Welcome! Texas Instruments New Product Update

- This webinar will be recorded and available at <u>www.ti.com/npu</u>
- Phone lines will be muted
- Please post questions in the chat or contact your sales person or field applications engineer

New Product Update:

High Speed SAR ADCs

Paul McCormack February 4th 2021

Agenda

- New ADC family overview
 - Key features and target applications
 - Digital Interface
- Internal decimation filter
 - Oversampling and simplification of anti-aliasing filter
 - Oversampling and SNR improvement
- Evaluation tools
- Evaluation measurements

Complete Family

ADC35/36 Single/Dual 14/16/18 Bit, 0.5MSPS to 125 MSPS

0.5 - 65/125 MSPS (14 bit)

0.5 - 65 MSPS (16/18 bit)

900 MHz (up to 65MSPS)

0.5/0.2, 2.0/0.2, 7/0.7 LSB (14/16/18bit typ)

79/82/85 dB (14/16/18 bit)

Decimation by 2, 4, 8, 16, 32

SDR/DDR CMOS & SLVDS

1400 MHz (125MSPS)

Int and Ext 1.2/1.6V

95dB at 1 MHz

1.8V (14/16/18 bit)

40QFN (5x5mm)

32-bit NCO

14 us

29mW to 100mW per channel

1 - 2 clock cycles

Features

- Sample range:
- Low Latency:
- Low Power:
- No missing codes
- Input Bandwidth
- Wake Up time
- INL/DNL
- · Reference options
- SNR
- SFDR/THD
- DDC
- · Digital Interface:
- Power supply:
- Package:
- Low cost Sitara based reference design available in Q1 2021

Applications

- Data Acquisition
- Power Quality Analyzer / meter
- Imaging (Thermal, MRI, PET)
- Ultrasonic Flow Metering
- Motor diagnostics & monitoring
- Sonar & Radar
- High-speed Control Loops
- OTDR
- Wireless Communications
- Single 1.8V power supply

Key features

High dynamic range (85dB SNR, 95dB SFDR) >90dB SNR, > 100dB SFDR (on chip 32x decimation) Low power consumption 29mW to 100mW/ch Excellent Linearity 0.2 LSB DNL, 0.5 LSB INL Internal or external reference options Programmable decimation and NCO 900MHz / 1400MHz (65/125MSPS) input bandwidth 1 – 2 clock cycle latency CMOS or SLVDS interface

FS = 65 MSPS, F_{in} = 1 MHz, 16x Decimation, real

Digital Interface Options

Single ended CMOS (example)

Serial LVDS (example)

Internal Decimation Filter

- Complex Decimation by 2, 4, 8, 16 and 32
- 32-bit NCO: Frequency Resolution
- Supports real output decimation w/o NCO
 2, 4, 8, 16, 32 decimation
- Passband: ~42%
- Stopband attenuation ~ 85dB min

Decimation Filter Response (/2, /4 and /32 examples)

Faster SAR ADC Sampling Rate

Faster ADC sampling rate:

- Relaxes AAF filter requirements
- Reduces susceptibility to power supply spurs/noise inside ADC

Oversample + Decimate Configuration

Operate ADC at a faster clock rate and use internal digital decimation

- Relaxes external anti alias filter
- Improves SNR (3dB/2x decimation)
- Reduces output data rate

FS = 65 MSPS, FIN = 1.0 MHz, 16x

Decimation

AAF Filter relaxation

m

m

 \mathcal{M}

 \mathcal{M}

Evaluation tools (EVMs)

ADC3683EVM - Industries Fastest 18-bit Digitizer – Dual 18 bit 65MSPS Exceptional SNR & SFDR at Ultra Low Power Consumption

Features

- Sample range:
- Input driver options:

- ADC Voltage Reference options:
- · Time doman applications
- Freq domain applications
- Clocking options
- · Low Power consumption:
- · Low Latency for control loop applications:
- Signal Chain SNR @ 1MHz fin
 Includes input driver, onboard clock & INT voltage reference
- Signal Chain SFDR @ 1MHz fin
 Includes input driver, onboard clock & INT voltage reference
- ADC INL, DNL
- Digital Interface:
- · Power supply ADC/Board:
- Operating Temperature:
- Design files:

0.5 - 65 MSPS (18 bit)

AC coupled through ADT1-6T+ (125MHz BW)

Supports SE to DIFF or DIFF to DIFF conversion

DC coupled through THS4541 (20 MHz BW) Supports SE to DIFF or DIFF to DIFF conversion

0V to 3.2V p-p input range

- Internal 1.2/1.6V (lowest cost)
- External 1.2/1.6V (highest performance)
- DC coupled FDA input (0Hz to 20MHz)
- AC coupled transformer input (30kHz to 125MHz)
- On board clock (350fs jitter typical) Option to connect external clock (<350fs clock jitter) 95mW/ch (ADC)

800mW (Complete Digitizer)

2 clock cycles (30.77ns at 65MSPS) 85 dB (Nyquist) – transformer/FDA input 9x dB (32x decimation) – transformer/FDA 95 dB (transformer/FDA)

10x dB (32x decimation) – transformer)/FDA 7 LSB, 0.7 LSB (typ)

SLVDS (ADC) FMC connector (Digitizer)

1.8V/5V

-40 to +105degC Schematics & gerber files available on ti.com

Target Applications

Data Acquisition

Power Analyzer

Sonar

Radar

Optical Encoders

Control Loops

Imaging (MRI, Xray, PET)

Flow Metering (Ultrasonic)

High dynamic range, low power, 16-bit Dual channel 65MSPS Digitizer >90db SNR, 108dB SFDR @ 95mW/Ch (ADC3660/61/62/63EVM)

Features

- Sample range:
- Input driver options:

- ADC Voltage Reference options:
- · Time doman applications
- · Freq domain applications
- Clocking options
- · Low Power consumption:
- · Low Latency for control loop applications:
- Signal Chain SNR @ 1MHz fin
 Includes input driver, onboard clock & INT voltage reference
- Signal Chain SFDR @ 1MHz fin
 Includes input driver, onboard clock & INT voltage reference
- ADC INL, DNL
- Digital Interface:
- · Power supply ADC/Board:
- Operating Temperature:
- Design files:

0.5 - 65 MSPS (16 bit)

AC coupled through ADT1-6T+ (125MHz BW) Supports SE to DIFF or DIFF to DIFF conversion DC coupled through THS4541 (20 MHz BW) Supports SE to DIFF or DIFF to DIFF conversion 0V to 3.2V p-p input range Internal 1.2/1.6V (lowest cost) External 1.2/1.6V (highest performance) DC coupled FDA input (0Hz to 20MHz) AC coupled transformer input (30kHz to 125MHz) On board clock (350fs jitter typical)

Option to connect external clock (<350fs clock jitter) 95mW/ch (ADC)

800mW (Complete Digitizer)

2 clock cycles (32ns at 62.5MSPS) 82 dB (Nyquist) – transformer/FDA input 90.7 dB (32x decimation) – transformer/FDA 90 dB (transformer/FDA) 108 dB (32x decimation) – transformer)/FDA 2 LSB, 0.2 LSB (typ) CMOS, SLVDS (ADC)

FMC connector (Digitizer)

1.8V/5V

-40 to +105degC Schematics & gerber files available on ti.com

Target Applications

Data Acquisition

Power Analyzer

Sonar

Radar

Optical Encoders

Control Loops

Imaging (Xray, Thermal, MRI)

Flow Metering (Ultrasonic)

High dynamic range, 16-bit 6 - CH Digitizer interfaces to TI Sitara Processor Exceptional SNR & SFDR @ 71mW/Ch (ADC3660)

Features

- ADC3660 paired with the AM57xx (Beagle Bone AI) utilizing McASP interface.
- Can support 3 synchronized ADC3660s with max data rate of 50 Mbps.
- · Expected release in Q1 2021.

Sample range:	0.5 – 10 MSPS (16 Dit)
	Max data rate of 50Mbps
Input driver options:	DC coupled through THS4541 (20 MHz BW)
	Supports SE to DIFF or DIFF to DIFF conversion
	0V to 3.2V p-p input range
ADC Voltage Reference options:	Internal 1.2/1.6V (lowest cost)
	External 1.2/1.6V (highest performance)
Time doman applications	DC coupled FDA input (0Hz to 20MHz)
Clocking options	On board clock (350fs jitter typical)
	Option to connect external clock (<350fs clock jitter)
Low Power consumption:	71mW/ch (ADC)
	800mW (Complete Digitizer)
Low Latency:	2 clock cycles
Signal Chain SNR @ 1MHz fin	82 dB (Nyquist) – transformer/FDA input
Includes input driver, onboard clock & INT voltage reference	X? dB (32x decimation) – transformer/FDA
Signal Chain SFDR @ 1MHz fin	90 dB
Includes input driver, onboard clock & INT voltage reference	X? dB (32x decimation)
ADC INL, DNL	2 LSB, 0.2 LSB (typ)
Digital Interface:	CMOS (ADC)
	connector (Digitizer)
Power supply ADC/Board:	1.8V/5V
Operating Temperature:	-40 to +105degC
Design files:	Schematics & gerber files available (Q1 2021) on ti.com

14-bit Digitizer with industry leading INL, DNL and SNR Dual channel 14-bit 0.5 to 125MSPS (ADC3641/2/3/4EVM)

Features

- Sample range:
- Input driver options:

- ADC Voltage Reference options:
- · Time doman applications
- · Freq domain applications
- Clocking options
- · Low Power consumption:
- · Low Latency for control loop applications:
- Signal Chain SNR @ 1MHz fin
 Includes input driver, onboard clock & INT voltage reference
- Signal Chain SFDR @ 1MHz fin
 Includes input driver, onboard clock & INT voltage reference
- ADC INL, DNL
- Digital Interface:
- · Power supply ADC/Board:
- Operating Temperature:
- Design files:

0.5 - 125 MSPS (14 bit)

AC coupled through ADT1-6T+ (125MHz BW) Supports SE to DIFF or DIFF to DIFF conversion DC coupled through THS4541 (20 MHz BW) Supports SE to DIFF or DIFF to DIFF conversion 0V to 2.25V p-p input range Internal 1.2/1.6V (lowest cost) External 1.2/1.6V (highest performance)

- DC coupled FDA input (0Hz to 20MHz)
- AC coupled transformer input (30kHz to 125MHz)
- On board clock (350fs jitter typical) Option to connect external clock (<350fs clock jitter) 80mW/Ch (ADC @ 125MSPS)

800mW (Complete Digitizer)

- 1 clock cycle (8ns at 125MSPS) 79 dB (Nyquist) – transformer/FDA input 9x? dB (32x decimation) – transformer/FDA 93 dB (transformer/FDA)
- 10x? dB (32x decimation) transformer)/FDA 0.6 LSB, 0.2 LSB (typ @ 65MSPS) CMOS (ADC) FMC connector (Digitizer)

1.8V/5V

-40 to +105degC Schematics & gerber files available on <u>ti.com</u>

Target Applications

Thermal Imaging

Data Acquisition

Flow Metering (Ultrasonic)

Control Loops

Imaging (MRI, Xray, PET)

Sonar

Radar

Communications

EVM measurements

ADC3583

• 18-bit noise floor of -160dBFS

SNR: 85 dBFS SFDR: 116 dBFS NSD better than 160dbFS/Hz!

🔱 Texas Instruments

18

ADC3683EVM 32 MSPS: Bypass, 55KHz Fin

ADC3683EVM 32 MSPS: Decimation by 16, 55KHz Fin

ADC3683EVM 6.4 MSPS, 32x Decimation, 55KHz Fin

No Filter

ADC3683EVM – 18bit, 65MSPS, 32x Decimation, 10 MHz, Ain = -1.25dBFS

ADC3683EVM – 18bit, 65MSPS, 32x, Idle Channel

Visit <u>www.ti.com/npu</u>

For more information on the New Product Update series, calendar and archived recordings

25

©2020 Texas Instruments Incorporated. All rights reserved.

The material is provided strictly "as-is" for informational purposes only and without any warranty. Use of this material is subject to TI's **Terms of Use**, viewable at TI.com

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated