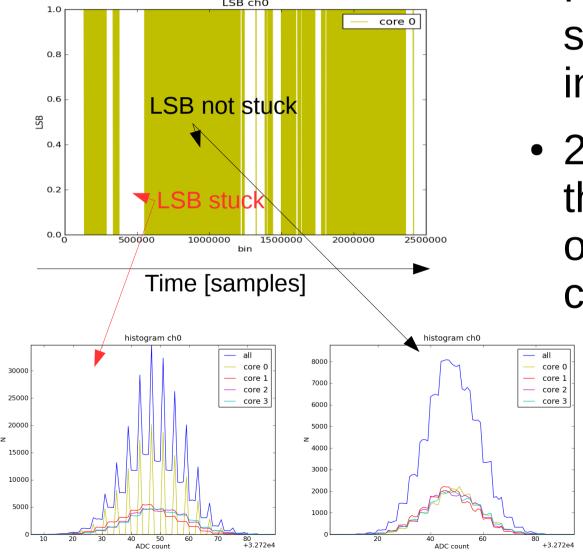
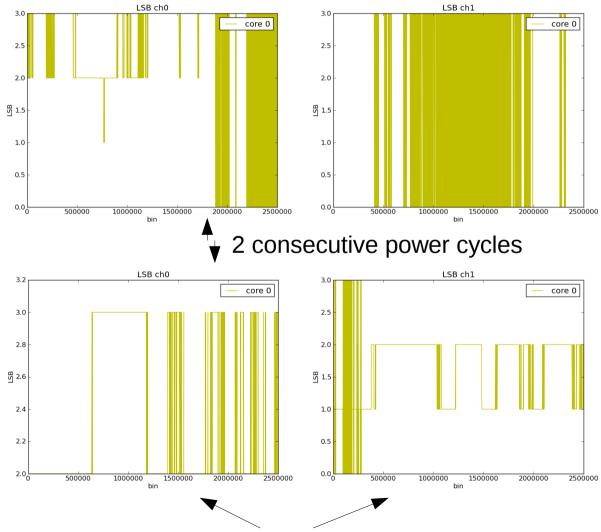

Problems with the ADS54J60


- 2 nested issues
- 1) DC correction infers strange behavior on one out of the 4 interleaving cores
- 2) The ADCs 2
 LSB are random
 - → 14-bit like

Histogram of ADC values on 500hm terminated input

DC correction problem

LSB bit value on core 0 (out of 4 interleaving cores)

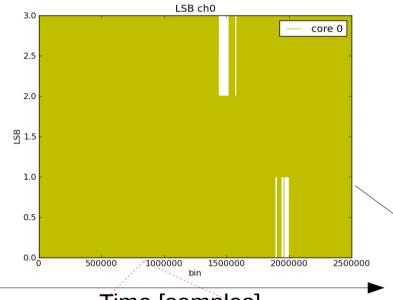


- Periods of LSB being stuck and not are interleaving rapidly
- 2 LSB of core 0 goes through large periods of being stuck at a constant value

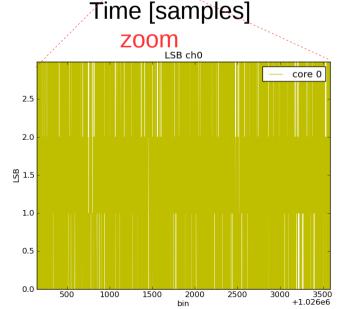
11b in this case

DC correction problem

2 LSB bit value on core 0 (out of 4 interleaving cores)

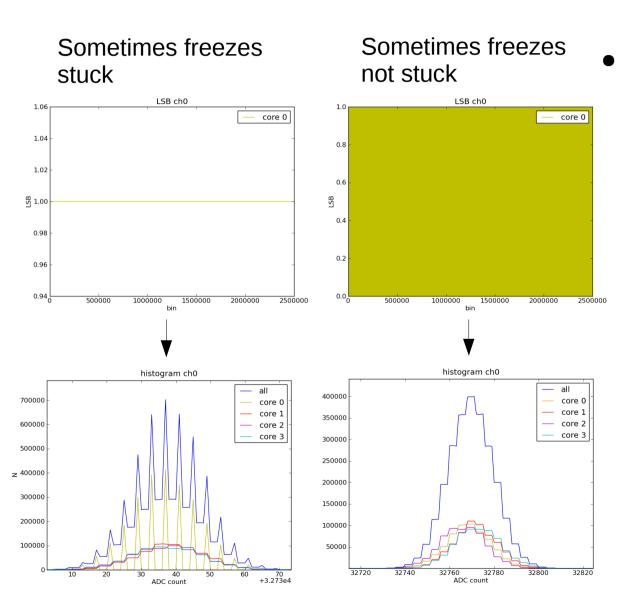


- Other stuck values than 11 are also possible
- Changes from power cycle to power cycle


Core 0 of both ADS54J60 channels at the same time


Digital gain

LSB bit value on core 0 (out of 4 interleaving cores)



 Changing digital gain register to 0x1f changes the oscillation properties from "macroscopic" to "microscopic"

DC correction freeze

 Freezing the DC correction via undocumented registers results in stuck or not stuck state being conserved (which is probably dependent on when the DC correction is frozen)

14-bit problem

- ADS54J60 = 16-bit ADC
 - Die marking: AZ54J60 TI 614 ZFR7 G4
 - Page 0x61 reg 0xF read = 0x0
- JESD ILAS reports on all lanes N* = 16, N = 14!!!!!
- It is obvious from the preceding plots that the 2
 LSBs are averaged over time

						$\mathbf{OXF} = \mathbf{IN}^{-1} - \mathbf{I}, \mathbf{IN}^{-1} = \mathbf{IO}$			
				2 nd multiframe start		0xd = N-	1; N =	14	
3	BCh	X 80h X 7Fh X 80h	X 7Fh X	80h	7Ch	OOh	1Fh	20h / 42	h 80
2	BCh	X 7Fh X		80h	7Fh	ooh		2Fh X 00	h
1	BCh	7Fh	X 80h X	7Fh		9Ch X	03h	oDh X oo	h
\sim	DCL	V 45h V 75h	V ant V	-FL		5 - CL V	ant V	V	L V 75

System description

- Abaco FMC-120 carrier (2x ADS54J60)
- DC coupled
- 650 MHz sampling clock, on-board
- 20.3125 MHz SYSREF
- Reception by Arria V JESD204B core
- LMFS = 4211 per ADS54J60, K = 32
- 50 Ohm terminated inputs (no signal, no offset)

Powerup sequence

* 2 SYSREF pulses during the CGS

```
* power up ( power to FMC, PG to FMC, ADC amp ON)
                                                               0x6005 0x00
                                                                             # no scrambler
* clock setup (650MHz sample,
                                                               0x4003 0x0
                                                                             # select JESD analog
* continuous SYSREF
                                                               0x4004 0x6a
                                                                             # always write 1 to deemphasis
                                                               0x6012 0x2
* ADC hardware reset by toggling pin
                                                               0x6016 0x2
                                                                            # PLL 40x
sleep 1s
                                                               0x6017 0x40 # PLL reset toggle
0x0000 0x81 # soft reset ADC
                                                               0x6017 0x0
                                                                             # select main digital
sleep 1s
                                                               0x4003 0x0
0x0011 0x80
                                                               0x4004 0x68
             # select master page
0x004f 0x1
            # DC coupling
                                                               0x6043 0x1
                                                                            # offset binary format
                                                               0x604B 0x20 # offset sel enable
0x4001 0x0
             # erase page regs
                                                               #0x6052 0x1 # enable digital gain (optional)
0x4002 0x0
             # erase page regs
0x4005 0x0
             # erase page regs
                                                               #0x6044 0x1f # dig gain set (optional)
                                                                            # LSB select enable
0x4003 0x0
             # select main digital
                                                               0x60ab 0x1
0x6004 0x68
                                                               0x60ad 0x0
                                                                            # LSB data
0x60f7 0x1
             # digital reset
                                                               0x6000 0x1
                                                                            # pulse the apply bit
0x6000 0x1
             # pulse the apply bit
                                                               0x6000 0x0
0x6000 0x0
                                                               0x4003 0x0
                                                                             # select JESD digital
              # select master page
                                                               0x4004 0x69
0x0011 0x80
0x0059 0x20
                                                               0x6006 0x1f # set K = 32
              # must write 1
0x4003 0x0
             # select JESD digital
0x4004 0x69
                                                               * disable continuous SYSREF
0x6000 0x80 # K sel enable
                                                               * start JESD204B receiver core configuration
```

0x6001 0x04 # 4 lanes