TPS65910Ax User's Guide For AM335x Processors

Version C

User's Guide

TEXAS INSTRUMENTS

Literature Number: SWCU093C August 2011–Revised May 2013

WARNING: EXPORT NOTICE

Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled product restricted by other applicable national regulations, received from Disclosing party under this Agreement, or any direct product of such technology, to any destination to which such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorisation from U.S. Department of Commerce and other competent Government authorities to the extent required by those laws. This provision shall survive termination or expiration of this Agreement.

According to our best knowledge of the state and end-use of this product or technology, and in compliance with the export control regulations of dual-use goods in force in the origin and exporting countries, this technology is classified as follows:

US ECCN: EAR99

EU ECCN: EAR99

And may require export or re-export license for shipping it in compliance with the applicable regulations of certain countries.

Contents

1	Introduc	tion	5	
2	Connect	ion Diagram and TPS65910Ax EEPROM Definition	5	
3	First Initialization			
	3.1	I/O Polarity/Muxing Configuration	10	
	3.2	Define Wake-Up/Interrupt Event (SLEEP or OFF)	10	
	3.3	Backup Battery Configuration	10	
	3.4	DCDC and Voltage Scaling Resource Configuration	10	
	3.5	Sleep Platform Configuration	10	
4	Event M	anagement Through Interrupts	11	
	4.1	INT_STS_REG.VMBHI_IT	11	
	4.2	INT_STS_REG.PWRON_IT	11	
	4.3	INT_STS_REG.PWRON_LP_IT		
	4.4	INT_STS_REG.HOTDIE_IT	11	
	4.5	INT_STS_REG.VMBDCH_IT	11	
	4.6	INT_STS2_REG.GPIO_R/F_IT	11	
	4.7	INT_STS_REG. RTC_ALARM_IT	11	
5	Revisior	History	12	

List of Figures

1	AM335x Power Supply Connections with TPS65910A and TPS65910A3	6
2	AM335x Power Supply Connections with TPS65910A31	7
3	Power-Up and Power-Down Timing Diagram	9

List of Tables

1	TPS65910Ax comparison	5
2	EEPROM Configuration for TPS65910Ax	8
3	Revision History	12

TPS65910Ax User's Guide For AM335x Processors

This user's guide can be used as a reference for connectivity between the TPS65910Ax powermanagement integrated circuit (PMIC) and the AM335x processor.

1 Introduction

This user's guide can be used as a reference for connectivity between the TPS65910Ax PMIC and the AM335x processor. The TPS65910AA1 device is to support the AM335x processor with DDR2. TPS65910A3A1 and TPS65910A31A1 devices are to support the AM335x processor with DDR3. This user's guide does not provide details about the power resources or the functionality of the device. For such information, refer to the full specification document, *TPS65910 Data Manual*.

Table 1 compares TPS65910Ax devices

Table 1. TPS65910Ax comparison

	TPS65910A	TPS65910A3	TPS65910A31
Memory	DDR2 (VIO=1.8V)	DDR3 (VIO=1.5V)	DDR3 (VIO=1.5V)
VRTC power mode in OFF state	Low power mode (VRTC_REG.VRTC_OFFMASK =0)	Low power mode (VRTC_REG.VRTC_OFFMA SK=0)	Full power mode (VRTC_REG.VRTC_OFFMASK=1)

