers the connected board upon
launch or power up. Section 7.1 describes how National engineers can program the EEPROM using
the WaveVision software in a lab setting.

The external users of WaveVision Software are not given the ability to change/edit the contents of
EEPROM. Therefore, the software by default does not expose its EEPROM editing capability.

The strict content/format requirements of the EEPROM are detailed in the SigPathData standard
interface specification.

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 13 of 37

7.0 WaveVision5 As A Development Platform

The WaveVision5 software is primarily designed to be used by National's end customers. However,
when a hardware developer is working with this system to debug the total package, certain additional
capabilities can be enabled.

7.1 EEPROM Editor

The digital controller card EEPROM (a.k.a. Cypress EEPROM) and the DUT board EEPROM are
essential for the workings of the WaveVision5 system. The WaveVision5 software includes a tool to
program these EEPROMs. In order to enable this tool, do the following:

a. After having installed the WaveVision5 software, launch the application at least once. Then exit.

b. Go to the C:\Program Files\National Semiconductor\WaveVision5\Data\Config folder and open the
file WV5.ini.

c. Under the [User Section], add a line: "EEPROM Editor=1".

d. Save and exit.

e. In the WaveVision5 software, under the Tools menu, the EEPROM Editor will now appear as a
panel with two sections - one for the DUT EEPROM and the other for the Cypress EEPROM.

Note that the file used by this tool is a binary file. The contents of this file have to meet some
precise requirements. These are specified in the SigPathData Interface spec.

7.2 Hardware Access Panel

The WaveVision5 system provides a basic utility to read/write the hardware memory space (which
includes the FPGA registers) and the SPI registers on the signal-path devices. This is done through
the Hardware Access Panel (also known at various previous times as the Debug Editor and Generic
register Access Panel). It is available under the Tools menu. In case the panel does not appear under
the Tools menu, make sure that there is a line "Debug Editor=1" in the WV5.ini file - as described in
section 8.1.

Note that the Cypress Memory here means the memory space of the 8051 controller within the
Cypress USB controller. Its address width is always 16-bit. The FPGA's registers are within this
space starting at address D000h. Refer to the SigPathData Interface spec for more detail about the
memory mapping.

The SPI access requires that the device SPI protocol comply with the National SPI-1.0 or SPI-1.1
spec. This is an internal spec that many signal-path devices use.

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 14 of 37

7.3 Working without the DUT EEPROM

There are two cases where a DUT EEPROM may not be present: integrated reference boards where
the signal-path and the digital controller card functionality is on a single board; and during the
development phase when the DUT/reference board does not yet exist but the developer has to
debug his WV5 FPGA design. For both these case, the WaveVision5 system allows a method of
specifying the DUT EEPROM with an equivalent file on the C: drive. This EEPROM-equivalent
file is expected to be in the folder:

C:\Program Files\National Semiconductor\WaveVision5\hardware\EEPROM

Redirection to the EEPROM-equivalent file is done in the Cypress EEPROM - which must always
be present. Note that if this redirection is present in the Cypress EEPROM, it will supersede even if
a DUT/Reference board is later attached to the WaveVision5 controller board and a physical DUT
EEPROM is now present.

In order to redirect the DUT EEPROM search to the equivalent file on C: drive, do the following:

a. Connect the digital controller board (e.g., WaveVision5, USI-2 etc.) and launch the WaveVision5
software.

b. Power-on the board. The software will discover it and attempt to configure it. Not finding the
DUT/Reference board EEPROM, it will load a basic WV5 FPGA image.

c. Go to TOOLS -> EEPROM Editor.
The program will complain that it "Can't read DUT EEPROM....". Say OK (twice).

d. EEPROM Editor panel will appear. The Cypress EEPROM's contents are displayed on the left
side. At the bottom of this section, there is a field called "DUT EEPROM FILE". For the value of
this field, enter an alphanumeric string that will be the name of your EEPROM file. For example,
you may use the name "redirectEXP1".

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 15 of 37

e. Click on the PROGRAM button on the left half of the panel. The Cypress EEPROM is now
programmed to redirect the search for the DUT EEPROM to a file. Exit the panel and the
WaveVision5 program.

Next you must provide the EEPROM-equivalent file for your project. Under the EEPROM folder
mentioned above, there are several pre-existing EEPROM binary files. Open one of these with a
binary editor program such as the XVI32.exe.

Change only the first two fields - e.g., the ones containing "ADC083000" and "BIGGIG/b3g_nb"
in the above example. The first of these is the precise name of your project. The second is a
descriptive name that you may optionally change. Let's say the name you have chosen for your
project is "EXP1". Enter this character string in the first field (in place of the "ADC083000" shown
in the figure above). Save this binary file with the exact name that you entered in the Cypress
EEPROM in step (d) above - for example "redirectEXP1".

The WV5 Core software, upon next launch, will now configure itself and the FPGA on the digital
controller board with files whose name contains the string that you specified as the precise name for
your project. In this example, since you named your project EXP1, the FPGA image file name in the
hardware\fpga_images folder must be: wv5_xc4vlx25_EXP1.bit.

As you know, in addition to the FPGA image file, WV5 also needs to use a proper script file. Your
script file should also have a name based on the DUT name of “EXP1” that you chose above. If
you have a script file for your project, then name it appropriately in the appropriate directory (see
the Directory Structure section in this document and the WV5 Core Naming Convention document). If
you do not yet have a custom script written for your project and you just want to do basic
read/write access on the capture hardware, then you should just use one of the basic, generic script
files that already exist in the WV5 directory. A recommended script file is
“wv5_default_2.cap.xml”. Create a copy of this file and name it
“Wv5_xc4vlx25_exp1.dut.xml” for this example case.

(Note: Even if no specific script file is provided as described above, the WV5 Core software will still default to a set of
script files and provide basic functionality).

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 16 of 37

8.0 WV5 Core Software

The WaveVision5 system allows you to modify or develop associated software at two levels:

 (a) certain aspects of the user interface application (like the WaveVision-5 GUI) and
hardware control (like DUT configuration) can be customized to for each new board using the
Script utility.

 (b) new user interface applications can be written that meet your specific needs.

Refer to Figure 6 for the relationship of applications and scripts with the WV5 Core software.

8.1 Directory Structure of the WV5 Core software

C:\Program Files\National Semiconductor\WaveVision5\wvdll.dll
C:\Program Files\National Semiconductor\WaveVision5\libcint.dll
 DLL to support C scripting

C:\Program Files\National Semiconductor\WaveVision5\hardware\eeprom_images
 EEPROM images for all-in-one boards

C:\Program Files\National Semiconductor\WaveVision5\hardware\firmware_images
 *.bix files for Cypress firmware

C:\Program Files\National Semiconductor\WaveVision5\hardware\fpga_images
 *.bit files for FPGA images

C:\Program Files\National Semiconductor\WaveVision5\hardware\scripts
 *.xml files for XML scripts
 *.{cpp,h} for C scripts

8.2 Naming convention

It is essential for the engineer wanting to customize the WV5 software to first gain familiarity with
the naming convention used in this system. Please refer to the WV5 Core Naming Convention
document.

As mentioned elsewhere, the identification EEPROM on the DUT board provides the identifier that
is used by the WV5 Core to configure itself with the appropriate files for the board currently
connected. Over time, a method has been developed to handle exceptions to this basic scheme.
These exceptions are handled through a mapping file named "image_map.xml". The document
WV5 Core image_map Spec describes this method.

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 17 of 37

8.3 Working in Simulator Mode

A basic utility is provided in WV5 developer environment to allow you to develop a new script or
even a new application without the corresponding hardware. For example, while a new DUT board
is being fabricated and assembled, the application engineer may want to develop his custom register
control panel. The WV5 Simulator provides the means to do this.

IMPORTANT NOTE: The simulator is not to be used simultaneously with real hardware. The
simulator will only activate if the DLL starts with no physical USB device attached. If a physical
USB device is attached, then the simulator is closed down and removed and the physical USB device
is started.

8.3.1 Enabling the Simulator

The simulator is enabled by the presence of a file called "__sim.xml" in the hardware\scripts
directory. The file name is two underscore characters (__) followed by "sim.xml". This particular
name was chosen so that when the hardware\scripts directory is sorted by name, this file, if it exists,
will be the very first entry.

Since the existence of the __sim.xml file enables the simulator, this file is not included in the default
distribution. This file must be created by the user.

8.3.2 Implementation of the Simulator

The simulator simulates the low level USB calls. Usually, when the DLL needs to communicate with
the firmware, FPGA, or DUT, it uses the USB bus to send commands to the firmware running on
the capture board. In the case of the simulator, all the USB communication is simulated to return
some reasonable values.

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 18 of 37

The dotted line represents that fact that there is no USB communication; however the rest of the
DLL is convinced some USB communication occurred and that the firmware returned some value.

So, only a small part (the physical communication module) of the DLL is aware a simulator is
running. All other parts behave exactly the same regardless of simulation or not. The benefit of this
is that many other modules of the DLL can be tested without any hardware.

DLL

DLL

Physical communication module

Far-end USB device

DLL needs to communicate with the
firmware/FPGA/DUT

DLL sends a USB command to the firmware on
the capture board

Low-level communication
function calls utilize the USB
bus

Firmware receives and processes
command

Simulator code intercepts USB
command and simply returns a
reasonable value

Firmware returns status/data back to the
DLL

DLL processes reply and continues

Physical communication module

Low-level communication
receives response

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 19 of 37

8.3.3 Reasonable Return Value

To simulate every single DUT to exact hardware specifications would be extremely difficult. The
simulator implemented in the DLL does not attempt anything of the sort. Basically, the simulator
interprets the command and always returns a "true" or "success" status; there are no error checks.

When data is to be read, for instance data from a register, the simulator returns a random value.
This includes data for captures; so the simulator can process capture requests, but the data returned
will be complete garbage.

8.3.4 Contents of __sim.xml

The file is a very small XML file that has the following structure:

<wv5>
 <sim list_of_simulated_params />
</wv5>

The key to the file is the "sim" element. Below are the parameters that can be simulated:

dut_desc

The value for this attribute is the DUT description usually found in the DUT EEPROM.

data_params

The value for this attribute is the data parameter field usually found in the DUT EEPROM.

dut_eeprom_file

This is to simulate the "DUT EEPROM File" entry in the Cypress EEPROM. This field is
used when the capture board does not support a DUT EEPROM.

fpga_clock_count

The number of clock counts to simulate when attempting to calculate the clock frequency.

interface_id

The value for this attribute is the interface ID of the FPGA.

vid

The value for this attribute is the USB VID number, usually used for capture board
identification.

pid

The value for this attribute is the USB PID number, usually used for capture board
identification

board_desc

The value for this attribute is the board description usually found in the Cypress EEPROM.

fpga_image

FPGA image name. This field is called "Base Firmware" in the WV5 GUI EEPROM editor.

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 20 of 37

8.3.5 Examples

Simulate WV5 capture board + ADC14DS105
<wv5>
 <sim vid="0x0400" pid="0x2007" dut_desc="adc14ds105" data_params="13 0 29
16" />
</wv5>

The VID and PID fields specify the WV5 capture board, and the rest describe the AD14DS105.

Simulate WV5 capture board + SP1250MI02
<wv5>
 <sim vid="0x0400" pid="0x2007" dut_desc="spi1250mi02" data_params="11 0 27
16" />
</wv5>

Simulate ADC10D1000
<wv5>
 <sim vid="0x0400" pid="0x200f" dut_eeprom_file="adc10d1000acdc" />
</wv5>

Notice in this case there is no need to fill in the "dut_desc" field or the "data_params" field. The
reason is the DUT EEPROM image file ("adc10d1000acdc") already contains that information.
Remember that the all-in-one boards like the ADC10D1000 already simulate the DUT EEPROM by
having the DUT EEPROM image in the eeprom directory on the PC.

8.3.6 Simulating a non-existent DUT
The simulator can be used to simulate both currently supported DUTs and DUTs that do not exist
yet. If the simulator is enabled for an existing DUT, then all of the other support files like the
FPGA image and script files will already exist.

However, for non-existent DUTs, all of these supports files must be created. The script file will
need to be created in the hardware\scripts directory using the standard naming convention. And a
corresponding FPGA file will need to be created in the hardware\fpga_images directoy.

The FPGA image can be empty but it does need to exist. The filename of the .bit file should follow
the naming convention.

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 21 of 37

8.4 WV5 Data Model

Figures 7a-c show the conceptual model of data flow from the analog front-end through the
FPGA/controller card buffer to the PC memory buffer where the data is finally delivered to the
application by the WV5 Core software.

DUT Board

Controller Board

To WV5 Core s/w

Buffer
(2 Segments: A & B)

Ch.
Select.

Sig. Path
Select.

Ch_0

Ch_n

Ch_0

Ch_n

Sig.
Path

0

Sig.
Path

n n+1
channels

n+1
channels

Figure 7a: Signal Paths, Channels and the Capture Buffer.

The visibility of the WV5 Core software extends to just the Buffer in the controller card. Figure 7a
shows how the analog front-end data gets into the buffer. Figures 7b and 7c show how the WV5
Core software then treats the data from thereon.

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 22 of 37

Buff_A Buff_BH/W
(Controller Card)

BuffWordWidth = 32 or 64 bits

Time

sample

Capture Word

LSBLSB

From Front-End
Capture

Se
ria

l B
uff

ers

Parallel Buffers

Transfer (one complete buffer at a time)

PC Memory:

Buff_0 Buff_1

• Each buffer is a linear array of 32-bit words.
• A “set” is a purely software construct used by the DLL.

Ch_0, dw(0...k)
Ch_1, dw(0...k)
Ch_2, dw(0...k)
Ch_3, dw(0...k)

Ch_0, dw(k+1..m)
Ch_1, dw(k+1..m)

Ch_0, dw(x+1..y)
Ch_1, dw(x+1..y)
Ch_2, dw(x+1..y)
Ch_3, dw(x+1..y)

One
“acquisition”

Case 1: Serial Buffers

Buff_0 Buff_1
Ch_0, dw(0...k)
Ch_1, dw(0...k)

Ch_0, dw(k+1..m)
Ch_1, dw(k+1..m)

Ch_2, dw(0....k)
Ch_3, dw(0....k)

Ch_2, dw(k+1..m)
Ch_3, dw(k+1..m)

One
“acquisition”

Case 2: Parallel Buffers

One
“acquisition”

Set 0

Set 0

Serially arranged buffers
always require only 1 set.
All serially chained buffers
are held in that one set.

Mixed serial and parallel arrangements of buffers are also
supported by the DLL. In the general case:

#Sets = # parallel-arranged buffers over which the
concurrently captured channels are split.
#Buffers/Set = # of buffers serially chained in the hardware.

Process

To Another PC Memory Array
(see next page)

WV5
Data
Model

Page 1 of 2

Set 1 Parallel buffers require
multiple sets.
#Sets = # parallel-arranged
buffers over which the
concurrently captured
channels are split. (2 in this
example).
Each set has only one
buffer.

Apr. 29, 2009

Figure 7b: WV5 Data Model - Part 1

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 23 of 37

32 bits

From DLL’s PC Memory Buffers
(previous page)

Single array of data returned by the DLL to the Application for each Data Acquisition command

Ch_0, dw(0...z)

Buffer Size selected by user in the GUI

Ch_1, dw(0...z)

Ch_2, dw(0...z)

Ch_3, dw(0...z)

LSB

Ti
m

e

0

Ti
m

e

0

Ti
m

e

0

Ti
m

e

0

Figure 7c: WV5 Data Model - Part 2

Refering to Figure 7b and 7c, the following terms define the constructs that the WV5 software uses.
These terms are used in the Script documentation.

Acquisition
An acquisition is a construct that only exists in the DLL. The firmware only deals with bytes and
FPGA words. The user of the DLL only deals with samples.

The DLL uses acquisitions to group several FPGA words together to help in de-interleaving
captured data. Note: since sets only contain one type of acquisition, the DLL cannot de-interleave
data that span sets.

One acquisition may contain several samples from several channels. The location of each sample
within an acquisition is determined by a list of positions where the LSB of the sample is found.

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 24 of 37

Below is an example of an acquisition that contains two samples from two channels. Assume each
sample is 10 bits and each sample starts in a 16-bit boundary.

Each sample would be 10 bits wide and the blank boxes would be 6 bit wide.

In this example, the list of bit positions would look like:
 LSB bit position for ch0, sample0: 0
 LSB bit position for ch0, sample1: 16
 LSB bit position for ch0, sample0: 32
 LSB bit position for ch2, sample1: 48

The following is an example of possible memory layouts depending on FPGA words:

The main goal of the acquisition is to allow the DLL to process data that is interleaved across FPGA
words.

Most of the time, the acquisition is one FPGA word. So, using the current sample:

ch1 sample0 ch0 sample0 ch1 sample1 ch0 sample1

FPGA word is 64 bits (1 acquistion = 1 FPGA word)

ch1 sample0 ch0 sample0 ch1 sample1 ch0 sample1

FPGA word is 64 bits (1 acquistion = 1 FPGA word)

ch1 sample0 ch0 sample0 ch1 sample1 ch0 sample1

word

word1

FPGA word is 32 bits (1 acquisition = 2 FPGA words)

word0

word3

FPGA word is 16 bits (1 acquisition = 4 FPGA words)

word2 word1 word0

word7

FPGA word is 8 bits (1 acquisition = 8 FPGA words)

word6 word1 word0 word3 word2 word5 word4

ch1 sample0 ch0 sample0 ch1 sample1 ch0 sample1

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 25 of 37

So most of the time, both acquisition and FPGA word look the same. The major limitation of the
acquisition is that the DLL requires that all the samples from one channel be grouped together.

All the buffers in one set must contain the same type of acquisition. Otherwise the code in the DLL
that processes the data for use by the client application will not properly work.

Set
Just like an acquisitions, a set is a construct that exists only within the DLL. A set is used to collect
all buffers that share the same channel source. If buffers do not share the same source channels,
then those buffers must be placed into different sets.

By keeping these buffers separate, the DLL can more easily de-interleave the data to be returned to
the client of the DLL.

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 26 of 37

8.5 Customizing Using Script Files

All boards that connect to the WV5 Core software must have two script files each: the board script
file and the DUT script file. By name, this pair of script files is unique to each supported board
(assuming each board has a unique name as specified in the identifier EEPROM). In addition, there
is a common DLL/Script API file that all boards also require to be present.

WV5 DLL

SigPath USB I/F
Firmware

Windows USB Drivers
USB

WV5 DLL API

SigPathData Interface

WV5-DLL
Script

WV5 Core

DLL

Board
API

DUT
API

Sc
rip

t/D
LL

Sh
ar

ed
 A

PI

DUT
Script

Board
Script

Figure 8: DLL to Script File Interface

Note that the term "board" here refers to the controller (a.k.a. capture) board and the term "DUT" refers to the
DUT/reference board.

Both the board API and DUT API requires that the script files implement a set of mandatory
functions. These mandatory functions have very specific names. These names are generated as a
combination of the file name and a function name.

8.5.1 Board API

The functions are grouped into two categories, initialization and generic hardware access. The
initialization functions initialize the internal data structures and the hardware. The general access
functions are called when the user of the DLL requests a read or write to/from the hardware. These
general accesses are not tied to any specific DLL action. For example these are called when the
"Hardware access panel" is used on the WV5 GUI.

8.5.2 DUT API

These functions are grouped into five categories: initialization, GUI, ADC capture, DAC download,
and generic hardware access.

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 27 of 37

8.5.3 Script/DLL Shared API
There is one final API. This API is a general set of functions shared by both the DLL and scripts to
pass data back and forth.

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 28 of 37

8.5.4 Script Naming Convention

The naming convention relies heavily on image_map.xml file. Please first familiarize yourself with
the WV5 Core image_map Specification.

Board script filename

All boards have a nickname assigned to it in image_map.xml. This nickname is the basis for the
board script file and the extension "brd.cpp" is simply added at the end:

VID PID nick Board script name

0x0400 0x2009 biggig.2.0 biggig.2.0.brd.cpp
0x0400 0x2007 wv5 wv5.brd.cpp
0x0400 0x2010 spio5.5 spio5.5.brd.cpp

DUT script filename

The name for the DUT script also uses image_map.xml. There are several fields that can be used in
generating the DUT script name. In general, if the DUT entry has an exception in image_map.xml,
then the name given in the override is used as the basename. Otherwise, the script basename is
generated by concatenation the board nickname, the FPGA part ID, and the DUT name all with the
underscore ("_") character. Finally, ".dut.cpp" is appended to the basename:

DUT Override VID PID Nick FPGA
Part ID

DUT scipt name

spio5.5 spio5.5_xc5vsx95t_dac spio5.5_xc5vsx95t_dac.dut.cpp
exdut1 0x0400 0x2007 wv5 xc4vlx25 wv5_xc4vlx25_exdut1.dut.cpp

Mandatory Function Names for the Board API

The DLL calls the board script functions by generating a name derived from the script filename.
The formula is the script name without the trailing .brd.cpp, appended with an underscore ("_"), and
then appended with the base function name.

This generated name is then processed to replace all periods (".") with underscores ("_"). This is
done because the period is character with special meaning in C.

Board Script name Remove "
.brd.cpp"(result is
same as nick)

Function Append all parts Final function name

biggig.2.0.brd.cpp biggig.2.0 create biggig.2.0_ create biggig_2_0_ create

spio5.5.brd.cpp spio5.5 create spio5.5_create spio5_5_create

wv5.brd.cpp wv5 poll_hook wv5_poll_hook wv5_poll_hook

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 29 of 37

Mandatory function names for the DUT API

This operates exactly the same was as the board API naming convention. The script name is used,
the ".dut.cpp" is removed, an underscore is appended, the function name is appended, and finally all
periods are replaced with underscores.

DUT Script name Remove " .dut.cpp" Function Append all parts Final function name

spio5.5_xc5vsx95t_dac.dut.cpp spio5.5_xc5vsx95t_dac create spio5.5_xc5vsx95t_dac_create spio5_5_xc5vsx95t_dac_create

wv5_xc4vlx25_exdut1.dut.cpp wv5_xc4vlx25_exdut1 poll_hook wv5_xc4vlx25_exdut1_poll_hook wv5_xc4vlx25_exdut1_poll_hook

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 30 of 37

8.5.5 Summary of API Functions

{The document Programmers' Guide to WV5 C-Script provides a complete technical reference}.

Most of the functions in both the board API and the script API take one parameter. This parameter
is a pointer to the script-specific data. The script may or may not use script specific data. If it does,
the script needs to create an instance for each physical board or DUT. This is necessary so that
multiple devices can exist simultaneously.

Board API

Please consult the technical documentation or script_api.h. Either of these documents will
describe brdprefix.

The mandatory functions are:

Interface_Ret brdprefix_version();
Custom_Brd_Data* brdprefix_create();
Interface_Ret brdprefix_destroy(Custom_Brd_Data* board_data);
Interface_Ret brdprefix_execute_board_initialization(Custom_Brd_Data* board_data);
Interface_Ret brdprefix_poll_hook(Custom_Brd_Data* board_data);
Interface_Ret brdprefix_general_access_rd(
 Custom_Brd_Data* board_data,
 Wv_Debug_Access_Method access_method,
 WvWord bus_index,
 WvWord device_address,
 WvWord address_bitwidth,
 WvWord address,
 WvWord data_bitwidth,
 WvWord* rd_val
);
Interface_Ret brdprefix_general_access_wr(
 Custom_Brd_Data* board_data,
 Wv_Debug_Access_Method access_method,
 WvWord bus_index,
 WvWord device_address,
 WvWord address_bitwidth,
 WvWord address,
 WvWord data_bitwidth,
 WvWord wr_val
);

DUT API

Please consult the technical documentation or script_api.h. Either of these documents will
describe dutprefix.

The mandatory functions are:

Interface_Ret dutprefix_version();
Custom_Dut_Data* dutprefix_create();
Interface_Ret dutprefix_destroy(Custom_Dut_Data* dut_data);
Interface_Ret dutprefix_execute_dut_initialization(Custom_Dut_Data* dut_data);
Interface_Ret dutprefix_get_clock_frequency(Custom_Dut_Data* dut_data);
Interface_Ret dutprefix_poll_hook(Custom_Dut_Data* dut_data);
Interface_Ret dutprefix_gui_tab_enum(Custom_Dut_Data* dut_data);
Interface_Ret dutprefix_gui_control_enum(Custom_Dut_Data* dut_data);
Interface_Ret dutprefix_gui_control_change(Custom_Dut_Data* dut_data);

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 31 of 37

Interface_Ret dutprefix_get_capture_parameters(dutprefix_DataCustom_Dut_Data
dut_data);
Interface_Ret dutprefix_execute_capture_actions(Custom_Dut_Data* dut_data);
Interface_Ret dutprefix_execute_post_capture_actions(Custom_Dut_Data* dut_data,
WvWord* captured_data);
Interface_Ret dutprefix_get_dac_download_parameters(Custom_Dut_Data* data);
Interface_Ret dutprefix_dac_cmd_process(Custom_Dut_Data* dut_data);
Interface_Ret dutprefix_general_access_rd(Custom_Dut_Data* dut_data);
Interface_Ret dutprefix_general_access_wr(Custom_Dut_Data* dut_data);

Script/DLL Shared API

The script and the DLL need to share data. Most of time, the data is either function parameters or
function return values. To do this, a separate API is used.

The shared API is also part of the technical documentation.

8.5.6 Difference between Board/DUT API and Shared API

The main difference between the APIs is that the board/DUT API is dynamic meaning the function
names change depending on the physical board/DUT, but the shared API is static meaning the
function names do not change.

Although the dynamic names allows for arbitrary device names (which eventually determines the
script names which determines the prefix used on the function names), one limitation is that data
cannot be shared between DLL universe and the script universe when using these functions.

For instance, assume the DLL declares an integer variable x. And assume one of the script files
implements a function that is declared "void test_dut_api_function(int function_argument)".

Since "test_dut_api_function" is a function name that was created dynamically, there is no way for
the DLL to say "test_dut_api_function(x)" because the DLL has already been compiled.

However, using the static API, the DLL can use its data. So, assume there was a shared function
declared "void shared_api_function(int function_argument)". The DLL can call
"shared_api_function(x)".

And the static functions can also be used by the script. And it also has access to the same data the
DLL has.

This idea is to use this API to pass actual function parameters between the DLL and the script.

The chronology is:

1) User of DLL requests an action that involves invoking a script function
2) DLL preps for calling script function
3) DLL calls a function in the shard API to set all the function parameters
4) Shared API stores the function parameters
5) DLL calls a function in the dynamic API to activate the script function
6) Script function calls shared API and requests all the function parameters
7) Shared API passes the function parameters back to the script
8) Script is now ready with all the parameters to execute the main body of the function.

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 32 of 37

9) Script executes the body of the function
10) Script passes any return values to shared API
11) Shared API stores return values
12) Script function exits
13) DLL calls the shared API to retrieve the return values

Example of using shared API in the script

This example highlights steps 6 – 12 from the above chronology.

Interface_Ret test_dut_gui_control_enum(Test_Dut_Data* data) {
 WvWord tab_index;
 Interface_Ret ret;

 // Print some debug text to the log file
 script_debug_out_pre("Entering test_dut_gui_control_enum");
 script_debug_out_endl();

 // Use the shared API and retrieve the tab number. Make
 // sure the return code is checked before using the value
 ret = script_get_params_gui_control_enum(&tab_index);
 if (ret != INTERFACE_RET_OK) {
 // Error. Make sure the error is logged.
 return script_process_return(
 ret,
 "test_dut_gui_control_enum"
);
 }

 // Tab index is ok. Check the range. Let's just say this test GUI
 // had only 1 tab
 if (tab_index != 0) {
 // tab_index out of range
 return script_process_return(
 INTERFACE_RET_ERROR,
 "test_dut_gui_control_enum: tab index out of range"
);
 }

 // ... and let's assume this tab has 1 GUI object and that
 // GUI object was stored in the custom data structure.
 script_set_return_gui_control_enum(1, data->gui_object);

 return script_process_return(
 INTERFACE_RET_OK,
 "test_dut_gui_control_enum"
);
}

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 33 of 37

8.6 Writing User Interface Applications

The complete WaveVision-5 system includes hardware (e.g., the WaveVision-5.1 controller card);
the low-level firmware and software that make up the WV5 Core; and the WaveVision-5 Data
Acquisition and Analysis software (see Figure 6). Due to the virtue of the WV5_DLL API, it is
possible to write other user interface GUI applications than the base WaveVision-5 GUI. These can
vary from the very simple control panels to much more sophisticated GUIs. But the motivation to
do so would be to customize the user interaction with the hardware beyond what the scripting utility
provides.

It should be noted that the WV5_DLL API is primarily providing an interface for an application
program that is presumed to be written in C/C++ to run in a Windows environment. Applications
written in other languages such as C# would require additional effort in interfacing the two
programs.

A separate document, Programmer's Guide to WV5_DLL API, has been written to assist the
application developer.

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 34 of 37

8.7 Adding a New Board to the System
Occasionally, support for a new board must be added to the system. There are several steps
necessary to get the software to recognize the board.

8.7.1 Acquiring a new VID/PID

The first step does not involve software but rather some paperwork. The new board must have a
unique VID and PID numbers. These numbers are fundamental to the software. These numbers
are control by the intellectual property group at National Semiconductor. It is the responsibility of
the board developer to acquire a new VID/PID combination.

The VID number is assigned by the USB governing body and all National Semiconductor products
use a VID number of 0x0400. The PID must be acquired from the IP group.

8.7.2 Plugging in the New Board for the First Time (Setting up Windows)

The Cypress EEPROM will not programmed with any reasonable value straight from the factory.
The Cypress microcontroller will detect this and identify itself as a Cypress product to Windows,
even though the board is produced by National Semiconductor.

To solve this, the WV5 GUI will be used to program the Cypress EEPROM. This will convince the
Cypress microcontroller and consequently Windows that the hardware is produced by National
Semiconductor.

So, the first step is to make sure the WV5 GUI is installed.

Then plug in the board.

At this point, Windows should bring up a dialog box with the message "Welcome to the Found New
Hardware Wizard". Choose "No, not this time". Click Next. Choose "Install the software
automatically". Click Next. Let Windows find the driver and install it. At the "Completing the
Found New HardwareWizard" dialog box, click Finish.

If this does not succeed, the driver may have to be choosen manually. The relevant files are:
 %WINDIR%\inf\wv5.inf
 %WINDIR%\system32\drivers\wv5.sys

To check that the driver was installed properly, open up the "Device Manager" control panel and
open up expand "Universal Serial Bus controllers". There should be an entry "National
Semiconductor Unprogrammed board".

Start the VW5 GUI and open up the EEPROM Editor. In the "[Cypress]" section fill in the
appropriate VID and PID numbers and click program.

Close WV5.

Unplug the board.

Now, Windows must be told that the new VID/PID combination should be supported by the
National Semiconductor software. To do this, %WINDIR%\inf\wv5.inf needs to be edited.

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 35 of 37

There are only two places that need to be modified. The first is in the section labeled "[National]".
There is a list of currently supported boards. Follow the pattern and create an entry using the new
VID/PID combination.

The second section is near the bottom under the "[Strings]" block. Again follow the pattern and add
a new entry for the new VID/PID. Please remember to add a descriptive name. Save this file.
Then right click on the file and choose "Install".

Plug the board back in.

Windows should once again bring up the "Found New Hardware" wizard. This time, Windows is
attempting to find the proper driver for the new VID/PID combination. As before, do not check
for updates and let Windows chose the software automatically.

To double check that Windows has successfully linked the VID/PID with the National
Semiconductor driver, open up the "Device Manager" and expand "Universal Serial Bus
controllers". There should be a new entry with the name choosen in the "[Strings]" section of the
INF file.

8.7.3 Adding a New Entry to image_map.xml
Windows is now ready. The next step is to prep the WV5 software. To do this image_map.xml
needs to be edited. In the <board_properties> section, there are several entries for all the different
boards selected. Choose a board that has the similar properties as the new board and then copy and
paste and edit the line to suit the new board.

All of the parameters in the <board> element are describe in the "WV5 Core image_map Spec"
document.

8.7.4 Adding New Firmware
The last preparation step is preparing the firmware image. Assuming custom firmware is not
necessary, then this will simply involve copying and renaming an existing firmware image.

Open up the firmware_images directory. Find a firmware image is most closely related to the new
board. Copy that image file and rename it assuming the file naming convention.

At this point, the new board is ready for basic communication. This means that the WV5 GUI can
now be started and the EEPROM Editor can be used to customize the EEPROMs.

Any additional functionality will require creation of custom board and DUT scripts.

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 36 of 37

8.8 Patches
There are occasional updates to the core software. For minor updates, a patch executable is
distributed.

8.8.1 Patch installation
To install the patch, copy the patch executable into the WV5 GUI installation directory. And then
run the patch executable. The patch installer simply overwrites the existing file with the new files.

Associated with each patch is a text file that describes the contents of the patch. This is named
_patch_rev.txt.

To view the contents of the patch and contents of _patch_rev.txt, the patch executable can simply
be run in a separate directory.

Example:

Assume a new patch file called new_patch.exe. To see the contents:
• Create a new directory called c:\temp\patch
• Copy new_patch.exe to c:\temp\patch
• Run c:\temp\patch\new_patch.exe
• Use notepad to view c:\temp\patch_patch_rev.txt

WV5 Developers' Guide Rev. 0.91

National Semiconductor Page 37 of 37

Appendix A- DUT EEPROM field in Cypress EEPROM
There is a field called the "DUT EEPROM field" in the Cypress EEPROM. If this is filled in, then
the DLL uses the value as a filename and looks for that file in the eeprom subdirectory.

This method was originally used for the BigGig boards. These boards were "all-in-one" boards
which contained both the Cypress and the DUT. However, these boards do not have a DUT
EEPROM. To determine the actual DUT being tested, this "DUT EEPROM field" was added to
the Cypress EEPROM so that the DLL can look for the file locally on the computer.

This file on the computer is an exact image of a real DUT EEPROM. This means these are binary
files that contain the same contents as a real DUT EEPROM. To decode the contents of the DUT
EEPROM, please refer to the eeprom documentation.

This field should be used in only two cases:

1) The capture board is in fact a capture + DUT board combined into one. In these cases, the
DUT doesn't change and so the DUT EEPROM doesn't change, and so the use of a static
file is valid.

2) A DUT board is being debugged and the DUT EEPROM has not been programmed yet. In
this case, the engineer can force the DLL to use a particular DUT EEPROM image located
on the computer.

SensorPath specific comments:
The very first SensorPath board was an "all-in-one" board. Thus, in the Cypress EEPROM, the
"DUT EEPROM file" field was filled in with "differentialsensorboard".

When this board is plugged in, the DLL opens eeprom\differentialsensorboard and uses the
contents as the DUT EEPROM.

The new architecture for SensorPath uses a capture board and pluggable DUT boards. Since the
DUT EEPROMs may change (or may not even exist), the "DUT EEPROM file" field in the
Cypress EEPROM should be left blank; a DUT EEPROM image should NOT be forced for this
architecture.

WaveVision-5 Future Bus (FB) Port Specification
Rev. 0.94 Apr. 21, 2009

Pin# Signal Name Sourced By Function FPGA Bank (Bank Supply)
A1 3V3DUT WV5 +3.3V Power
B1 DUT_Power_Enabl

e
WV5 For those DUT boards that support

intelligent interface power-up, this signal
from WV5 boards enables the DUT board's
power regulator(s).

Leave open.

C1 GND Both
D1 SCK WV5 SPI Clock Bank 6 (default: 3.3V; selectable 2.5V)
A2 3V3DUT
B2 3V3DUT
C2 GND Both
D2 SDO/DIR DUT SPI Data Out from Slave on DUT board

when a single, bi-directional SDIO line is
NOT being used (4-pin operation). When a
single, bi-directional SDIO line is being
used on the DUT board, this signal is
Direction control for the Tri-state
Buffer/Translator circuit (1=Read, 0=Write).

Bank 6 (default: 3.3V; selectable 2.5V)

A3 GND
B3 GND
C3 GND
D3 SDI/O WV5 SPI Data In to Slave on DUT board when 4-

pin SPI is implemented on the DUT board.
If 3-pin SPI is implemented, then this pin
serves as the bidirectional SDIO.

Bank 6 (default: 3.3V; selectable 2.5V)

A4 Data_35+
B4 Data_17-
C4 GND Both
D4 SCS0 WV5 SPI device 0 select (always supported) Bank 6 (default: 3.3V; selectable 2.5V)
A5 Data_34+
B5 Data_16-
C5 GND Both
D5 CTL3/SCS1 WV5 SPI device 1 select (optional) Bank 1 (3.3V)
A6 Data_33+
B6 Data_15-

WV5 +3.3V Power

DUT Data Input to WV5. Either S/E CMOS, or
Diff LVDS (+ and - indicate polarity)

Bank 6 (default: 3.3V; selectable 2.5V)

Both

DUT Data Input to WV5. Either S/E CMOS, or
Diff LVDS (+ and - indicate polarity)

Bank 6 (default: 3.3V; selectable 2.5V)

Data Input to WV5. Either S/E CMOS, or
Diff LVDS (+ and - indicate polarity)

Bank 6 (default: 3.3V; selectable 2.5V)

This port is used as the primary means for interfacing parallel data from a DUT or reference board to WV5 (in ADC based
signal paths).
The connector is the Tyco FutureBus 96-pin connector. The female side is installed on the WaveVision Board; the male
side is installed on the DUT Board side.
The interface provides up to 36 data/clock lines - four of which are especially designated for carrying source synchronous
data clock. Thus one can implement two channels of up to 16 single-ended data signals each with a single-ended or
differential clock signal for each.

The port also provides several lower speed connections for control and status. An I2C bus is carried to connect with the
DUT identification EEPROM required the WaveVision system as well as to communicate with such devices as temp
sensors. An SPI bus is also defined.

Alternatively, when higher speeds are required, a fully differential data path may be implemented with up to 16 differential
(LVDS) pairs carrying data along with two differential (LVDS) clock signals.

DUT

Important: Pin #s shown here are using Pin#1 indication as specified in the Tyco diagram. This, then, also
determines the order of the pin #s. Refer to the "FB Connector Orientation" document for more detail.

In the Pin/Signal list below, the rows with BLUE text (with yellow or clear background) are the only place where the
Reference or Eval Board (DUT) designer has the flexibility to define the signal functionality. All other signals must have
the same function as indicated below.

C6 GND
D6 CTL2/SCS2 WV5 SPI device 2 select (optional) Bank 1 (3.3V)
A7 Data_32+
B7 Data_14-
C7 GND Both
D7 CTL1 Either General purpose control signal Bank 1 (3.3V)
A8 Data_31+
B8 Data_13-
C8 GND Both
D8 CTL0 Either General purpose control signal Bank 1 (3.3V)
A9 Data_30+
B9 Data_12-
C9 GND
D9 GND
A10 Data_29+
B10 Data_11-
C10 GND Both
D10 ID3 DUT ID2 Bank 1 (3.3V)
A11 Data_28+
B11 Data_10-
C11 GND Both
D11 ID2 DUT ID2 Bank 1 (3.3V)
A12 Data 27/CLKB+
B12 Data_9/CLKB-

C12 GND
D12 ID1 DUT ID1 Bank 1 (3.3V)
A13 Data_26+
B13 Data_8-
C13 GND Both
D13 ID0 DUT ID0 Bank 1 (3.3V)
A14 Data_25+
B14 Data_7-
C14 GND Both
D14 GND Both
A15 Data_24+
B15 Data_6-
C15 GND Both
D15 GP9 WV5 General purpose control signal - 9. CMOS

+3.3V swing.
Bank 6 (default: 3.3V; selectable 2.5V)

A16 Data_23+
B16 Data_5-
C16 GND Both
D16 GP8 WV5 General purpose control signal - 8. CMOS

+3.3V swing.
Bank 6 (default: 3.3V; selectable 2.5V)

A17 Data_22+
B17 Data_4-
C17 GND Both
D17 GP7 WV5 General purpose control signal - 7. CMOS

+3.3V swing.
Bank 6 (default: 3.3V; selectable 2.5V)

A18 Data_21+
B18 Data_3-
C18 GND Both
D18 GP6 WV5 General purpose control signal - 6. CMOS

+3.3V swing.
Bank 6 (default: 3.3V; selectable 2.5V)

A19 Data_20+
B19 Data_2-

DUT Data Input to WV5. Either S/E CMOS, or
Diff LVDS (+ and - indicate polarity)

Bank 6 (default: 3.3V; selectable 2.5V)

DUT Data Input to WV5. Either S/E CMOS, or
Diff LVDS (+ and - indicate polarity)

Bank 6 (default: 3.3V; selectable 2.5V)

DUT Data Input to WV5. Either S/E CMOS, or
Diff LVDS (+ and - indicate polarity)

Bank 6 (default: 3.3V; selectable 2.5V)

DUT Data Input to WV5. Either S/E CMOS, or
Diff LVDS (+ and - indicate polarity)

Bank 6 (default: 3.3V; selectable 2.5V)

DUT Data Input to WV5. Either S/E CMOS, or
Diff LVDS (+ and - indicate polarity)

Bank 6 (default: 3.3V; selectable 2.5V)

DUT Data Input to WV5. Either S/E CMOS, or
Diff LVDS (+ and - indicate polarity)

Bank 6 (default: 3.3V; selectable 2.5V)

DUT Data Input to WV5. Either S/E CMOS, or
Diff LVDS (+ and - indicate polarity)

Bank 6 (default: 3.3V; selectable 2.5V)

DUT Data or CLK Input to WV5. Either S/E
CMOS, or Diff LVDS (+ and - indicate
polarity). Especially suited to be used as a
data bus clock in the FPGA.

Bank 3 (default: 3.3V; selectable 2.5V)

DUT Data Input to WV5. Either S/E CMOS, or
Diff LVDS (+ and - indicate polarity)

Bank 6 (default: 3.3V; selectable 2.5V)

DUT Data Input to WV5. Either S/E CMOS, or
Diff LVDS (+ and - indicate polarity)

Bank 6 (default: 3.3V; selectable 2.5V)

Both

DUT Data Input to WV5. Either S/E CMOS, or
Diff LVDS (+ and - indicate polarity)

Bank 6 (default: 3.3V; selectable 2.5V)

DUT Data Input to WV5. Either S/E CMOS, or
Diff LVDS (+ and - indicate polarity)

Bank 6 (default: 3.3V; selectable 2.5V)

Bank 6 (default: 3.3V; selectable 2.5V)DUT Data Input to WV5. Either S/E CMOS, or
Diff LVDS (+ and - indicate polarity)

C19 GND Both
D19 GP5 WV5 General purpose control signal - 5. CMOS

+3.3V swing.
Bank 6 (default: 3.3V; selectable 2.5V)

A20 Data_19+
B20 Data_1-
C20 GND Both
D20 GP4 WV5 General purpose control signal - 4. CMOS

+3.3V swing.
Bank 6 (default: 3.3V; selectable 2.5V)

A21 Data_18/CLKA+
B21 Data_0/CLKA-

C21 GND Both
D21 Presence_Detect~ DUT The DUT board shall ground this pin. The

WV5 senses this pin to detemine when the
board is plugged-in. (Note 1)

USB Controller (3.3V thru Rpu=10K)

A22 GND Both
B22 SDA Both I2C Data (bidirectional) USB Controller (3.3V thru Rpu=2.2K)
C22 SCL WV5 I2C Clock USB Controller (3.3V thru Rpu=2.2K)
D22 3V3DUT +3.3V Supply
A23 5V
B23 5V
C23 GND
D23 DataCLK DUT Reference Clock from the DUT board
A24 5V
B24 5V
C24 GND
D24 GND

Notes:
1

+5V Supply

Both

WV5

WV5

This pin is joined together with similar Presence_Detect~ pin on the FB port. So either connector's
mating can indicate the DUT board's presence.

DUT Data Input to WV5. Either S/E CMOS, or
Diff LVDS (+ and - indicate polarity)

Bank 6 (default: 3.3V; selectable 2.5V)

DUT Data or CLK Input to WV5. Either S/E
CMOS, or Diff LVDS (+ and - indicate
polarity). Especially suited to be used as a
data bus clock in the FPGA.

Bank 3 (default: 3.3V; selectable 2.5V)

+5V Supply

WaveVision-5 High-Speed Port (HSP) Specification
Rev. 0.94 Apr. 21, 2009

Pin# Signal Name Sourced By Function If not used on Signalpath Board...
A10 SData1p
B10 SData1n

BG10 GND Both
C10 SClockAp
D10 SClockAn

DG10 GND Both
A9 SData2p
B9 SData2n

BG9 GND Both
C9 SData3p
D9 SData3n

DG9 GND Both
A8 SData4p
B8 SData4n

BG8 GND Both
C8 SData5p
D8 SData5n

DG8 GND Both
A7 SData6p
B7 SData6n

BG7 GND Both
C7 SClockBp
D7 SClockBn

DG7 GND Both
A6 SData7p
B6 SData7n

BG6 GND Both
C6 SClockCp
D6 SClockCn

DG6 GND Both
A5 SData8p
B5 SData8n

High-Speed Serial Clock C. Differential LVDS-like
(reduced swing) signal. Unidirectional. This signal may
also be used as data. (Note 1)

Leave open.

Either High-Speed Serial Data - Channel 6. Differential LVDS-
like (reduced swing) signal. Unidirectional in either
direction. (Note 1)

Leave open.

Sig-path
board

High-Speed Serial Clock B. Differential LVDS-like
(reduced swing) signal. Unidirectional. This signal may
also be used as data. (Note 1)

Leave open.

Either High-Speed Serial Data - Channel 9. Differential LVDS-
like (reduced swing) signal. Unidirectional in either
direction. (Note 1)

Sig-path
board

Leave open.

Either High-Speed Serial Data - Channel 3. Differential LVDS-
like (reduced swing) signal. Unidirectional in either
direction. (Note 1)

Either High-Speed Serial Data - Channel 5. Differential LVDS-
like (reduced swing) signal. Unidirectional in either
direction. (Note 1)

Leave open.

Leave open.

Either High-Speed Serial Data - Channel 4. Differential LVDS-
like (reduced swing) signal. Unidirectional in either
direction. (Note 1)

This port is used to mate the Signalpath Board (a device eval board or a reference board) to the WaveVision-5 Capture Board. It is intended
to carry very high-speed signals that are often serial.

Leave open.

Either High-Speed Serial Data - Channel 2. Differential LVDS-
like (reduced swing) signal. Unidirectional in either
direction. (Note 1)

Leave open.

Leave open.

Sig-path
board

High-Speed Serial Clock A. Differential LVDS-like
(reduced swing) signal. Unidirectional. This signal may
also be used as data. IMPORTANT: On future
controller boards beyond WV-5.2 and SPIO-5.5, this
signal pair may NOT be connected on the FPGA as
clock. (Note 1)

Either

The connector is the Tyco HMZd 60-pin connector. The female side is installed on the Reference Board; the male side is installed on the
WaveVision-5 Board side.

The general-purpose lines may be used to implement a SPI control bus in those applications where only this HSP port is used (i.e., no
Futurebus connector is available). Example: B7-SCSb, B8-SDI, B9-SDO, B10-SCLK.

Leave open.

High-Speed Serial Data - Channel 1. Differential LVDS-
like (reduced swing) signal. Unidirectional in either
direction. (Note 1)

Either High-Speed Serial Data - Channel 7. Differential LVDS-
like (reduced swing) signal. Unidirectional in either
direction. (Note 1)

The interface provides up to 12 serial data lines in either direction and up to four serial clock lines in the signal-path to WV-5 direction (i.e.,
ADC application). In a DAC application, it is expected that the source-synchronous clock will be carried on the lines designated as data lines.
When less than the maximum data or clock lines are employed on a given signal-path board design, the designer shall utilize the port starting
from the pin A1 side and proceed in a contiguous manner.

Important: Pin #s shown here are using Pin#1 indication as specified in the Tyco diagram. This, then, also determines the order of the pin #s.
Note that on the WaveVision5.1 board the opposite pin order was used in the schematic symbol and the pin A1 marker on the silk-screen was
indicated on the Tyco pin A10. WaveVision-5.1 schematic and layout must not be used as reference any longer.

Leave open.

BG5 GND Both
C5 SData9p
D5 SData9n

DG5 GND Both
A4 SDA Both I2C Data (bidirectional) Leave open.
B4 GP0 Either General purpose control signal - 0. CMOS +3.3V swing. Leave open.

BG4 GND Both
C4 SData10p
D4 SData10n

DG4 GND Both
A3 SCL WV5 I2C Clock Leave open.
B3 GP1 Either General purpose control signal - 1. CMOS +3.3V swing. Leave open.

BG3 GND Both
C3 SData11p
D3 SData11n

DG3 GND Both
A2 DUT_Power_

Enable
WV5 For those DUT boards that support intelligent interface

power-up, this signal from WV5 boards enables the
DUT board's power regulator(s).

Leave open.

B2 GP2 Either General purpose control signal - 2. CMOS +3.3V swing. Leave open.

BG2 Presence_Det
ect~

Sig-path
board

The DUT board shall ground this pin. The WV5 senses
this pin to detemine when the board is plugged-in.
(Note 2)

USB Controller (3.3V thru Rpu=10K)

C2 SData12p
D2 SData12n

DG2 Presence_Det
ect~

Sig-path
board

The DUT board shall ground this pin. The WV5 senses
this pin to detemine when the board is plugged-in.
(Note 2)

USB Controller (3.3V thru Rpu=10K)

A1 Power WV5 Power. +3.3V Leave open.
B1 GP3 Either General purpose control signal - 3. CMOS +3.3V swing. Leave open.

BG1 GND Both
C1 SClockDp
D1 SClockDn

DG1 GND Both
Notes:

1

2

Either

Leave open.

This pin is joined together with similar Presence_Detect~ pin on the FB port. So either connector's mating can indicate
the DUT board's presence.

These signals may also be used in single-ended, CMOS 2.5V manner - albeit at lower speeds. When used in single-
ended manner, even the signals indicated as clock may be driven by the WV5.

Either High-Speed Serial Data - Channel 10. Differential LVDS-
like (reduced swing) signal. Unidirectional in either
direction. (Note 1)

Either High-Speed Serial Data - Channel 11. Differential LVDS-
like (reduced swing) signal. Unidirectional in either
direction. (Note 1)

Leave open.

Sig-path
board

High-Speed Serial Clock D. Differential LVDS-like
(reduced swing) signal. Unidirectional. This signal may
also be used as data. (Note 1)

Leave open.

Either High-Speed Serial Data - Channel 1. Differential LVDS-
like (reduced swing) signal. Unidirectional in either
direction. (Note 1)

Leave open.

High-Speed Serial Data - Channel 11. Differential LVDS-
like (reduced swing) signal. Unidirectional in either
direction. (Note 1)

Leave open.

National Semiconductor - CONFIDENTIAL Page 1 of 11

 Strategic Applications
Internal Document

WV5 Core Naming Convention

Ken Tateno
Rev. 0.91
July 17, 2009

Revision History
0.91 July 17, 2009 Added TOC. Small cosmetic changes and rearranging.

WV5 Developers' Guide - Naming Convention Rev. 0.91

National Semiconductor - CONFIDENTIAL Page 2 of 11

Table of Contents

1 Overview... 3
2 Default Naming Convention in the hardware Directory... 4
3 How the DUT EEPROM Is Used ... 7
4 image_map.xml and Exceptions.. 8
5 Putting It All Together (What is the DLL doing?) ... 9

WV5 Developers' Guide - Naming Convention Rev. 0.91

National Semiconductor - CONFIDENTIAL Page 3 of 11

1 Overview
This document is part of a set of documents that together constitute the WaveVision-5 System
Developers' Guide. It describes the naming convention used in the hardware directory. It also
describes the process the DLL uses to match a capture board and DUT board to the necessary files.

This document is very strongly related to "WV5 Core image_map Specification."

WV5 Developers' Guide - Naming Convention Rev. 0.91

National Semiconductor - CONFIDENTIAL Page 4 of 11

2 Default Naming Convention in the hardware Directory
The idea for the naming convention is to be able to look at the filename and immediately determine
what the file is used for. The name usually consists of several fields:

boardnick – This is the nickname for the capture board. Examples:

• wv5
• biggig.2.0
• sensorpath2008

cpu – This is the model number/identifier for the microcontroller. Examples:

• cy7c64613
• cy7c68013a

fpga – This is the model number/identifier for the FPGA. Examples:

• xc2cs50
• xc4vlx25
• none

dut – DUT or DUT board name. Examples:

• adc14ds105
• adc12eu050eb
• sp1202s01rb

* - This is meant to represent a wildcard character. This field can be any text. Examples:

• _spec_compliant

The filenames are constructed such that each of fields used are joined with the underscore character.

The boardnick, cpu, and fpga fields are taken directly from image_map.xml in the <board> properties.
The dut field however comes from the DUT EEPROM. This is explained in further detail in
"Section 3: How the DUT EEPROM is used."

2.1 CPU Images
These files contain the firmware for the Cypress microcontroller.

Format:

• boardnick_cpu*.bix

Examples:

• wv5_cy7c68013a.bix
• wv4_cy7c64613.bix

2.2 FPGA images
These files contain the images for the FPGA..

Format:

• boardnick_fpga_dut*.bit

Examples:

• wv5_xc4vlx25_adc16v130.bit
• wv5_xc4vlx25_ultrasound.bit

Examples using the wildcard:

WV5 Developers' Guide - Naming Convention Rev. 0.91

National Semiconductor - CONFIDENTIAL Page 5 of 11

• adc10d1000_xc4vlx25_adc10d1000cer_spec_compliant.bit

2.3 Capture board script files:
These contain the settings that are specific to a capture board. These files usually contain the GPIO
pin allocation on the Cypress. The reason for these files is so that the same pin allocation settings
do not have to be repeated in all DUT specific script files.

For instance, whenever a DUT is plugged into a WV5 capture board, the GPIO pin allocation on
the WV5 capture board will always require the same configuration. The pin allocation does not
depend on the DUT since the pin allocation is fixed to the board, not the DUT.

Format:

• boardnick*.brd.xml
• boardnick*.brd.cpp

Examples:

• wv5.brd.xml
• sensorpath2008.brd.xml

2.4 DUT level files:
These are the script files that contain most of the logic for supporting a particular DUT.

Format:

• boardnick_fpga_dut*.reg.xml
• boardnick_fpga_dut*.dut.cpp

Examples:

• wv5_xc4vlx25_adc14ds105.reg.xml
• sensorpath2008_none_sp1202s01rb.reg.xml

Examples using wildcard:

• sensorpath2008_none_differential_allinone.reg.xml

In this example, the DUT part name is actually just "differential." However, since the name is not
descriptive enough, the additional bit of "_allinone" is added. Notice that this added bit is still
compatible with the boardnick_fpga_dut*.reg.xml pattern.

2.5 Default capture settings (not very important):
There are some devices that do not require anything special. For these devices, some default capture
settings are necessary. This is only used when XML files are used.

Format:

• boardnick_default_1.cap.xml
• boardnick_default_2.cap.xml

2.6 General Access files (not very important):
There is a requirement that register accesses be supported even if there is no DUT specific file. To
do this, there is a default file that contains the instructions on how to access the hardware. This is
only used when XML files are used.

These instructions can be over-ridden in the DUT specific file, if the general method is does not
provide the proper functionality.

WV5 Developers' Guide - Naming Convention Rev. 0.91

National Semiconductor - CONFIDENTIAL Page 6 of 11

Format:

• boardnick_general_access.xml

2.7 Summary:
Below is a table that summarizes the default rules described in this section.

Support file Default basename Wildcard

CPU image boardnick_cputype hardware\firmware_images\basename*.bix

FPGA image boardnick_fpgatype_dut hardware\fpga_images\basename*.bit

Board script (XML) boardnick hardware\scripts\basename*.brd.xml

Board script (C) boardnick hardware\scripts\basename*.brd.cpp

Device script (XML) boardnick_fpgatype_dut hardware\scripts\basename*.reg.xml

Device script (C) boardnick_fpgatype_dut hardware\scripts\basename*.dut.cpp

WV5 Developers' Guide - Naming Convention Rev. 0.91

National Semiconductor - CONFIDENTIAL Page 7 of 11

3 How the DUT EEPROM Is Used
The DUT EEPROM contains many fields. For the specific purpose of matching a DUT to the
corresponding files, only one field is consulted and that is the DUT description.

The DUT description in the DUT EEPROM is usually a long text string. The DLL uses this long
text string in two ways. The first method is to use the entire string as is. The second method is to
use only the first word of the text string; this first word usually contains the actual part name, which
is the most important part.

This distinction is important because it is the part name (and not the full description) that is used as
the basis for the file naming convention. In Section 2 of this document, there is a list of attributes
used to construct file names. The dut attribute comes from the part name.

This distinction is also used in the exception handling in the image map. Specifically, the DUT
description is the string used when comparing against the dut_full_name_condition attribute. And the
part name is used when comparing against the dut attribute.

Example:
Assume the full DUT description is "ADCXXYYZZ BB bits EE speed". The DLL will use the first word
as the part name. So, the part name is "ADCXXYYZZ".

WV5 Developers' Guide - Naming Convention Rev. 0.91

National Semiconductor - CONFIDENTIAL Page 8 of 11

4 image_map.xml and Exceptions
Image_map.xml serves two major roles.

The first role is to list all the attributes of a particular board. The <board> elements in
image_map.xml provide the information for all supported capture boards. As stated in Section 2,
the boardnick, cpu, and fpga fields for the default naming convention come from these elements.
The DLL uses the VID/PID from the hardware to determine which <board> element to use.

The second role is to provide exceptions for files that do not follow the naming convention. There
are times when the default naming convention needs to be overridden and a custom filename
chosen from a given set of board and DUT attributes. To do this, image_map.xml is used. This file
contains a list of exceptions that allow for divergence from the default naming.

There are more specifics to exception handling in "WV5 Core image_map Specification."

WV5 Developers' Guide - Naming Convention Rev. 0.91

National Semiconductor - CONFIDENTIAL Page 9 of 11

5 How the DLL Chooses Support Files
In the following cases, the actions taken by the DLL are listed.

5.1 Case 1: Nothing connected to the PC
1) DLL starts up (due to WV5 GUI starting)
2) Reads in image_map.xml
3) Since there are no boards connected, simply waits for some other commands

5.2 Case 2: Capture board that is an all-in-one board is plugged in
1) DLL starts up (due to WV5 GUI starting)
2) Reads in image_map.xml
3) Detects board plugged in
4) Uses the VID/PID/DID combination of the hardware to identify the board
5) Consults image_map.xml to determine the nickname for this board
6) Determines CPU firmware filename by first looking in image_map.xml for CPU firmware

exceptions. If an exception is found, then that filename is used. If not, then the default
name is used.

7) Loads CPU firmware
8) Determines board level script filename by first looking in image_map.xml for board level

exceptions. If an exception is found, then that filename is used. If not, then the default
name is used.

9) Loads and executes board-level script
10) Reads Cypress EEPROM
11) Consults "DUT EEPROM file" field and finds that field not empty
12) Reads the EEPROM file from the hard disc to determine the DUT EEPROM name
13) Attempts to load FPGA image, if necessary

a. Determines the FPGA image filename by first looking in image_map.xml for FPGA
image exceptions. If an exception is found, then that filename is used. If not, then
the default name is used.

b. Programs the FPGA image
14) Determines the DUT-specific filename by first looking in image_map.xml for DUT-specific

exceptions. If an exception is found, then that filename is used. If not, then the default
name is used.

15) Loads and executes DUT-specific script

5.3 Case 3: Capture board that supports pluggable DUT boards is
plugged in with a valid DUT

1) DLL starts up
2) Reads in image_map.xml
3) Detects board plugged in
4) Uses the VID/PID/DID combination of the hardware to identify the board
5) Consults image_map.xml to determine the nickname for this board
6) Determines CPU firmware filename by first looking in image_map.xml for CPU firmware

exceptions. If an exception is found, then that filename is used. If not, then the default
name is used.

7) Loads CPU firmware

WV5 Developers' Guide - Naming Convention Rev. 0.91

National Semiconductor - CONFIDENTIAL Page 10 of 11

8) Determines board level script filename by first looking in image_map.xml for board level
exceptions. If an exception is found, then that filename is used. If not, then the default
name is used.

9) Loads and executes board-level script
10) Reads Cypress EEPROM
11) Consults "DUT EEPROM file" field and finds that field empty
12) Reads DUT EEPROM from physical DUT EEPROM on DUT board
13) Attempts to load FPGA image, if necessary

a. Determines the FPGA image filename by first looking in image_map.xml for FPGA
image exceptions. If an exception is found, then that filename is used. If not, then
the default name is used.

b. Programs the FPGA image
14) Determines the DUT-specific filename by first looking in image_map.xml for DUT-specific

exceptions. If an exception is found, then that filename is used. If not, then the default
name is used.

15) Loads and executes DUT-specific script

5.4 Case 4: Capture board that supports pluggable DUT boards is
plugged in with an unnamed DUT

1) DLL starts up
2) Reads in image_map.xml
3) Detects board plugged in
4) Uses the VID/PID/DID combination of the hardware to identify the board
5) Consults image_map.xml to determine the nickname for this board
6) Determines CPU firmware filename by first looking in image_map.xml for CPU firmware

exceptions. If an exception is found, then that filename is used. If not, then the default
name is used.

7) Loads CPU firmware
8) Determines board level script filename by first looking in image_map.xml for board level

exceptions. If an exception is found, then that filename is used. If not, then the default
name is used.

9) Loads and executes board-level script
10) Reads Cypress EEPROM
11) Consults "DUT EEPROM file" field and finds that field empty
12) Reads DUT EEPROM from physical DUT EEPROM on DUT board
13) Determines DUT EEPROM does not exist because there is a hardware failure trying to

communicate with the DUT EEPROM using I2C. But the "DUT sense" pin reports a
DUT is plugged in.

14) Returns this condition to GUI
15) GUI requests for a list of all DUTs currently supported
16) DLL reads all DUT files supported for the current capture board

a. Consults the <board> attribute of all image_map.xml for this board
b. Generates a list of DUT part name tokens by using the "duts" field
c. Generates a list of DUT descriptions by using the "desc" field

17) Returns list of part names and descriptions to GUI
18) GUI tells DLL the DUT that is plugged in. To be more specific, the GUI tells the DLL

the DUT part name.
19) Attempts to load FPGA image, if necessary

WV5 Developers' Guide - Naming Convention Rev. 0.91

National Semiconductor - CONFIDENTIAL Page 11 of 11

a. Determines the FPGA image filename by first looking in image_map.xml for FPGA
image exceptions. If an exception is found, then that filename is used. If not, then
the default name is used.

b. Programs the FPGA image
20) Determines the DUT-specific filename by first looking in image_map.xml for DUT-specific

exceptions. If found, then that filename is used. If not, then the default name is used.
21) Loads and executes DUT-specific script

National Semiconductor - CONFIDENTIAL Page 1 of 12

 Strategic Applications
Internal Document

WV5 Core image_map Specification

Ken Tateno
Rev. 0.91
July 17, 2009

Revision History
0.91 May 11, 2009 Added more details to board section. Added dut_properties and

dut sections
 Cleaned up default case. Emphasis on image_map serving two

purposes – board attributes as well as name exceptions
 Clarification on override attribute.

WV5 Developers' Guide - image_map Spec. Rev. 0.91

National Semiconductor – CONFIDENTIAL Page 2 of 12

Table of Contents

1 Overview... 3
2 <image_map>.. 4
3 <board_properties>.. 5
4 <board>.. 6
5 <dut_properties>.. 8
6 <dut> .. 9
7 <fpga_exceptions>, <cpu_exceptions>, <board_exceptions>, <register_exceptions> 10
8 <exception>... 11

WV5 Developers' Guide - image_map Spec. Rev. 0.91

National Semiconductor – CONFIDENTIAL Page 3 of 12

1 Overview
This document is part of a set of documents that together constitute the WaveVision-5 System
Developers' Guide.

This document specifies the contents of "image_map." Image_map.xml serves two main purposes:

1) List attributes of all capture boards
2) Map boards/DUTs to specific support files that do not follow convention

All supported capture boards will be listed in this file. Each board is identified by its VID/PID
numbers.

For purpose 2), however, the intent of image_map is only to address specific overrides that need to
be handled outside the general file naming convention. For the general convention, please see the
"WV5 Core Naming Convention" document.

The general format is XML. Please see any external source for well-formed XML. There is one
top-level element and that is <image_map>.

1.1 Default naming
This table summarizes the default naming convention. Please see "WV5 Core Naming Convention"
for details regarding the exact decision making process the DLL uses to choose all of script and
image files.

boardnick – Board nickname given in the <board> element, nick attribute
cputype – CPU type given in the <board> element, cpu attribute
fpgatype – FPGA type given in the <board> element, fpga attribute
dut – DUT part name

Support file Default basename Wildcard

CPU image boardnick_cputype hardware\firmware_images\basename*.bix

FPGA image boardnick_fpgatype_dut hardware\fpga_images\basename*.bit

Board script (XML) boardnick hardware\scripts\basename*.brd.xml

Board script (C) boardnick hardware\scripts\basename*.brd.cpp

Device script (XML) boardnick_fpgatype_dut hardware\scripts\basename*.reg.xml

Device script (C) boardnick_fpgatype_dut hardware\scripts\basename*.dut.cpp

1.2 Exception naming
The bulk of this XML file is to list any custom deviations on the general naming convention. These
exceptions can be used to override the naming convention for any of the support files but most of
the time it is used for the DUT scripts.

WV5 Developers' Guide - image_map Spec. Rev. 0.91

National Semiconductor – CONFIDENTIAL Page 4 of 12

2 <image_map>
This is the top level element that encases the entire file.

<board_properties> contains the list of all supported capture boards and their attributes. If a board is
not listed here, then it is not supported.

All of the <…_exceptions> elements contain the exceptions used to choose files that do not follow the
default naming convention.

2.1 Hidden Attributes

2.2 Subelements
• <board_properties>
• <dut_properties>
• <fpga_exceptions>
• <cpu_exceptions>
• <board_exceptions>
• <register_exceptions>
• <capture_exceptions>

WV5 Developers' Guide - image_map Spec. Rev. 0.91

National Semiconductor – CONFIDENTIAL Page 5 of 12

3 <board_properties>
This element contains information for all the boards that are currently supported. This element
consists of a series of <board> subelements. The DLL uses the VID/PID number from the USB
descriptors and uses those as indices to find the proper board entry.

3.1 Attributes

3.2 Hidden Attributes

3.3 Subelements
• <board>

WV5 Developers' Guide - image_map Spec. Rev. 0.91

National Semiconductor – CONFIDENTIAL Page 6 of 12

4 <board>
This describes one particular capture board. The DLL compares the VID/PID numbers from the
hardware to each <board> element. If those numbers match, then the matching <board> element is
used to describe the capture board.

The VID, PID, and nick attributes are mandatory. All others are optional.

4.1 Attributes

vid

The value is the VID number found in the USB device descriptor.

pid

The value is the PID number found in the USB device descriptor

The combination of VID/PID numbers is used by the DLL to match the capture board to a board
entry.

nick

The value is the nickname used internally within the image map section. This is not exposed to the
application.

friendly

The value is the user-friendly name for the capture board. This name is returned to the application
during the board enumeration process.

cpu

The value is the CPU type.

fpga

The value is the FPGA device type.

replace

A value of "1" for this field indicates the DLL should replace the name of the board with the name
of the DUT. This is typically only used for all-in-one boards. In these types of boards, the board
name and the DUT name are usually the same. This removes the redundancy.

fmc_eeprom

This value is set to "1" for boards that use the FMC EEPROM. Currently, this is only the SPIO
board.

cyp_eeprom_addr_width

This explicitly sets the I2C address width for the Cypress EEPROM. This value by default is 8.
Some bigger EEPROMs, like the ones on the SPIO board, use an address width of 16.

cyp_eeprom_dev_addr

This explicitly sets the I2C device address for the Cypress EEPROM. This value by default is 0x50.

Currently, this is only used on the SPIO board. The SPIO board uses a larger EEPROM than the
WaveVision boards. The Cypress microcontroller specification mandates that smaller EEPROMs

WV5 Developers' Guide - image_map Spec. Rev. 0.91

National Semiconductor – CONFIDENTIAL Page 7 of 12

be located at address 0x50 and larger EEPROMs be located at address 0x51. The Cypress
microcontroller uses different address widths for each of these locations.

dut_eeprom_addr_width

This is the same as cyp_eeprom_addr_width, but applies to the DUT EEPROM. The default is 8.

dut_eeprom_dev_addr

This explicitly sets the I2C device address for the DUT EEPROM. The default is 0x57.

fpga_programmer

This selects the algorithm used to program the FPGA. The default is 1, which selects the standard
algorithm used on all WaveVision boards.

The other supported option is 2. This option is used on SPIO boards. This algorithm is optimized
for the SPIO board and is not compatible with any other boards.

duts

This attribute contains a list of DUTs that are supported by the board. The list is comma separated.
This is only used with boards that support unnamed DUTs. Currently, the only boards that support
this are the SensorPath boards.

dut_descs

This is related to the duts field. However, instead of DUT names, this contains a comma-separated
list of descriptive DUT descriptions. These descriptions must be aligned with the DUT names.

4.2 Hidden Attributes

4.3 Subelements

WV5 Developers' Guide - image_map Spec. Rev. 0.91

National Semiconductor – CONFIDENTIAL Page 8 of 12

5 <dut_properties>
This section contains <dut> elements, which describe certain special attributes of DUTs.

5.1 Attributes

5.2 Hidden Attributes

5.3 Subelements
• <dut>

WV5 Developers' Guide - image_map Spec. Rev. 0.91

National Semiconductor – CONFIDENTIAL Page 9 of 12

6 <dut>
This element lists some special properties for some DUTs.

6.1 Attributes

name

This contains the DUT name. The DLL will use this attribute to determine if the current DUT
plugged into the system matches this entry. The comparison on the names is successful if the
attribute is a substring of the current DUT.

clock_check

This is set to one to inform the DLL and the firmware that the DUT does not generate a clock (or
the clock should be ignored).

6.2 Hidden Attributes

6.3 Subelements

WV5 Developers' Guide - image_map Spec. Rev. 0.91

National Semiconductor – CONFIDENTIAL Page 10 of 12

7 <fpga_exceptions>, <cpu_exceptions>,
<board_exceptions>, <register_exceptions>

These elements contain all the exceptions for their corresponding files.

<fpga_exceptions> contain exceptions for FPGA image files (.bit)
<cpu_exceptions> contain exceptions for CPU image files (.bix)
<board_exceptions> contain exceptions for capture board script files (.brd.xml and .brd.cpp)
<register_exceptions> contain exceptions for device script files (.reg.xml and .dut.cpp)

All of these sections are populated with <exception> subelements.

7.1 Attributes

7.2 Hidden Attributes

7.3 Subelements
• <exception>

WV5 Developers' Guide - image_map Spec. Rev. 0.91

National Semiconductor – CONFIDENTIAL Page 11 of 12

8 <exception>
This element represents an exception in the normal naming scheme. All but the override attribute
can be used as a condition on the match. If all the conditions in the exception match, then the DLL
will use the value in the override attribute as the basename for the file.

The only mandatory attribute is override. However, an element whose only attribute is the override
will mean that the element will match everything. The more optional attributes are listed, the stricter
the matching criteria.

8.1 Attributes

nick

The value contains the nickname of the board. The value must match exactly for this condition to
be met.

cpu

The value contains the CPU type on the board. The value must match exactly for this condition to
be met.

fpga

The value contains the FPGA type on the board. The value must match exactly for this condition to
be met.

dut

The value contains the name of the DUT. The value must match exactly for this condition to be
met.

dut_full_name_condition

The value contains a string that is compared against the full name of the DUT. This condition will
be met when the entire value is a substring of the current DUT description.

The DUT EEPROM contains a DUT description. The DUT description is usually a long string
whose first word is the DUT name and whose remaining words help describe the part.

There are cases when there are several revisions of the same DUT board but the DUT itself remains
the same. Since the DUT is the same, the DUT name will be the same in the DUT description. The
dut attribute will not be able to differentiate between the DUT boards. This is a problem since the
boards are physically different, different configuration scripts may be necessary.

To handle these situations, this attribute can be used to match against the entire DUT description,
not just the DUT name.

Example: Use exception to override one specific board

DUT Description in
EEPROM

DUT Name dut attribute match dut_full_name_condition
attribute

match

"ADCXYZ V1 123" ADCXYZ "ADCXYZ" yes "ADCXYZ V2" no

"ADCXYZ V2 456" ADCXYZ "ADCXYZ" yes "ADCXYZ V2" yes

WV5 Developers' Guide - image_map Spec. Rev. 0.91

National Semiconductor – CONFIDENTIAL Page 12 of 12

In this case, using the dut attribute will result in both boards meeting the condition. However, by
using the dut_full_name_condition, only the second board matches.

The dut_full_name_condition condition requires only that the value is a substring of the DUT
description. This can be exploited so that one exception works with multiple DUT boards.

Example: Create one exception to handle two boards

DUT Description
in EEPROM

DUT Name dut attribute match dut_full_name_condition
attribute

match

"ADCXYZEB" ADCXYZEB "ADCXYZ" no "ADCXYZ" yes

"ADCXYZRB" ADCXYZRB "ADCXYZ" no "ADCXYZ" yes

"ADCXYZEB" ADCXYZEB "ADCXYZEB" yes

"ADCXYZRB" ADCXYZRB "ADCXYZEB" no

"ADCXYZEB" ADCXYZEB "ADCXYZRB" no

"ADCXYZRB" ADCXYZRB "ADCXYZRB" yes

As seen in the example above, some DUT names contain suffixes like "EB" and "RB" to stand for
evaluation board and release board. And there are cases when these different boards are actually
quite similar and thus can share the same device script.

If the dut attribute is used for the exception, then the exception will match only some of the time.
Cases 1 and 2 show the dut attribute failing to match at all. Cases 3 and 4 and cases 5 and 6 show
the dut attribute matching only some of the time.

However, using dut_full_name_condition, the exception will properly match for both boards.

board_desc_condition

This acts just like the dut_full_name_condition, but matches on the board description. The board
description is extracted from the contents in the Cypress EEPROM. This field contains text to
describe the type of capture board.

dut_eeprom_image_field_condition

This acts just like the dut_full_name_condition, but matches on the FPGA image field. This field
extracted from the DUT EEPROM. This field contains text to identify the FPGA image to use.

override

If all of the above conditions match, then the value for this attribute becomes the new basename.
To get from basename to an actual filename, a file name extension must be added. The extensions
for all the different types of files are listed in the third column of the table in Section 1.

Notice that this third column uses the term "basename." This is done intentionally. Regardless of
how the basename is chosen (either default naming convention or override attribute), the wildcard
and extension used is always the same.

National Semiconductor - CONFIDENTIAL Page 1 of 25

 Data Conversion Division

SigPathData Interface Specification

Rev. 0.9 [all changes since last revision are shown in blue].
May 4, 2009 [items shown in red indicate open issues].

1.0 Overview

This document specifies the standardized hardware interface for the Signal Path
Control and Capture platforms such as the WaveVision-5. These platforms are used
by the High-Speed and Precision Signal Path product lines to control and to get the
data in and out of a multitude of ADC/DAC based analog signal-paths. Today, this
interface connects the WV5 DLL software plus the WV5 USB Controller Firmware
to the FPGA that controls the hardware as shown in the diagram below.

WV5 DLL

SigPath USB I/F
Firmware

SigPath Data &
Control Hardware

Windows USB Drivers

WaveVision-5
GUI

SensorVision
GUI

USB

WV5 DLL API

SigPathData Interface

WV5-DLL
Script

Other User
Interface Apps

WV5 Core

Examples:
• WaveVision-5.1 high-speed data capture board
• “Big Gig” Reference Design
• USI-2 controller for Sensor reference designs

Figure 1: Overall Software/Hardware Layers

SigPathData Interface Spec Rev. 0.9

National Semiconductor - CONFIDENTIAL Page 2 of 25

2.0 References

a) WaveVision-5 Software Users Guide.
b) WV5-DLL API Specification.
c) WaveVision-5 Capture Board Users' Guide.
d) An Introduction to the WaveVision-5 System

3.0 Key Features

 Provides a general-purpose data connection with the underlying hardware -
either simple buffer read/write or a higher speed packet read/write using the
FIFOs provided by the USB Controller.

 Provides a standardized command and status structure.
 Two 24-bit data buffer address spaces (16M) - one internal to the main

FPGA and one external.
 Supports either a 32-bit or 64-bit buffer width.
 Provide the means to read and write control and status registers on up to 8

devices through SPI.
 Supports Data Conversion Division's standardized SPI-1 interface.
 Also supports general-purpose manual operation of SPI interfaces that do not

comply with the SPI-1 standard.
 Supports I2C device access (to be defined).

4.0 Compliance

There are three elements to this standard: (A) the required functionality; the (B)
the optional functionality; and (C) the implementation-specific functionality. The
Microcontroller (Hardware and Firmware) are required to support A and B - as
specified in this document. The A-level functionality is required of all board
hardware and FPGA code that claim compliance with this standard. The B-level
(optional) functionality, if implemented in the hardware and/or the FPGA, must
comply with the defined behavior as stated in this document and must be reported
as supported features. The C-level (implementation-specific) functionality is not
defined in this specification and the designer is free to implement it in any manner
as long as it does not conflict with this document (e.g., all hardware must be
constrained within the memory space defined in this specification).

SigPathData Interface Spec Rev. 0.9

National Semiconductor - CONFIDENTIAL Page 3 of 25

5.0 High-Level Architecture

Microcontroller
(Cypress EZ-USB CY7C68xxx family

with ‘8051 core)

FPGA

Cypress
EEPROM

(req’d)

DUT
EEPROM

(optional)

Other
Devices

16 8 16

Ad
dr

es
s

Da
ta

HW
_R

es
et

IN
T

FP
GA

 C
on

fig

FI
FO

 C
on

tro
l*

FI
FO

 D
ata

*

LEDsI2C

[* Optional]

“Firmware Operational”

“Data Activity”

DU
T_

Pr
es

en
ce

_D
ete

ct

Figure 2: Hardware View of the standard interface (High Speed version)

As shown in Figure 2, at the hardware level the high-speed, full-capability version
of this standard interface is primarily an interface between the Cypress Controller
and the FPGA. There is also an I2C interface that is necessary to interface with the
boot EEPROM and is also available to access I2C devices present in the hardware
implementation.

SigPathData Interface Spec Rev. 0.9

National Semiconductor - CONFIDENTIAL Page 4 of 25

USB Controller Memory Space

D000h

DFFFh

Command, Control &
Status Registers

SigPath Hardware
Space

Buffer Addr/Data or
Addr/Cnt Registers*

Dual Read/Writable
Buffer

* either direct read/write or
automatic (FIFO) read/write

A B

Two distinct memory spaces:
Internal (FPGA) or External.

SPI Master

SPI Addr/Data

SPI
Devices

8-bit Registers

3FFFh
8051 Registers

C000h

CFFFh

FPGA Space

Non-FPGA Space

Figure 3: High-Level Architecture Description - Software/Firmware View

All data and control aspects of the hardware are mapped into the 8051 controller's
memory space (This controller is embedded inside the Cypress USB controller).
Addresses from C000h to DFFFh are claimed. C000h-CFFFh space is used by all
hardware outside of the FPGA while D000h-DFFFh space is reserved for the FPGA
registers.

In the reserved space for FPGA (Dxxxh), only a sub-set of the register locations are
standardized in this specification. These have to do with the basic command and
control structure, hardware identification, feature support reporting by the
hardware, buffer model and access method and SPI interface control. A set of
commands is specified. Some of the commands are mandatory for all hardware
implementations to support; the others are optional - which the hardware reports
support of through the FSR registers. The software must provide support for all
commands specified in this document.

All other aspects of the hardware's functionality, such as the details of how the
front-end may interact with an ADC or DAC, or how a specific hardware-based data
manipulation may be carried out, will be specified by each specific implementation.
The WV-5 DLL's Script file plays the key role of determining for the software what
additional non-standard functionality the hardware may be providing and how to
make use of it.

SigPathData Interface Spec Rev. 0.9

National Semiconductor - CONFIDENTIAL Page 5 of 25

5.1 Example Implementation: WaveVision-5.1 FPGA

ADC_C1

ADC_C2

MUX

FIFO

USB
Controller

Capture
Register

MUX

ADC_Cn

Mictor
Connector

Configuration
and Control
Registers Host SPI

Header

Deserializer

Deserializer

Deserializer

Internal
Memory A

Data Routing
Logic

USB
Controller
and
SPI Slave
Interfaces

DAC_C1

DAC_C2

DAC_Ck

Serializer

Serializer

Serializer

FIFO

Interface
Logic

Peripheral
SPI
Signals

DAC
Control
Module

DAC Front End

ADC Front End

Output
Buffers

General Control Module

SPI Peripheral Interface

SPI Control
Registers

External
Memory

Internal
Memory B

Std.
SigPathData

Interface

SigPathData Interface Spec Rev. 0.9

National Semiconductor - CONFIDENTIAL Page 6 of 25

6.0 Standard FPGA Registers

As a general rule, RESERVED bits in a defined register should always be written with a 0.
6.1 Standard Register Map

Register Name Address Offset
Global Control and Status Registers

SPEC_VER 0
GL_CSR 1 (0x01)

Reserved for future use 2-3
GL_CFG 4 (0x04)
LED0 5 (0x05)
FPGA Resource Control 6-15 (0x06-0x0F)
NON_STD_ID 16 (0x10)
REV_NUMBER 17 (0x11)
FSR1 18 (0x12)
FSR2 19 (0x13)
CRATE0 20 (0x14)
CRATE1 21 (0x15)

Implementation Specific Use 22-31 (0x16-0x1F)
SPI Interface, Master

SPI_CMD 32 (0x20)
SPI_MCTL 33 (0x21)
SPI_CFG 34 (0x22)
SPI_ADDR_H 35 (0x23)
SPI_ADDR_L 36 (0x24)
SPI_ DATA_H 37 (0x25)
SPI_DATA_L 38 (0x26)

Custom Logic Control
Reserved for future versions of this Spec. 39 – 47

Data Transfer Module
DT_CMD 48 (0x30)
DT_CFG 49 (0x31)
DT_CNT_0 50 (0x32)
DT_CNT_1 51 (0x33)
DT_CNT_2 52 (0x34)
DT_ADDR_0 53 (0x35)
DT_ADDR_1 54 (0x36)
DT_ADDR_2 55 (0x37)
DT_DATA_0 / HBM_0 56 (0x38)
DT_DATA_1 / HBM_1 57 (0x39)
DT_DATA_2 / HBM_2 58 (0x3A)
DT_DATA_3 59 (0x3B)
DT_DATA_4 / HBD_0 60 (0x3C)
DT_DATA_5 / HBD_1 61 (0x3D)
DT_DATA_6 62 (0x3E)
DT_DATA_7 63 (0x3F)

ADC Interface
ADC_IF_ID 64 (0x40)

Implementation (ADC) Specific Registers 69 – 95
DAC Interface

DAC_IF_ID 96 (0x60)
Implementation (DAC) Specific Registers 102 - 127

Rest of Signal-Path Interface
Reserved for future versions of this Spec. 128 - 255 (to 0xFF)

SigPathData Interface Spec Rev. 0.9

National Semiconductor - CONFIDENTIAL Page 7 of 25

6.2 Global Register Descriptions

0x00 - SPEC_VER – SigPathData Spec Version Register (read-only)
Returns the Version ID number for this standard interface that this hardware implementation is compliant
with.
ID<15h Previous revisions
ID=15h Rev. 0.4
ID=16h Rev. 0.5
ID=17h Rev. 0.6x

0x01 - GL_CSR – Global Control and Status Register

 7 6 5 4 3 2 1 0

DNM DNM DNM DNM DNM res SCD SRST

bits (7:3) DO NOT MODIFY. Used by non-standard portion of the hardware. MUST be read and
 written back with same values each time this register is written.

bits 2 Reserved. Must be 0 when written.

bit 1 SCD – Signal-Path Clock Detect
 Writing a 1 into this bit position clears the C_RATE_0/1 registers and

 starts a 0.5 msec internal timer. At the end of the 0.5 msec period
 SCD is cleared and the C_RATE_0/1 registers contain a value
 related to the frequency of the clock from the ADC or the DAC.
 Refer to the C_RATE_0/1 registers description for details.

bit 0 SRST – Soft Reset
 Setting this bit to 1 causes a soft reset of the hardware.
 This bit must be set to 0 for normal operation.

0x04 - GL_CFG – Configuration Register

 7 6 5 4 3 2 1 0

res res res res res res AUX_BE USB_IF_BE

bits 7:2 Reserved

bit 1 AUX_BE – Auxiliary Connector Buffer Enable
 When set to 1, the Auxiliary (e.g., Mictor) Connector signal buffers are enabled.
 Upon reset, this bit is set to 0.

bit 0 USB_IF_BE – USB Interface Buffer Enable
 When set to 1, the USB Controller FIFO Interface is enabled.
 Upon reset, this bit is set to 0.

0x05 - LED – Standard Controller Card LEDs

 7 6 5 4 3 2 1 0

LED7 LED6 LED5 LED4 LED3 LED2 LED1 LED0

SigPathData Interface Spec Rev. 0.9

National Semiconductor - CONFIDENTIAL Page 8 of 25

bits 7:0 A set of generic LEDs on the controller card can be directly driven through this register by the
firmware/software. The hardware designer may implement any number of these LEDs from 0 through 8,
depending on his needs. The number of LEDs supported, however, shall always map from the LSB
(LED0) position of this register towards the MSB (LED7). Writing a '1' in a bit position illuminates that
LED.

Power-On Reset State: 00h.

0x06 - 0x0F - FPGA Resource Control.

These registers are set aside for the FPGA's internal resource controls - such as
DCM/PLL control, programmable I/O termination control, etc. Since the implementation of
these resources varies amongst controller boards, the definition of these registers is
controller board specific. See the controller board specification.

0x10 - Non_Std_ID – This register may be used at the FPGA designer's discretion to indicate a sub-rev#
during debug phase of the project. The WV5 Core software does not report this field to the upper level
application.

0x11 - FPGA Rev – FPGA Code Revision Number
This byte represents a decimal revision number in the mm.nn format where the integer mm can be 0-15
and the decimal nn can also be 0-15.

bits (7:4) Integer portion of the revision number (decimal).

bits (3:0) Decimal portion of the revision number (decimal).

Example: Register 17h = 1Bh represents Rev. # 1.11.

The WV5 Core software reports this revision number to the upper-level application.

SigPathData Interface Spec Rev. 0.9

National Semiconductor - CONFIDENTIAL Page 9 of 25

0x12 - FSR1 – Feature Support Register 1 (read only)
This register tells the software what features are supported by the specific implementation.

 7 6 5 4 3 2 1 0

AT_MSTR USB_AT HTA HIST AUX_DP res SPW BWW

bit 7 AT_MSTR - Master Mode Auto Transfers
 Indicates that the hardware uses the "master mode" of the USB Controller to perform high-speed
 (FIFO) transfers.
 1 => Master Mode used when doing USB Auto Transfers.

bit 6 USB_AT – USB Auto Transfer
 Indicates whether the USB transfers can be performed at high speed using the
 USB controller special hardware (FIFO).
 1 => USB Auto Transfer Supported.

bit 5 HTA – Hardware Triggered Acquisition
 Indicates whether the hardware is capable of capturing or sourcing data as a result of a hardware
 trigger event.
 1 => Hardware Triggered Acquisition Supported

bit 4 HIST –Histogram
 Indicates whether the FPGA is capable of generating a histogram from the ADC samples

bit 3 AUX_DP – Auxiliary Data Port
 1 => Aux Data Port (eg. Mictor connector on the WaveVision-5 board) supported.

bit 2 reserved (reads 0)

bit 1 SPW – Samples Per Word
 Indicates how many samples are packed by the Front-End into a single Buffer Memory word.
 See table below.

bit 0 BWW – Buffer Word Width
 Indicates the word width of the Buffer Memory

BWW SPW Data Path Width Samples per Word

0 0 32 2
0 1 32 1
1 0 64 4
1 1 64 2

Note: Either Signal-Path Receive (ADC) data capture or the Signal-Path Transmit (DAC) data sourcing is
always supported by the hardware. Support of either or both is indicated with non-zero values in the
ADC_IF and DAC_IF ID registers.

SigPathData Interface Spec Rev. 0.9

National Semiconductor - CONFIDENTIAL Page 10 of 25

0x13 - FSR2 – Feature Support Register 2 (read-only)

 7 6 5 4 3 2 1 0

EMB CSDE HDE CDE res CDIV(2:0)

bit 7 EMB: External memory buffer supported.

bit 6 CSDE: Capture and/or Source Data supported in FPGA's Internal Memory only when this
 bit is set to 1.

bit 5 HDE: Hystogram Data (if supported) is supported in FPGA's Internal Memory only when
 this bit is set to 1.

bit 4 CDE: CER Data (if supported) is supported in FPGA's Internal Memory only when this bit
 is set to 1.

Note: The firmware/software always has the option of attempting read/write of the Internal or External
memory buffer.

bit 3 Reserved for future use. Must be written to 0.

bits (2:0) CDIV - Clock Divisor
 This field reports the power-of-2 representation (n) of the divisor (1, 2, 4, 8...) used in
 counting the number of signal-path clock cycles which are reported in the CRATE_1 and
 CRATE_0 registers. (For example, if the divisor is 8, then this field holds the value 3).
 2^n = Divisor.

0x14 - C_RATE_0 – Signal-Path Clock Rate Count Register 0
Lower 8 bits of the number of clock cycles accumulated in a time interval of 0.5 msec.
The signal-path clock received by the FPGA may be prescaled (divided and/or multiplied) before it clocks
the accumulation counter. The divisor used is reported in the CDIV field of the Feature Support Register
2.

0x15 - C_RATE_1 – Signal-Path Clock Rate Count Register 1 (0x15)
Upper 8 bits of the clock cycle count.

INFORMATIVE NOTE:
In addition to the CDIV variable for dividing down the channel clock, the WV5 Script also supports a
CMUL variable that allows the FPGA to multiply very slow clocks from Precision signal-path applications.
This CMUL variable is NOT available as a register value but instead is used directly in the WV5 Script
file. The diagram below describes the overall method of clock rate determination:

CNTR

FPGA

Channel
Clock

Software

x2000

CDIV CMUL CRATE CDIVCMUL

To the
GUI

Specified in the
FSR2 register

Used in the
Script file

Read from the
CRATE registers

Sample Rate
In Msamples/sec

SigPathData Interface Spec Rev. 0.9

National Semiconductor - CONFIDENTIAL Page 11 of 25

6.3 SPI Register Descriptions

The SigPathData Interface provides two means for SPI communication with devices present in the
hardware design: automatic - where the FPGA implements an SPI master; and manual - where the FPGA
simply provides direct SPI signal control through a register and the controller firmware is expected to "bit-
bang" the actual SPI communication. The manual control is intended for non-standard SPI protocols that
some devices may have.

The hardware (FPGA) is required to implement both the manual and the automatic SPI methods. The
hardware is also required to power-up with the automatic method enabled by default. The software is
required to use the automatic method by default (note: this was not the case previous to revision 0.5).

0x20 - SPI_CMD – SPI Command Register
This register is used to execute a read or a write access through the SPI interface.
Note: If an access is attempted to a non-existent device, the hardware will NOT report an error as this
capability does not exist.

 7 6 5 4 3 2 1 0

res res res DATA_W[1:0] ADDR_W DIR SPI_ST

bits 7:5 Reserved for future use. Must be written to 0.

bits 3:2 DATA_W[1:0] - Data Width
 These bits determine the size of the data transferred during the SPI access.
 Encodings are given in the following table

DATA_W[1:0] Transferred Data Size

00 8 bits
01 16 bits
10 Reserved (for possible 24-bits)
11 Reserved

bit 2 ADDR_W – Address Width
 Selects the SPI address width
 0 => 7 bits; 1 => 15 bits

 Note: Following combinations of Data_W and Addr_W are possible:
 16-bit SPI cycle: 7-bit Addr, 8-bit data
 24-bit SPI cycle: 7-bit Addr, 16-bit data
 24-bit SPI cycle: 15-bit Addr, 8-bit data
 32-bit SPI cycle: 7-bit Addr, 24-bit data
 32-bit SPI cycle: 15-bit Addr, 16-bit data

bit 1 DIR – SPI Access Direction
 This bit determines the direction of the SPI interface access cycle.

1 => Read Access; 0 => Write Access

bit 0 SPI_ST – Operation Start
 Writing a 1 into this bit position starts an SPI access cycle.
 Cleared automatically when the access operation is completed.

Writing a zero into this bit position has no effect.
The host software must wait for this bit to be cleared before starting a new operation
or before reading the results of a read access.

SigPathData Interface Spec Rev. 0.9

National Semiconductor - CONFIDENTIAL Page 12 of 25

0x21 - SPI_MCTL – SPI Interface Manual Control Register
This register is used to control the ADC SPI interface when manual SPI operation is selected through the
SCK_SL[1:0] bits in the SPI_CFG register.

 7 6 5 4 3 2 1 0

res res EBD OBEN SCS SCLK MOSI MISO

bits 7:6 Reserved

bit 6 EBD – External Buffer Direction Control
 This bit is effective only when the BDL bit in the SPI_CFG register is set to 1 and

Manual Mode is selected.
It controls the direction of an external buffer that may be placed on the SPI data line.
It must be 0 while data is being written to the SPI target and 1 while data is being read.

bit 4 OBEN _ Output Buffer Enable
 When set to 1, the serial data output buffer is enabled.
 This bit is used in Manual Mode only

bit 3 SCS – SPI Interface Select
 This bit drives the chip select signal.
 This bit is used in Manual Mode only

bit 2 SCLK – SPI Interface Clock
 This bit drives the clock signal.
 This bit is used in Manual Mode only

bit 1 MOSI – Master Output / Slave Input
 This bit drives the serial data output signal
 This bit is used in Manual Mode only

bit 0 MISO – Master Input / Slave Output
 This bit returns the status of the serial data input signal

0x22 - SPI_CFG – SPI Interface Configuration
This register is used to configure the SPI interface.
Upon reset, all implemented bits are set to 0.

 7 6 5 4 3 2 1 0

res res SCK_SL[1:0] BDL SDS[2] SDS[1] SDS[0]

bits 7:6 Reserved

bits 5:4 SCK_SL[1:0] – Clock Frequency Select

These bits select the frequency of the SPI interface clock generated by the FPGA. There can be
 different SCK frequency selected for each SPI devices controlled by the FPGA.

When these bits are all 0, manual mode is selected and all the accesses to the ADC are
performed by bit-banging the appropriate bits in the SPI_MCTL register.
SCK_SL encodings are shown in the table below. The 11 (divide-by-4) option is the power-on

 reset value. The Script writes this each time the Hardware Access Panel is opened in the GUI.

SCK_SK[1:0] Selected Clock Rate
00 Manual Mode
01 (Input Clock) / 64

SigPathData Interface Spec Rev. 0.9

National Semiconductor - CONFIDENTIAL Page 13 of 25

10 (Input Clock) / 16
11 (Input Clock) / 4

bit 3 BDL – Bidirectional Data Line
 When this bit is set to 1, the SPI interface uses one bidirectional signal

rather than two separate signals for input and output.
The MOSI signal becomes bidirectional and the MISO signal is unused.

bits 2:0 SDS[2:0] – SPI Device Select
 These bits select one of 8 target devices to be accessed by the SPI interface.

SPI_ADDR_H – Address Register High (0x23)
This register holds the SPI address bits 14:8 or 6:0 depending on whether
a 15-bit or 7-bit address is selected.
Upon reset, the content of this register is undefined.

bit 7 reserved
bits 6:0 SPI slave register address

SPI_ADDR_L – Address Register Low (0x24)
This register is used only when a 15-bit SPI address is selected.
It holds SPI address bits 7:0.
Upon reset, the content of this register is undefined.

bits 7:0 SPI slave register address

SPI_DATA_H – Data Register High (0x25)
This register holds the data read from, or to be written into the SPI slave
internal registers.
When a two-byte length is selected, this is the MS byte and it is the first
byte transferred.
Upon reset, the content of this register is undefined.

SPI_DATA_L – Data Register Low (0x26)
This register is used only when a two-byte data length is selected.
It holds the LS data byte read from, or to be written into the SPI slave
internal registers.
It is the second data byte transferred during an SPI access.
Upon reset, the content of this register is undefined.

NOTE: The SPI Data registers can also be used by the software/firmware to determine if the FPGA is
present and powered up. The method is as follows:
 Write 55h at address location 25h
 Write AAh at address location 26h
 Read back location 25h - confirm that it is 55h.
 Read back location 26h - confirm that it is AAh.

SigPathData Interface Spec Rev. 0.9

National Semiconductor - CONFIDENTIAL Page 14 of 25

SPI_CS

SPI_CLK

MOSI

MISO

A2 A1 A0

D5 D3D4 D2D6 D1D7 D0

A3A4A6 A5

Figure 3-1. SPI Read Access, 7-bit Address, 8-bit Data

SPI_CS

SPI_CLK

MOSI A2 A1 A0 D5 D3D4 D2D6 D1D7 D0A3A4A6 A5

Figure 3-2. SPI Write Access, 7-bit Address, 8-bit Data

SPI_CS

SPI_CLK

MOSI

MISO

A2 A1 A0

D13 D3 D2D14 D1D15 D0

A12A14 A13

Figure 3-3. SPI Read Access, 15-bit Address, 16-bit Data

SigPathData Interface Spec Rev. 0.9

National Semiconductor - CONFIDENTIAL Page 15 of 25

SPI_CS

SPI_CLK

SDIO

DIR

A2 A1 A0 D13 D3 D2D14 D1D15 D0A12A14 A13

Figure 3-4. SPI Read Access, Single Data Line, 15-bit Address, 16-bit Data

SigPathData Interface Spec Rev. 0.9

National Semiconductor - CONFIDENTIAL Page 16 of 25

6.4 Data Transfer Register Descriptions

0x30 - DT_CMD – Command Register

 7 4 3 2 1 0

OP_CODE[3:0] res LC STP/UC ST

bits 7:4 OP_CODE – Operation Code
 This 4-bit field specifies the operation to be performed.
 Encodings are given below.

 Table 2-2: Command Encodings

OP_CODE LC Operation Performed Hardware
Support

0 Capture data from Signal-Path to memory buffers A and B (data
acquisition). This command should be used continual statistics
collection type commands as well - such as CER - if supported.

Mandatory (1) 0000

1 Capture data from Signal-Path to memory buffers A and B
following a (local) hardware trigger condition

Optional

0001 0 reserved
0 Source data from memory buffers A and B to Signal-Path Mandatory (1) 0010
1 Source data from memory buffers A and B to Signal-Path

following a (local) hardware trigger event
Optional

0011 0 Source data continuously from memory buffers A and B to
Signal-Path.The data transfer can be stopped by writing a 1 into
the STP bit position. The DAC front-end logic can also stop this
command autonomously.

Mandatory (3)

0100 0 Auto-Transfer data from USB controller to memory buffer A (4) Mandatory (3)
0101 0 Auto-Transfer data from memory buffer A to USB controller (4) Mandatory (2)
0110 0 Auto-Transfer data from USB controller to memory buffer B (4) Mandatory (3)
0111 0 Auto-Transfer data from memory buffer B to USB controller (4) Mandatory (2)
1000 0 Generate Histogram Optional
1001 0 reserved
1010 0 reserved
1011 0 reserved
1100 0 Write Memory Buffer A Mandatory (3)
1101 0 Read Memory Buffer A Mandatory (2)
1110 0 Write Memory Buffer B Mandatory (3)
1111 0 Read Memory Buffer B Mandatory (2)

Notes:
 1. Either command 0000 (Capture) or 0010 (Source) must be supported. But it is not manadatory
 to support both.
 2. Mandatory if Command=0000 is supported (data capture from a receive channel Signal-Path)
 3. Mandatory if Command=0010 is supported (data sourcing to a transmit channel Signal-Path)
 4. Auto-Transfer means using the USB Controller's FIFO mode.

bit 3 Reserved
 Returns an indeterminate value when read.
 Must be set to 0 during writes.

bit 2 LC – Local Control: When writing this register, this bit is used as a command modifier - as shown
 in the table above.

bit 1 STP – Stop Operation

Writing a 1 into this bit position clears the ST bit and aborts any operation in progress.

SigPathData Interface Spec Rev. 0.9

National Semiconductor - CONFIDENTIAL Page 17 of 25

 Writing a 0 into it has no effect.
 This bit is automatically cleared by the hardware.
 If a data transfer to the USB controller is in progress when STP is set,
 any partial packet is committed for transmission before the operation
 is aborted.
 UC - Unsupported Command: Upon reading the register, and while the ST bit is clear (i.e.,
 command has completed), this bit will be set to 1 if the requested command is not supported by
 the hardware.

bit 0 ST – Operation Start
 Writing a 1 into this bit position starts the operation specified by the OP_CODE bits.
 Writing a 0 into it has no effect.
 This bit is automatically cleared by the hardware when the operation completes. Upon reading,
 state of this bit indicates whether the current operation is still active or it has completed. Software
 should poll this bit to determine the state of operation.

0x31 - DT_CFG – Configuration Register

 7 6 5 4 3 2 1 0

res res EMS DBE DAC_SFIADDR[1:0] ADC_SFIADDR[1:0]

bits 7:6 Reserved

bit 5 EMS: External Memory Select
 Setting this bit to 1 selects the external memory buffer space.
 Setting this bit to 0 selects the FPGA's internal memory space.

bit 4 DBE Dual Buffer Enable
 Setting this bit to 1 enables data from two front-end streams to be stored concurrently into

memory buffers A and B.
When this bit is 0, data from only one front-end stream can be stored into memory.
In this case memory buffers A and B are combined into 1.
Signal-path data is stored into buffer B after buffer A is full.
When EMS=1 (i.e., external memory selected), DBE can only be '1' - i.e., the two buffers are
stored into in parallel.

bits 3:2 DAC_SFIADDR[1:0] – USB Controller Output FIFO Address
 Selects the USB Controller FIFO during data transfers from the host PC to the memory buffers.

bits 1:0 ADC_SFIADDR[1:0] – USB Controller Input FIFO Address

Selects the USB Controller FIFO during data transfers from the memory buffers to the host PC

0x32 - DT_CNT_0 – Word Counter Register 0
This register holds bits 7:0 of the Word Counter.
The Word Counter specifies the number of memory words (32 or 64 bits) to be transferred between
the ADC or DAC and memory, or between the USB controller and memory when a
“transfer command” is executed.
When the Word Counter reaches 0 or when the top of memory is reached, the transfer command
terminates.

0x33 - DT_CNT_1 – Word Counter Register 1
This register holds bits 15:8 of the Word Counter.

0x34 - DT_CNT_2 – Word Counter Register 2
This register holds bits 23:16 of the Word Counter.

SigPathData Interface Spec Rev. 0.9

National Semiconductor - CONFIDENTIAL Page 18 of 25

0x35 - DT_ADDR_0 – Start Buffer Memory Address 0
Bits 7:0 of the memory address.

0x36 - DT_ADDR_1 – Start Buffer Memory Address 1
Bits 15:8 of the memory address.

0x37 - DT_ADDR_2 – Start Buffer Memory Address 2
Bits 23:16 of the memory address.

Note: The DT_ADDR register can be use to determine the memory size.

When DT_ADDR is written with 0xFFFFFF and then is read back, the number of bits
which are used to address the memory return a 1. Unused bits return a 0.

0x38 - DT_DATA_0 / HBM_0 – Data / Histogram Bin Mask 0
This register holds bits 7:0 of the data read from or to be written to buffer memory for a memory read or
write
command, or bits 7:0 of the Histogram Mask for the histogram command.

Example: For a 14-bit ADC the HBM value should be 0x003FFF.

0x39 - DT_DATA_1 / HBM_1 – Data / Histogram Bin Mask 1
Bits 15:8 of the data or Histogram Mask.

0x3A - DT_DATA_2 / HBM_2 – Data / Histogram Bin Mask 2
Bits 23:16 of the data or Histogram Mask.

0x3B - DT_DATA_3 – Data 3
Bits 31:24 of the data read from or to be written to buffer memory

Note: The following registers are used to hold data read from or written to memory

only when a 64-bit data path is implemented.

0x3C - DT_DATA_4 / HBD_0 – Data 4 / Histogram Max Bin Depth 0
This register holds bits 39:32 of the data read from or to be written to buffer memory for a memory
read or write command, or bits 7:0 of the Histogram Max Bin Depth for the histogram command.

0x3D - DT_DATA_5 / HBD_1 – Data 5 / Histogram Max Bin Depth 1
Bits 47:40 of the data or bits 15:8 of the Histogram Max Bin Depth.

0x3E - DT_DATA_6 – Data 6
Bits 55:48 of the data read from or to be written to buffer memory

0x3F - DT_DATA_7 – Data 7
Bits 63:56 of the data read from or to be written to buffer memory

6.5 Other Register Descriptions

0x40 - ADC_IF_ID – ADC Interface Module Identification, read-only
Returns the ID of the ADC Front-End.

0x60 - DAC_IF_ID – ADC Interface Module Identification, read-only
Returns the ID of the DAC Front-End.

SigPathData Interface Spec Rev. 0.9

National Semiconductor - CONFIDENTIAL Page 19 of 25

7.0 Standard non-FPGA Registers

The 8051 memory space from C000h to CFFFh is reserved for the hardware other than the FPGA. This
space may be used in a hardware design where an FPGA is present; but its primary usefulness is in
those simpler designs where an FPGA is not required at all.

This section is yet to be defined completely. However, the following locations are already in use:

CF00h - CFFFh Precision Signal-Path channels are located here. These channels are in devices
 that are connected to the Controller through SPI bus. The high-level application
 can read or write the data values from these channels by doing memory-mapped
 I/O operations to these locations.

SigPathData Interface Spec Rev. 0.9

National Semiconductor - CONFIDENTIAL Page 20 of 25

8.0 EEPROM Interface

8.1 Cypress EEPROM

This EEPROM MUST be present on all boards. It contains the essential identifying codes necessary for
the USB controller to correctly participate in the USB device discovery process when the device is either
connected to the USB bus or powered up after being connected.

8.1.1 Cypress Controller Specific

The first eight bytes of the Cypress EEPROM are specific to the Cypress hardware.

The Cypress chip has many different methods of booting. One of the methods is to read the EEPROM
on the I2C interface at I2C address 0. If an EEPROM exists and the first byte of the EEPROM is 0xC0,
then the Cypress boots using a procedure called the "0xC0 Load."

The "0xC0 Load" method is the method used for the all WaveVision boards, including WV4 and WV5
boards.

In this mode, the Cypress uses the first eight bytes of the EEPROM to configure the device.

Byte
Index

Value Description

0 0xC0 Indicates 0xC0 load

1 VID L Lower 8 bits of the Vendor ID (VID)

2 VID H Upper 8 bits of the VID

3 PID L Lower 8 bits of the Product ID (PID)

4 PID H Upper 8 bits of the PID

5 DID L Lower 8 bits of the Device ID (DID)

6 DID H Upper 8 bits of the DID

7 Config Bit 6 is the reset polarity; bit 0 is the I2C speed

The "0xC0 Load" procedure begins the enumeration process with the USB host (usually a PC) using a
default set of parameters (hardwired in the silicon), but substitutes the VID/PID/DID numbers in the USB
descriptors with the values found in the EEPROM. With this method, the host can correctly identify the
chip and the take the necessary steps to download the proper firmware to the Cypress.

 VID = 0400 (hex) Reserved for National
 PID = xxxx (hex) Assigned by Ernesto Reyes
 DID = yyyy (hex) Optional. Assigned/maintained by Strategic
 Applications if necessary.
 Default = 0000h.
 Config Byte: Bit 6 = 0b
 Bit 0 = 100KHz = 0b, 400KHz = 1b.

8.1.2 SigPathData Interface Specific

The data stored past the first eight bytes of the EEPROM are specific to the SigPathData Interface
compliant products.
(Note: Previous WaveVision products loosely follow the same specification).

SigPathData Interface Spec Rev. 0.9

National Semiconductor - CONFIDENTIAL Page 21 of 25

Byte
Index

Value Description

8 n/a UNUSED

9 Mem 0 Bits 7:0 of the memory depth in bytes

10 Mem 1 Bits 15:8 of the memory depth in bytes

11 Mem 2 Bits 23:16 of the memory depth in bytes

12 Mem 3 Bits 31:24 of the memory depth in bytes

13 Spd 0 Bits 7:0 of the external SRAM maximum speed in Hz

14 Spd 1 Bits 15:8 of the external SRAM maximum speed in Hz

15 Spd 2 Bits 23:16 of the external SRAM maximum speed in Hz

16 Spd 3 Bits 31:24 of the external SRAM maximum speed in Hz

17 Field ID Field identifier

18 … p ASCII ASCII character data

p + 1 0x00 Null termination of character data

… Field ID Field identifier

… ASCII ASCII character data

… 0x00 Null termination of character data

… … …

z 0x01 Field ID of 0x01 signifies the end of the data

MEMORY DEPTH
This describes the amount of memory available for capture. The memory can be located in the FPGA or
in external memory.

The memory depth describes the number of FPGA words per buffer. Note that two buffers are supported
in the SigPathData Interface.

NOTE: Total number of samples depends on how many samples per buffer are being captured by the
FPGA implementation.

On the WV5.1 board specifically, following are the maximum buffer sizes possible:

• 65536 (64kB) for the -base model.
• 8388608 (8MB) for the -ext model (with external SRAM).

EXTERNAL RAM SPEED
For WV5 boards specifically:

• If external SRAM exists, this field is 200,000,000 (2MHz).
• If external SRAM does not exist, this field is 0

8.1.3 TEXT FIELDS

Following the memory depth and SRAM speed values, the EEPROM contains a list of text fields. Each field has
three sections.

• Field ID – field identifier describing the contents of the following character data
• ASCII – Printable ASCII character data

SigPathData Interface Spec Rev. 0.9

National Semiconductor - CONFIDENTIAL Page 22 of 25

• 0x00 – Null termination of the ASCII text

There are three supported fields currently.

CYPRESS_EEPROM_FIELD_ID_DESCRIPTION (0x00)
This contains the board description.

For WV5 boards specifically, the format of the string is:

WaveVision5-B 106.25 LX25 11 SO 0 M
where:

• WaveVisoin5-B is the name of the board
• 106.25 is the frequency of Y1
• LX25 is the Virtex4 version of U1
• 11 is the speed grade of U1

CYPRESS_EEPROM_FIELD_ID_FILEDUTEEPROM (0x02)
This field is used for boards that do not contain a DUT EEPROM. This field contains the name of a file located on
the host computer. This file contains a binary image of a DUT EEPROM and that image is used as a substitute for
the actual DUT EEPROM.

The host will append this filename to the directory name "eeprom\" when looking for the file.

CYPRESS_EEPROM_FIELD_ID_END (0x01) Special
This indicates the end of the data.

SigPathData Interface Spec Rev. 0.9

National Semiconductor - CONFIDENTIAL Page 23 of 25

8.2 DUT EEPROM

This EEPROM contains the information specific to the device under test (DUT). The address of this
EEPROM is 0x07. This EEPROM is filled entirely of text fields. Please see the text field description in
the Cypress EEPROM section for the formatting.

DUT_EEPROM_FIELD_ID_DUT (0x00)
This field contains the name of the DUT. The software will derive two names from this text field. The first
name is considered the full name and is this text field in its entirety.

The second name is more of a shortcut name and consists of all the characters up to the first space.

DUT_EEPROM_FIELD_ID_REVISION (0x01)
This contains the revision string. The format and contents of this field are unknown.

DUT_EEPROM_FIELD_ID_UNPACKER (0x06)
This contains the name of the unpacker to use. This was used in WV4 software. This is unused in WV5
software.

DUT_EEPROM_FIELD_ID_PARAMS (0x07)
The host PC software uses this field to determine how to extract the ADC sample data from the FPGA
data word. Note that there is no strict bit length restriction on a FPGA word. The FPGA word is
dependent on the FPGA implementation. Right now, the typical word length is either 32 bits or 48 bits.

This field contains a list of comma separated numbers that describe the location of each ADC sample in a
FPGA acquired data word. These numbers are in pairs. There are either one or two pairs. The first
number of the pair represents the MSB of the sample and the second number represents the LSB.

Example
9 0 25 16

This example has two pairs. The first pair is 9 0. This means in the FPGA word, a sample is located at
bits 9:0. Since there is a second pair, this means there is another sample in the same FPGA word. The
second sample is located at bits 25:16 of the FPGA word.

FPGA Images on the WV4 Hardware
The FPGA images built for the WV4 hardware assume a single buffer of FPGA words. Depending on the
implementation, the FPGA image can capture one or two channels worth of data simultaneously.

If the implementation can capture only one channel, there is only one pair in this text field. If the
implementation can capture two channels, then there are two pairs.

SigPathData Interface Spec Rev. 0.9

National Semiconductor - CONFIDENTIAL Page 24 of 25

FPGA Images on the WV5 Hardware
This field is does not accurately describe the capturing parameters of the newer FPGA images.

Unlike the older implementations, the WV5 images tend to always capture one channel worth of data in
one FPGA word. This means this number pair cannot be used the same way. Previously, two pairs
meant two channels worth of data in one FPGA word. In these new implementations, there is always
only one channel worth of data in a single FPGA word, but there may be two samples of the same
channel in a single FPGA word and the number pair provides no useful information.

The general idea is that the number pairs are not used the same way as the older WV4 images. The
WV5 images generally have significantly different approaches to storing samples than the older WV4
images.

9 0 25 16

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Example:
32 bit FPGA word
Two pairs
Two channels in each word
One sample from each channel
RED – channel 1 sample
BLUE – channel 2 sample

9 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Example:
32 bit FPGA word
One pair
One channel in each word
One sample from each channel
RED – channel 1 sample

15 6 31 22

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Buffer 0

Buffer 1

Example
32 bit FPGA word
Each word contains two samples from one channel
There are two buffers
Each buffer contains one channel
FPGA realigns sample such that LSB is on either bit 0 or bit 16
RED – channel 1 sample
BLUE – channel 2 sample

Number pair from an older WV4 DUT

SigPathData Interface Spec Rev. 0.9

National Semiconductor - CONFIDENTIAL Page 25 of 25

The best way to describe the FPGA implementation is to specify all the capture parameters in the script
file. This way the host PC software can properly decode the FPGA data without having to modify the
DUT EEPROM.

DUT_EEPROM_FIELD_ID_FIRMWARE (0x08)
This contains the name of the FPGA image to use.

For WV4 software, this is an actual path to the file. The WV4 software pre-pends the directory name
"firmware\", pre-pends the VID/PID numbers and appends the text ".bit" to form the actual path, and then
searches the local directory structure for the file.

The directory structure for the WV5 software is significantly different than WV4 software. Thus, the WV5
software does not take this field as a literal path. The WV5 software consults a helper file called
"image_map.xml" that maps this text field to an actual FPGA image filename.

DUT_EEPROM_FIELD_ID_CONTROLPANEL (0x09)
This contains the name of the register control panel to use. This is used in WV4 software and not in WV5
software.

DUT_EEPROM_FIELD_ID_END (0x05)
This special field indicates the end of the DUT EEPROM data. This field has no text data.