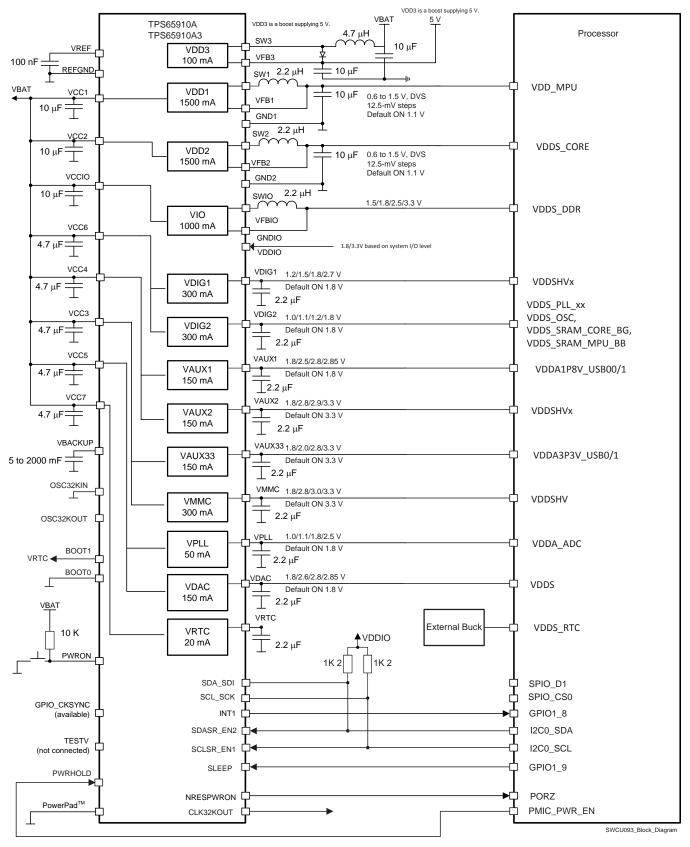

2 Connection Diagram and TPS65910Ax EEPROM Definition


Figure 1 shows the connection diagram between the processor and the TPS65910A or TPS65910A3. Figure 2 shows the connection diagram between the processor and TPS65910A31.

Notes for connection diagram:

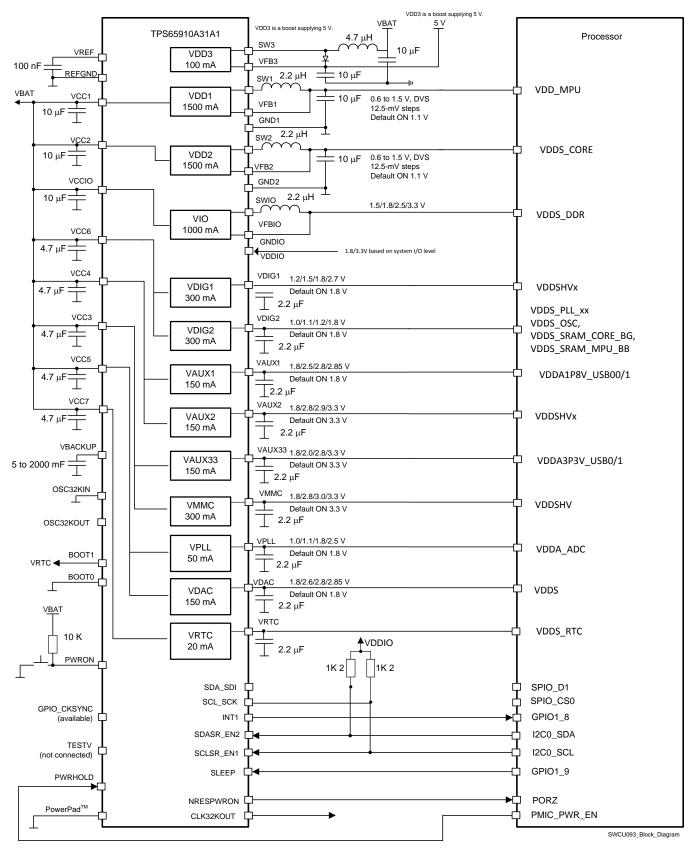

- To support the processor power-up sequence, connect BOOT0 to ground and BOOT 1 to VRTC to select EEPROM boot mode.
- The TPS65910Ax digital control signal level is defined by the VDDIO connection.
- VAUX2 can support up to 300 mA for the specific case of a 3.3-V output level.
- The VDD1 and VDD2 connections shown in Figure 1 and Figure 2 is valid for processor version ZCZ (15 x 15). In ZCE (13 x 13), VDD_MPU and VDD_CORE are shorted internally. For ZCE, connect VDD1 to VDD_MPU; VDD2 is free for system use.



Table 2 lists the EEPROM definition of the TPS65910Ax and Figure 3 shows the corresponding power-up sequence.

Register	Bit	Description	Option Selected
VDD1_OP_REG	SEL	VDD1 voltage level selection for boot	1.1
VDD1_REG	VGAIN_SEL	VDD1 gain selection, x1 or x2	x1
EEPROM		VDD1 time slot selection	6
DCDCCTRL_REG	VDD1_PSKIP	VDD1 pulse skip mode enable	Skip enabled
VDD2_OP_REG / VDD2_SR_REG	SEL	VDD2 voltage level selection for boot	1.1
VDD2_REG	VGAIN_SEL	VDD2 gain selection, x1 or x3	x1
EEPROM		VDD2 time slot selection	7
DCDCCTRL_REG	VDD2_PSKIP	VDD2 pulse skip mode enable	Skip enabled
VIO_REG	SEL	VIO voltage selection	TPS65910AA1 1.8V (DDR2) TPS65910A3A1 1.5V (DDR3) TPS65910A31A1 1.5V (DDR3)
EEPROM		VIO time slot selection	4
DCDCCTRL_REG	VIO_PSKIP	VIO pulse skip mode enable	Skip enabled
EEPROM		VDD3 time slot	OFF
VDIG1_REG	SEL	LDO voltage selection	1.8
EEPROM		LDO time slot	2
VDIG2_REG	SEL	LDO voltage selection	1.8
EEPROM		LDO time slot	2
VDAC_REG	SEL	LDO voltage selection	1.8
EEPROM		LDO time slot	1
VPLL_REG	SEL	LDO voltage selection	1.8
EEPROM		LDO time slot	3
VAUX1_REG	SEL	LDO voltage selection	1.8
EEPROM		LDO time slot	3
VMMC_REG	SEL	LDO voltage selection	3.3
EEPROM		LDO time slot	5
VAUX33_REG	SEL	LDO voltage selection	3.3
EEPROM		LDO time slot	5
VAUX2_REG	SEL	LDO voltage selection	3.3
EEPROM		LDO time slot	5
CLK32KOUT pin		CLK32KOUT time slot	7
NRESPWRON pin		NRESPWRON time slot	7 + 1
VRTC_REG	VRTC_OFFMASK	0 = VRTC LDO will be in low-power mode during OFF state. 1 = VRC LDO will be in full-power mode during OFF state.	TPS65910AA1 Low- power mode TPS65910A3A1 Low- power mode TPS65910A31A1 High- power mode
DEVCTRL_REG	RTC_PWDN	0 = RTC in normal-power mode 1 = Clock gating of RTC register and logic, low- power mode	1
DEVCTRL_REG	CK32K_CTRL	0 = Clock source is crystal/external clock. 1 = Clock source is internal RC oscillator.	RC
DEVCTRL2_REG	TSLOT_LENGTH	Boot sequence time slot duration: 0 = 0.5 ms 1 = 2 ms	2 ms

Table 2. EEPROM Configuration for TPS65910Ax

Register	Bit	Description	Option Selected
DEVCTRL2_REG	IT_POL	0 = INT1 signal will be active low. 1 = INT1 signal will be active high.	Active high
INT_MSK_REG	VMBHI_IT_MSK	0 = Device automatically switches on at NO SUPPLY-to-OFF or BACKUP-to-OFF transition. 1 = Start-up reason is required before switch-on.	1
VMBCH_REG	VMBCH_SEL[1:0]	Select threshold for main battery comparator threshold VMBCH.	3 V

Table 2. EEPROM Configuration for TPS65910Ax (continued)

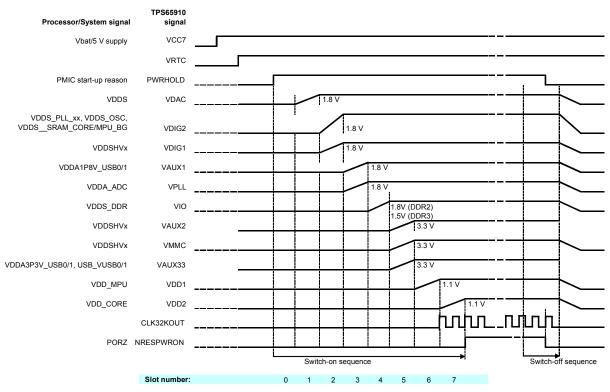


Figure 3. Power-Up and Power-Down Timing Diagram

3 First Initialization

3.1 I/O Polarity/Muxing Configuration

Program DEVCTRL2_REG.SLEEPSIG_POL according to the GPIO level setting on the processor. This can be set to active low or active high for SLEEP transitions. Software configuration allows specific power resources to enter a low consumption state.

Set DEVCTRL_REG.DEV_SLP = 1 to allow SLEEP transitions when requested.

Update the GPIO0 configuration (GPIO0_REG) based on your needs.

3.2 Define Wake-Up/Interrupt Event (SLEEP or OFF)

Select the appropriate bits in the INT_MSK_REG and INT_MSK2_REG registers to activate an interrupt to the processor on the INT1 line.

3.3 Backup Battery Configuration

If a backup battery is used, enable backup battery charging by setting the BBCH_REG.BBCHEN bit to 1. The maximum charge voltage can be set based on the backup battery specifications by using the BBSEL bits.

3.4 DCDC and Voltage Scaling Resource Configuration

If the SmarReflex interface is not used for viltage scaling (power saving), these pins can be used to control the power resources.

Configure two operating voltages for DCDC1 and DCDC2

- VDDx_OP_REG.SEL= Roof voltage (ENx ball high)
- VDDx_SR_REG.SEL = Floor voltage (ENx ball low)

Assign control for DCDC1 to SCLSR_EN1 and DCDC2 to SCLSR_EN2:

- Set EN1_SMPS_ASS_REG.VDD1_EN1 = 1
- Set EN2_SMPS_ASS_REG.VDD2_EN1 = 2
- Set SLEEP_KEEP_RES_ON_REG.VDD1_KEEPON = 1 (allow low-power mode)
- Set SLEEP_KEEP_RES_ON_REG.VDD2_KEEPON = 1 (allow low-power mode)

3.5 Sleep Platform Configuration

Configure the state of the LDOs when the SLEEP signal is used (by default all resources go into SLEEP state; in SLEEP state the LDO voltage is maintained but transient and load capability are reduced).

Resources that must provide full load capability must be set in the SLEEP_KEEP_LDO_ON_REG register.

Resources that can be set off in SLEEP state to optimize power consumption must be set in the SLEEP_SET_LDO_OFF_REG register.

4 Event Management Through Interrupts

4.1 INT_STS_REG.VMBHI_IT

The INT_STS_REG.VMBHI_IT bit indicates that the supply (VBAT) is connected (leaving the BACKUP or NO SUPPLY state), the system must be initialized. (See Section 3, *First Initialization*.)

4.2 INT_STS_REG.PWRON_IT

INT_STS_REG.PWRON_IT is triggered when the PWRON button is pressed. If device is in the OFF or SLEEP state, this acts as a wake-up event and resources are reinitialized.

4.3 INT_STS_REG.PWRON_LP_IT

INT_STS_REG.PWRON_LP_IT is the PWRON long-press interrupt. This interrupt is generated when the PWRON button is pressed for 6 seconds. The application processor can make a decision to acknowledge the interrupt. If this interrupt is not acknowledged in the next 2 seconds then the device interprets this as a power-down event.

4.4 INT_STS_REG.HOTDIE_IT

INT_STS_REG.HOTDIE_IT indicates that the temperature of die is reaching the maximum limit. Software must take action to decrease the power consumption before automatic shutdown.

4.5 INT_STS_REG.VMBDCH_IT

INT_STS_REG.VMBDCH_IT indicates that the input supply is low and the processor must prepare a shutdown to prevent losing data. This interrupt is linked to VBAT but does not apply to a system where the PMIC is connect to 5-V rails and not directly to VBAT.

4.6 INT_STS2_REG.GPIO_R/F_IT

INT_STS2_REG.GPIO_R/F_IT is the GPIO interrupt event and can be used to wake up the device from SLEEP state. This can be an interrupt coming from any peripheral device or alike. This wake-up event is not valid for transitions from the OFF state.

4.7 INT_STS_REG. RTC_ALARM_IT

INT_STS_REG. RTC_ALARM_IT is triggered when the RTC alarm set time is reached.

5 Revision History

Table 3 lists the changes made since the previous version of this document.

Table 3. Revision History

Section	Location	Additions/Modifications/Deletions
Connection Diagram and TPS65910Ax EEPROM Definition	Figure 1	Update Figure 1: Replace Default OFF with DEFAULT ON in VDIG1, VDIG2, VAUX1, VAUX33
Connection Diagram and TPS65910Ax EEPROM Definition	Figure 2	Update Figure 2: Replace Default OFF with DEFAULT ON in VDIG1, VDIG2, VAUX1, VAUX33

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated