
www.ti.com Application Note

1 Memory Map Configuration of vision SDK

Application Report
 – Dec 2016

Memory Map of Vision SDK

1. Introduction ... 2

2. Memory Sections in VISION SDK Memory Map .. 2

3. VSDK Memory Map Table .. 3

4. Software and Hardware Constraints to Consider For Deciding Memory Map 4

4.1 Hardware Constraints ... 4

4.2 Software Constraints... 4

5. Memory Allocation .. 4

5.1 External Buffer Memory Allocation.. 5

5.2 Internal Buffer Memory Allocation... 6

5.3 Static Memory sections Allocation.. 7

6. Memory map of the application.. 7

6.1 Adding a new section to memory map .. 8

6.2 Changing size of a section in the memory map .. 9

6.3 How To - Add a new memory map ... 9

6.4 How To – Modify Linux/Bios VSDK Memory Map ... 9

6.4.1 Cache and MMU configurations .. 10

6.4.2 Modify default memory maps of VSDK ... 11

7. Revision History... 18

 Application Note www.ti.com

2 Memory Map Configuration of vision SDK

1. Introduction

The document discusses about the Vision SDK (VSDK) memory map implementation on TDA2xx,
TDA2Ex and TDA3xx. TI Vision SDK is a multi-processor multi-channel software development

platform, which enables the easy integration of new vision applications using different
heterogeneous CPUs of TI ADAS SoCs. VISION SDK allows different usecases for different

platforms and hence a generic memory map might not be sufficient for all users. This document
gives insight on different sections of the memory map that a user can change for their usecases.

It is expected that the user has gone through the below documentations to understand the

hardware and software architecture/partitioning.
 TDAxx SoC architecture (TRM)

 Vision SDK (Links & chain) Framework UserGuides
o VisionSDK_SW_Architecture_Details.pdf
o VisionSDK_SW_Architecture_Overview.pdf

 VSDK Developer guides
o VisionSDK_DevelopmentGuide.pdf
o VisionSDK_Linux_DevelopmentGuide.pdf

2. Memory Sections in VISION SDK Memory Map

VISION SDK has multiple memory map configurations supported based on the usage scenarios

and available total memory on various platforms. The total system memory is divided into
various sub-sections/processors. The broad classification of the sections is listed below:

Shared regions: SRs are different memory partitions that are shared across processors

 SR0: Shared Region 0. This shared region is used to allocate memory for data structures
needed for inter processor communication. This shared region is not cached on any of the
processor cores.

 SR1_FRAME_BUFFER_MEM: This memory region is used for allocating data buffers for
capturing video data, scaling, Alg processing & displaying video frames. Accessible &

cached from all cores.
 SR2_MEM: Used only with VSDK Linux reserving memory for CMEM allocations

(contiguous memory for Linux)
 SYSTEM_IPC_SHM_MEM: Non-Cached Memory section for keeping IPC link data structures

Log Mem:
 REMOTE_LOG_MEM: Non-Cached Memory section reserved and accessible from all

processor cores to dump the debug/profile print messages. Each processor core uses
VPS_printf() to dump the status/debug messages on this memory region. Remote Debug
Client running on master cores (IPU1-0 for Bios and A15 in case of Linux) reads this

memory region and prints the content on the (UART) console.
 LINK_STATS_MEM: Non Cached Memory section reserved and accessible from all

processor cores to dump the Link statistics
 TRACE_BUF: Remote proc logs, non-Cached, used only with VSDK Linux

DDR Code/data:
 CODE_MEM: Partit ion for code section of each core’s executable binary

 DATA_MEM: Partit ion for data section of each core’s executable binary
Internal memory:

 OCMC_RAM: Internal Memory section accessible from all processor cores

 L2_SRAM: DSP L2 Internal Memory section, only accessible from DSP core
Linux mem:

 Memory partitions given to Linux kernel memory manager

www.ti.com Application Note

3 Memory Map Configuration of vision SDK

Others:
 HDVPSS_DESC_MEM: Memory section used by BSP/STW. It is used by these driver for its

internal descriptor data structures.

3. VSDK Memory Map Table

Refer the .xs file under \vision_sdk\build\tdaxxx\ for the complete memory map configuration,

For example, \vision_sdk\build\tda2xx\mem_segment_definition_512mb_bios.xs defines the memory
map for TDA2x with 512MB DDR.
Also refer the generated map files under
\vision_sdk\binaries\tdaxxx_evm_xxx_all\vision_sdk\bin\tdaxxx-evm\
For ample, vision_sdk_ipu1_0_release.xem4.map,
Memory sections are arranged as below

 Name Origin Length Used Unused Attr
---------------------- -------- --------- -------- -------- ----
 L2_ROM 00000000 00004000 000005ec 00003a14 RWIX
 L2_RAM 20000000 00010000 00000000 00010000 RWIX
 OCMC_RAM1 40300000 00080000 00080000 00000000 RWIX

 OCMC_RAM2 40400000 00100000 00000000 00100000 RWIX
 OCMC_RAM3 40500000 00100000 00000000 00100000 RWIX
 DSP1_L2_SRAM 40800000 00048000 00000000 00048000 RWIX
 DSP2_L2_SRAM 41000000 00048000 00000000 00048000 RWIX
 NDK_MEM 85800000 00200000 00000000 00200000 RWIX
 SR1_FRAME_BUFFER_MEM 85a00000 0fa00000 0fa00000 00000000 RWIX

 DSP1_CODE_MEM 99000000 00200000 00000000 00200000 RWIX
 DSP1_DATA_MEM 99200000 01800000 00000000 01800000 RWIX
 IPU1_1_CODE_MEM 9d000000 00200000 00000000 00200000 RWIX
 IPU1_1_DATA_MEM 9d200000 00200000 00000000 00200000 RWIX
 IPU1_1_BSS_MEM 9d400000 00200000 00000000 00200000 RWIX
 IPU1_0_CODE_MEM 9d600000 00600000 004fa45d 00105ba3 RWIX

 IPU1_0_DATA_MEM 9dc00000 00400000 00000000 00400000 RWIX
 IPU1_0_BSS_MEM 9e000000 00d00000 00bf5cdc 0010a324 RWIX
 DSP2_CODE_MEM 9f000000 00200000 00000000 00200000 RWIX
 DSP2_DATA_MEM 9f200000 00a00000 00000000 00a00000 RWIX
 SR0 a0100000 00100000 00100000 00000000 RWIX
 REMOTE_LOG_MEM a0200000 00040000 00027890 00018770 RWIX

 LINK_STATS_MEM a0240000 00080000 00020d9c 0005f264 RWIX
 SYSTEM_IPC_SHM_MEM a02c0000 00040000 00035a60 0000a5a0 RWIX
 HDVPSS_DESC_MEM a0300000 00100000 000b07c0 0004f840 RWIX
 TRACE_BUF a0400000 00060000 00008000 00058000 RWIX
 EXC_DATA a0460000 00010000 00000000 00010000 RWIX
 PM_DATA a0470000 00080000 00000000 00080000 RWIX

 EVE1_VECS_MEM a2000000 00080000 00000000 00080000 RWIX
 EVE1_CODE_MEM a2080000 00200000 00000000 00200000 RWIX
 EVE1_DATA_MEM a2280000 00d80000 00000000 00d80000 RWIX
 EVE2_VECS_MEM a3000000 00080000 00000000 00080000 RWIX

 Application Note www.ti.com

4 Memory Map Configuration of vision SDK

 EVE2_CODE_MEM a3080000 00200000 00000000 00200000 RWIX
 EVE2_DATA_MEM a3280000 00d80000 00000000 00d80000 RWIX
 EVE3_VECS_MEM a4000000 00080000 00000000 00080000 RWIX
 EVE3_CODE_MEM a4080000 00200000 00000000 00200000 RWIX

 EVE3_DATA_MEM a4280000 00d80000 00000000 00d80000 RWIX
 EVE4_VECS_MEM a5000000 00080000 00000000 00080000 RWIX
 EVE4_CODE_MEM a5080000 00200000 00000000 00200000 RWIX
 EVE4_DATA_MEM a5280000 00d80000 00000000 00d80000 RWIX

Refer vision_sdk\include\link_api\systemLink_common_if.h for the available Memory Heaps,
Here is a brief list; detailed description is in systemLink_common_if.h file

SYSTEM_HEAPID_DDR_NON_CACHED_SR0: Heap ID of heap in DDR, This is non-cached
memory

SYSTEM_HEAPID_DDR_CACHED_SR1: Heap ID of heap in DDR, This is cached memory
SYSTEM_HEAPID_OCMC_SR2: Heap ID of heap in OCMC

SYSTEM_HEAPID_RESERVED1: Heap ID of heap in DDR, This is cached memory
SYSTEM_HEAPID_RESERVED2: Heap ID of heap in L2 Memory, Internal memory

4. Software and Hardware Constraints to Consider For Deciding Memory
Map

4.1 Hardware Constraints

 AMMU in IPU1/2 handles large memory segments of size 512MB/32MB only and there can
be 4 such segments.

 For EVE we have only 32 TLB entries to map the memory, one TLB can map a max of
16MB

4.2 Software Constraints

 For VSDK Linux, the first 64MB from 0x8000 0000 is reserved for Linux Kernel

 Frame Buffer Shared Region (SR1) is mapped on A15 Linux. But if user wants Linux side

app/links to allocate memory/buffers from any other heap, then user need to mmap the
physical address in the application code to map those memory/buffers on A15.

Important things to pay attention to, while porting the map file are:
 DDR, OCMC & DSP/EVE SRAM sizes

 Core specific code/data/vecs sizes
 Size of the shared frame buffer pool

DDR is divided into 2 sections: cached and non-cached.
 The cached part is used mainly for frame buffer (SR1) and core specific code/data

sections.
 The non-cached part is used mainly for Vision SDK log buffers, IPC shared data structure

(SR0) HDVPSS descriptors etc.

5. Memory Allocation
This section describes the different methods by which memory is allocated in the Vision SDK
framework. The Vision SDK framework also supports static memory allocation.

www.ti.com Application Note

5 Memory Map Configuration of vision SDK

Memory in Vision SDK framework is allocated for the following purposes

Purpose Region in memory used for
allocation

Type of allocation
(Dynamic, Static)

External Buffer memory for
storing algorithms results and/or
HW engine results

SR1_FRAME_BUFFER_MEM Dynamic (heap
based) and/or Static

Internal Buffer memory for
storing algorithms results and/or

HW engine results

OCMC_RAM Dynamic (heap
based) and/or Static

Notify Shared region – ONLY

used during Notify setup
(IPC_Start()), not used later

SR0 Dynamic (heap

based)

Temporary scratch memory in
internal memory for algorithms
results

DMEM in EVE
L2SRAM in DSP

Dynamic (non-heap,
linear allocation)

Shared memory for remote core
print logs

REMOTE_LOG_MEM Static

Shared memory for link statistics LINK_STATS_MEM Static

Shared memory for inter
processor communication

SYSTEM_IPC_SHM_MEM Static

VPDMA descriptor memory for
VIP, VPE HW engines

HDVPSS_DESC_MEM Static

CPU specific memory for BIOS
objects like semaphores, tasks,
interrupts, clocks

CPU specific data section Static

The subsequent sections provide more details on each type of memory allocation
In the below description,
<soc> = tda2xx, tda2ex, tda3xx, tda2x-entry

<ddr_size> = 128mb, 256mb, 512mb, 1024mb
<os_type> = Bios, Linux

5.1 External Buffer Memory Allocation

Location where memory map is specified

 The memory region used for external buffer memory allocation is specified via the below
file

o File: vision_sdk\build\<soc>\mem_segment_definition_<ddr_size>_<os_type>.xs

o Variable SR1_FRAME_BUFFER_SIZE

 The heap from which memory is allocated is defined in file

o FILE: vision_sdk\src\utils_common\src\utils_mem_ipu1_0.c

 #pragma DATA_SECTION(gUtils_memHeapDDR, ".bss:heapMemDDR")

o FILE: vision_sdk\src\utils_common\include\utils_mem_cfg.h

 #define UTILS_MEM_HEAP_DDR_CACHED_SIZE

o This heap is placed in “SR1_FRAME_BUFFER” section via the IPU1-0 cfg file

 FILE: vision_sdk\src\main_app\<soc>\ipu1_0\Ipu1_0.cfg

 Application Note www.ti.com

6 Memory Map Configuration of vision SDK

 Program.sectMap[".bss:heapMemDDR"] =
"SR1_FRAME_BUFFER_MEM";

 The heap is defined only on IPU1-0 CPU; all other CPUs sends message to IPU1-0 to
allocate memory. This is done internally inside the Utils_memAlloc APIs.

API to allocate and free memory

 Below APIs are used to allocate and free memory

o FILE: vision_sdk\src\utils_common\include\utils_mem.h

o API:

 Utils_memAlloc() with heapId as SYSTEM_HEAPID_DDR_CACHED_SR1

 Utils_memFree() with heapId as SYSTEM_HEAPID_DDR_CACHED_SR1

 Utils_memGetHeapStats() with heapId as

SYSTEM_HEAPID_DDR_CACHED_SR1

 Other APIs from this file are not recommended to be used by users and are used internally

by the framework

Using static memory allocation

 When a system wants to use static memory allocation and avoid the heap, it should set
the size of this heap segment as 0 by modifying the #define in utils_mem_cfg.h file

 Define static memory objects (arrays, data structures) in IPU1-0 use-case file. Make sure
the objects are placed in data section “.bss:heapMemDDR" via #pragma

 The links which support static memory allocation allow passing of memory region pointers
from use-case file via System_LinkMemAllocInfo data structure

 When creating a link from a use-case, user should now pass memory pointer allocated
statically from use-case file. This prevents the link for allocating memory internally. Thus

dynamic memory allocation is avoided

o See capture link “captureLink.h” for example

o See use-case “vision_sdk\examples\tda2xx\src\usecases\vip_single_cam_view” for
sample usage of passing user memory pointer to a link

o NOTE: In the use-case the memory allocation is still done using Utils_memAlloc
APIs. In a fully static memory system, this API won’t be used by the user.

 The links assert if the memory segment size passed to it is smaller than what is needed.
In this case, it also reports the size required by the link.

 When creating user specific AlgPlugins same mechanism should be used, i.e algorithm
plugin should take memory pointer passed from use-case file rather than allocating
memory internally. See “Capture” link for example

5.2 Internal Buffer Memory Allocation

Location where memory is specified

 The memory region used for buffer memory allocation is specified via the below file

o File: vision_sdk\build\<soc>\mem_segment_definition_<ddr_size>_<os_type>.xs

o Variable OCMC1_SIZE

 The heap from which memory is allocated is defined in file

o FILE: vision_sdk\src\utils_common\src\utils_mem_ipu1_0.c

www.ti.com Application Note

7 Memory Map Configuration of vision SDK

 #pragma DATA_SECTION(gUtils_memHeapOCMC, ".bss:heapMemOCMC")

o FILE: vision_sdk\src\utils_common\include\utils_mem_cfg.h

 #define UTILS_MEM_HEAP_OCMC_SIZE

o This heap is placed in “OCMC” section via the IPU1-0 cfg file

 FILE: vision_sdk\src\main_app\<soc>\ipu1_0\Ipu1_0.cfg

 Program.sectMap[".bss:heapMemOCMC"] = "OCMC_RAM";

 The heap is defined only on IPU1-0 CPU; all other CPUs send a command to IPU1-0 to
allocate memory. This is done internally inside the Utils_memAlloc APIs.

API to allocate and free memory

 Below APIs are used to allocate and free memory

o FILE: vision_sdk\src\utils_common\include\utils_mem.h

o API:

 Utils_memAlloc() with heapId as SYSTEM_HEAPID_OCMC_SR2

 Utils_memFree() with heapId as SYSTEM_HEAPID_OCMC_SR2

 Utils_memGetHeapStats() with heapId as SYSTEM_HEAPID_OCMC_SR2

 Other APIs from this file are not recommended to be used by users and are used internally

by the framework

5.3 Static Memory sections Allocation

 The memory region used for these sections are specified via the below file

o File: vision_sdk\build\<soc>\mem_segment_definition_<ddr_size>_<os_type>.xs

o Variable “REMOTE_LOG_SIZE” for Remote Log memory

o Variable “SYSTEM_IPC_SHM_SIZE” for inter-processor communication

o Variable “LINK_STATS_SIZE” for Link Statistics

o Variable “HDVPSS_DESC_SIZE” for VPDMA descriptors

6. Memory map of the application
Memory map of the entire usecase is governed by following artifacts.

1. DDR_MEM variable in Rules.make (older versions) or

\vision_sdk\configs\tdaxxx_evm_<OS>_all\cfg.mk (for VSDK version 2.11 and above)

List of VSDK files need to be reviewed & modified

1. /vision_sdk/build/tdaxxx/mem_segment_definition_<DDR_MEM>_<OS>.xs
2. /vision_sdk/src/utils_common/include/utils_mem_cfg.h
3. /vision_sdk/src\main_app\tda2xx\ipu1_0 \ Ammu1.cfg or Ammu1_linux.cfg (if you

modify the IPU1 memory map)
4. /vision_sdk/src\main_app\tda2xx\ipu2\ Ammu2.cfg or Ammu2_linux.cfg (if you

modify the IPU2 memory map)

5. /vision_sdk/src/main_app/tda2xx/eve_common/tlb_config_eve_common.c (if you
modify any EVE1-4 memory map)

6. /vision_sdk/include/link_api/system_vring_config.h (only for Linux/HLOS build)
7. /vision_sdk/hlos/src/osa/include/osa_mem_map.h (only for Linux/HLOS build)

 Application Note www.ti.com

8 Memory Map Configuration of vision SDK

8. /vision_sdk/src/links_common/system/system_rsc_table_ipu.h (only for
Linux/HLOS build, if resource table modification required)

9. /vision_sdk/src/links_common/system/system_rsc_table_dsp.h (only for
Linux/HLOS build, if resource table modification required)

List of Linux Kernel files need to be modified

10. /ti_components/os_tools/kernel/omap/arch/arm/boot/dts/dra7-evm-infoadas.dts
(For TDA2x)

11. /ti_components/os_tools/kernel/omap/arch/arm/boot/dts/dra7-evm.dts (For TDA2x)
12. /ti_components/os_tools/kernel/omap/arch/arm/boot/dts/dra72-evm-infoadas.dts

(For TDA2Ex)
13. /ti_components/os_tools/kernel/omap/arch/arm/boot/dts/dra72-evm.dts (For

TDA2Ex)

#1 – DDR_MEM is an environment variable that tells build system which .xs is to be picked up

for the final executable.

#2 – The .xs file overrides default implementation for the platform defined by xdc.runtime.

This file can be modified to increase/decrease size of a section or add/remove sections from
the memory map. For Linux/HLOS, Linux enables L2MMU for each core, so all the addresses

mentioned in the .xs file are slave virtual addresses.

#3 – The .dts file is used to reserve memory from Linux, this is a platform specific file. This

ensures Linux and bios side don’t overwrite into each other. Typically the bios side needs
some memory sections and rest all can be given to Linux. Essentially this creates a few holes
in Linux memory that is later mapped to user space at the application startup time.

6.1 Adding a new section to memory map

While adding a new section in the memory map of ipu/dsp/eve/A15, following things needs to

be taken care of:

1. Add a new section in appropriate .xs file by defining NEW_SECTION_SIZE,

NEW_SECTION_ADDR & NEW_SECTION_MEM (just follow the convention used in .xs file)

2. Its advised to remove or reduce some unwanted sections to free-up the memory required

for the new section

3. Make sure the total memory should not exceeds the total available physical memory

4. Make sure the new section doesn’t overlap with any other sections.

5. If you add any new memory section and, the data/code corresponding to that can be
placed into the section by adding Program.sectMap in the appropriate
\vision_sdk\src\main_app\tdaxxx\<cpu>\<cpu>.cfg file.

6. In case of Linux, it should lie within the hole of memory declared in .dts file in kernel
using /memreserve

7. If needed, /memreserve can be used to increase the size of the hole accommodate new
section’s memory requirement.

8. If this newly added section has to be mapped into L2MMU of ipu/dsp by Linux and hence it

needs to be added in the resource table i.e. in system_rsc_table_ipu.h or
system_rsc_table_dsp.h accordingly.

9. If this section is going to be accessed from Linux user space or kernel space, this mapping
needs to be taken care by the application or through OSA_mem module in vision_sdk

www.ti.com Application Note

9 Memory Map Configuration of vision SDK

10. If you are changing base addresses and sizes for IPU’s, DSP’s carve-out sections
(code/data) and if you plan to change CMA address in linux kernel (.dts) please ensure

you also make this changes to vision_sdk\include\system_vring_config.h.

11. Refer section “6.4: How To – Modify Linux/Bios VSDK Memory Map” for more details

6.2 Changing size of a section in the memory map

While changing the size of the section in the memory map from ipu/dsp/eve/A15, following

things needs to be taken care of:

1. Do changes in respective .xs file for the section sizes

2. Its advised to reduce some unwanted sections to free-up the memory required for new
size (increase)

3. Make sure the total memory should not exceeds the total available physical memory

4. Make sure the new section doesn’t overlap with any other sections.

5. In case of Linux, it should lie within the hole of memory declared in .dts file in kernel

using /memreserve

6. If needed, /memreserve can be used to increase the size of the hole accommodate new

section’s memory requirement.

7. As you are modifying existing section, no need to change resource table mappings, the
updated value will be picked up in resource table in the build process.

8. If you are changing base addresses and sizes for IPU’s, DSP’s carve-out sections

(code/data) and if you plan to change CMA address in linux kernel (.dts) please ensure
you also make this changes to vision_sdk\include\system_vring_config.h.

9. Refer section “6.4: How To – Modify Linux/Bios VSDK Memory Map” for more details

6.3 How To - Add a new memory map

In general, if you are planning to have your own memory map for the application, you can
follow these steps

1. Evaluate memory requirements of the sections e.g. (Is 256 MB SR1 sufficient or you need
more or less?)

2. Add appropriate .xs file under $INSTALL_DIR/vision_sdk/build/tdaxxx/, for example
mem_segment_definit ion_512mb.xs

2. Modify DDR_MEM_XXXX, for example DDR_MEM_512M variable in Rules.make (older
versions) or \vision_sdk\configs\tdaxxx_evm_<OS>_all\cfg.mk (for VSDK version 2.11

and above)

3. Modify appropriate platform ISI build files to pick the correct memory map (.xs) file, for

example, refer below files for TDA3x,

a. \vision_sdk\build\tda3xx\config_arp32.bld

b. \vision_sdk\build\tda3xx\config_c66.bld

c. \vision_sdk\build\tda3xx\config_m4.bld

d. Etc.

4. Now follow the section “6.4: How To – Modify Linux/Bios VSDK Memory Map” for more
details and how to modify all necessary VSDK and Linux kernel files

6.4 How To – Modify Linux/Bios VSDK Memory Map

The memory map of complete VISION SDK is controlled in

 Application Note www.ti.com

10 Memory Map Configuration of vision SDK

\vision_sdk\build\tdaxxx\config_<ISI>.bld

The mem_segment_definition (for example - mem_segment_definition_1024mb_linux.xs) file
is included in this build configuration file, size of each sections are reconfigured in .xs file. For

example, DSP code size and DSP data size section can be changed by modifying the following
entries.
DSP1_CODE_SIZE = 3*MB;

DSP1_DATA_SIZE = 13*MB;

The base addresses of each section are incremented based on the base address of previous
section and the size of the previous section. For example, if sections are created in the

numerical order, base address of Section 2 is calculated as below:
<Start Addr of Sect 2> = <Start Addr of Sec 1> + <Size of Sect 1>

To modify the memory map, user needs to consider the following:

 Refer to the hardware limitations and software limitations in section 4:
o We assume a one-to-one mapping of AMMU virtual address to physical address.

 The other sections like “Remote Debug”, “HDVPSS Shared Memory” etc. are read
directly from the build configuration file

 Changes in the Linux memory size in build configuration file has to be reflected in the
boot arguments of the Linux kernel using “mem=<SIZE>M” entry.

 Consider the overall buffer requirement for the specific usecase before modifying the

Frame Buffer or Meta data buffer or BitsBuffer section sizes.

The current default memory maps of VSDK (as per 2.12 releases) as below
 TDA2xx Bios – 512 MB

 TDA2xx Linux – 1024 MB
 TDA2Ex Bios – 512 MB

 TDA2Ex Linux – 1024 MB
 TDA3xx Bios – 512 MB
 TDA3xx Bios – 128 MB

6.4.1 Cache and MMU configurations
List of VSDK files sets the Cache and MMU configurations

<1> DSP

DSP L1 & L2 Cache configuration is in
\vision_sdk\src\main_app\tdaxxx\cfg\DSP_common.cfg,

Below the default cache size setting for L1P, L1D and L2 as 32K
var Cache = xdc.useModule('ti.sysbios.family.c66.Cache');
Cache.initSize.l1pSize = Cache.L1Size_32K;

Cache.initSize.l1dSize = Cache.L1Size_32K;
Cache.initSize.l2Size = Cache.L2Size_32K;

Cache ON/OFF setting of DSP also in

\vision_sdk\src\main_app\tdaXxx\cfg\DSP_common.cfg
/* Set cache sections */
/* configure MARs, by default cache is enabled for the entire memory region */
for (var i = 0; i < Program.cpu.memoryMap.length; i++)
{

 memSegment = Program.cpu.memoryMap[i];
 Cache.setMarMeta(memSegment.base, memSegment.len, Cache.Mar_ENABLE);

}

www.ti.com Application Note

11 Memory Map Configuration of vision SDK

/* set non-cached sections */

for (var i = 0; i < Program.cpu.memoryMap.length; i++)
{

 memSegment = Program.cpu.memoryMap[i];

 if ((memSegment.name == "SR0") ||
 (memSegment.name == "REMOTE_LOG_MEM") ||

 (memSegment.name == "LINK_STATS_MEM") ||
 (memSegment.name == "SYSTEM_IPC_SHM_MEM") ||
 (memSegment.name == "OPENVX_SHM_MEM"))

 {
 Cache.setMarMeta(memSegment.base, memSegment.len, Cache.Mar_DISABLE);
 }
}

If you plan to add any new non-cached DSP section, then add the same section in above
code snippet in DSP_common.cfg.

<2> IPU
Refer below files which set the AMMU of IPU to configure MMU and Cache settings
\vision_sdk\src\main_app\tdaXxx\ipu1_0\Ammu1_bios.cfg or Ammu1_linux.cfg

\vision_sdk\src\main_app\tdaXxx\ipu2\Ammu2_bios.cfg or Ammu2_linux.cfg
Map program code/data & other cached memory into ammu (cacheable) by

AMMU.largePages[1]
Map SR_0 & other non-cached data memory into ammu (non-cacheable) by

AMMU.largePages[2]

Note: Only for TDA3x, IPU1 AMMU setting is done in SBL.
Refer \vision_sdk\src\main_app\tda3xx\ipu1_0\Ammu1_bios.cfg,
AMMU.configureAmmu = false;

If configureAmmu is set to false, then AMMU setting is done in SBL.

<3> EVE

Refer \vision_sdk\src\main_app\tda2xx\eve_common\tlb_config_eve_common.c for EVE
memory mapping by programming the TLB registers, each TLB can map a max of 16MB

contiguous region and 16MB aligned.
const UInt32 tlbMapping[EVE_TLB_NUM_ENTRIES*2U] ={….}

<4> A15 (Bios)

If A15 running Bios, then \vision_sdk\src\main_app\tda2xx\a15_0\ a15_0.cfg does the
MMU & cache configurations,

Mmu.setSecondLevelDescMeta();

6.4.2 Modify default memory maps of VSDK
Please revisit & modify the list of below files (as required)

List of VSDK files
<1>
/vision_sdk/build/tdaxxx/mem_segment_definition_<DDR_SIZE>_<OS>.xs.

A single file that configures the entire memory map of all cores in the SoC, and the major
file to be modified if you want to make changes in VSDK memory map. This file defines all

 Application Note www.ti.com

12 Memory Map Configuration of vision SDK

the memory sections for IPU, DSP, EVE, A15 and other heaps such as SR1, SR0 etc. Below
a sample section,

DSP1_START_ADDR = 0x99000000;

DSP1_CODE_SIZE = 2*MB;
DSP1_DATA_SIZE = 24*MB;

………………………………………………………….
………………………………………………………….

DSP1_CODE_ADDR = DSP1_START_ADDR;
DSP1_DATA_ADDR = DSP1_CODE_ADDR + DSP1_CODE_SIZE;

………………………………………………………….
………………………………………………………….

function getMemSegmentDefinition_external(core)

{
 memory[index++] = ["DSP1_CODE_MEM", {

 comment : "DSP1_CODE_MEM",
 name : "DSP1_CODE_MEM",

 base : DSP1_CODE_ADDR,
 len : DSP1_CODE_SIZE
 }];

………………………………………………………….

………………………………………………………….
}

If you add any new memory section and, the data/code corresponding to that can be

placed into the section by adding Program.sectMap[] in the appropriate
\vision_sdk\src\main_app\tdaxxx\<cpu>\<cpu>.cfg file.
For example, \vision_sdk\src\main_app\tda2xx\dsp1\Dsp1.cfg is the file for DSP1 of

TDA2x, and below code place “bss:extMemNonCache:ipcShm” into the memory section
“SYSTEM_IPC_SHM_MEM”

Program.sectMap[".bss:extMemNonCache:ipcShm"] = "SYSTEM_IPC_SHM_MEM";

Program.sectMap[".bss:extMemNonCache:linkStats"] = "LINK_STATS_MEM";

Same apply for all cores like IPU1-0, IPU1-1, IPU2, A15, DSP1-2 and EVE1-4 of TDA2x,
TDA2Ex and TDA3x.

The .xs file to look at depends on SoC, A15 OS and DDR memory config selected; here is
a list of default memory map of VSDK 2.12.0.0

M
o
d
i

f
y

Modify “start address”, “size” or even add/remove a memory section to change the
memory map as per your requirement.

SoC A15 OS DDR config .xs file
TDA2XX_BUILD Bios TDA2XX_512MB_DDR vision_sdk\build\tda2xx\mem_segment_definition_512mb_bios.xs
TDA2XX_BUILD Linux TDA2XX_1024MB_DDR vision_sdk\build\tda2xx\mem_segment_definition_1024mb_linux.xs
TDA3XX_BUILD NA TDA3XX_128MB_DDR vision_sdk\build\tda3xx\mem_segment_definition_128mb.xs
TDA3XX_BUILD NA TDA3XX_512MB_DDR vision_sdk\build\tda3xx\mem_segment_definition_512mb.xs
TDA2EX_BUILD Bios TDA2EX_512MB_DDR vision_sdk\build\tda2ex\mem_segment_definition_512mb_bios.xs
TDA2EX_BUILD Linux TDA2EX_1024MB_DDR vision_sdk\build\tda2ex\mem_segment_definition_1024mb_linux.xs

www.ti.com Application Note

13 Memory Map Configuration of vision SDK

<2>

\vision_sdk\src\utils_common\include\utils_mem_cfg.h

This file defines the size of major memory heaps, and these sizes need to be in sync with
above .xs file. The memory allocation utility/API refers this file for the heap size. Any

modification of these heap size to be updated in both utils_mem_cfg.h &
mem_segment_definition_<DDR_SIZE>_<OS>.xs file.

#define UTILS_MEM_HEAP_L2_SIZE (224*1024) – DSP internal memory (SRAM)
#define UTILS_MEM_HEAP_L2_SIZE (24*1024) - EVE internal memory (SRAM)

#define UTILS_MEM_HEAP_OCMC_SIZE (512*1024) – Shared OCMC internal
memory
#define UTILS_MEM_HEAP_DDR_CACHED_SIZE (256*1024*1024) – Shared cached
DDR heap memory.

<3>

\vision_sdk\src\main_app\tda2xx\ipu1_0\Ammu1_bios.cfg or Ammu1_linux.cfg (if
you modify the IPU1 memory map)

\vision_sdk\src\main_app\tda2xx\ipu2\Ammu2_bios.cfg or Ammu2_linux.cfg (if you
modify the IPU2 memory map)
This file set IPU subsystem (core 0 and core 1) AMMU and Cache configurations. IPU can

access only the memory sections mapped via AMMU. A sinle AMMU sets the memory map
of both cores (core 0 & core 1) of an IPU subsystem.

function init()

{
 ………………………………………………………….

 ………………………………………………………….

Map program code/data & other cached memory into ammu (cacheable) by

AMMU.largePages[1]
Map SR_0 & other non-cached data memory into ammu (non-cacheable) by

AMMU.largePages[2]
 ………………………………………………………….

 ………………………………………………………….
}

<4>

/vision_sdk/src/main_app/tda2xx/eve_common/tlb_config_eve_common.c (if you
modify any EVE1-4 memory map)
This file implements common MMU configuration for all EVE as per Vision SDK

requirements
There are only 32 TLB entries in EVE, Each TBL entry can maps a max of 16MB, and need

16MB alignment,

const UInt32 tlbMapping[EVE_TLB_NUM_ENTRIES*2U] =
{

 ………………………………………………………….
 ………………………………………………………….
 0x84000000U, 0x84000000U, /* 08 - For SR1 */

 0x85000000U, 0x85000000U, /* 09 - For SR1 */
 0x86000000U, 0x86000000U, /* 10 - For SR1 */

 0x87000000U, 0x87000000U, /* 11 - For SR1 */
 ………………………………………………………….

 Application Note www.ti.com

14 Memory Map Configuration of vision SDK

 ………………………………………………………….
}

eveCommonMmuConfig();

<5>
/vision_sdk/include/link_api/system_vring_config.h (used only in A15 Linux Build)

Vring virtual addresses (For Start address) of IPU & DSP are used by IPC, if it is changed

in .XS file, same need to be updated in this system_vring_config.h also.

#ifdef BUILD_M4_0

#define IPU_PHYS_MEM_IPC_VRING 0x9d000000
#endif

#ifdef BUILD_DSP_1

#define DSP_PHYS_MEM_IPC_VRING 0x99000000
#endif

#ifdef BUILD_DSP_2

#define DSP_PHYS_MEM_IPC_VRING 0x9f000000
#endif

#ifdef BUILD_M4_2
#define IPU_PHYS_MEM_IPC_VRING 0x95800000

#endif

<6>
/vision_sdk/<hlos>/src/osa/include/osa_mem_map.h (used only in A15 Linux Build)

This is an auto generated file from [gen_system_mem_map.xs], please check and confirm
the entries in osa_mem_map.h is matching with .XS file or the MAP file

#define SR0_ADDR 0xa0100000

#define SR0_SIZE 0x100000

#define SYSTEM_IPC_SHM_MEM_ADDR 0xa02c0000
#define SYSTEM_IPC_SHM_MEM_SIZE 0x80000

#define REMOTE_LOG_MEM_ADDR 0xa0200000

#define REMOTE_LOG_MEM_SIZE 0x40000

#define SR1_FRAME_BUFFER_MEM_ADDR 0x84203000

#define SR1_FRAME_BUFFER_MEM_SIZE 0xfa00000

<7>
If a newly added section has to be mapped into L2MMU of ipu/dsp by Linux and hence it
needs to be added in the resource table i.e. in system_rsc_table_ipu.h or
system_rsc_table_dsp.h accordingly.

/vision_sdk/src/links_common/system/system_rsc_table_ipu.h (modify if required,
used only in A15 Linux Build)

struct my_resource_table {…}
struct my_resource_table ti_ipc_remoteproc_ResourceTable = {…}

www.ti.com Application Note

15 Memory Map Configuration of vision SDK

system_rsc_table_ipu.h define the resource table entries for all IPU cores. This will be

incorporated into corresponding base images, and used by the remoteproc on the host-
side to allocated/reserve resources.

/vision_sdk/src/links_common/system/system_rsc_table_dsp.h (modify if required,
used only in A15 Linux Build)

struct my_resource_table {…}
struct my_resource_table ti_ipc_remoteproc_ResourceTable = {…}

system_rsc_table_dsp.h define the resource table entries for all DSP cores. This will be

incorporated into corresponding base images, and used by the remoteproc on the host-
side to allocated/reserve resources.

List of Linux Kernel files

<1>

/ti_components/os_tools/kernel/omap/arch/arm/boot/dts/dra7-evm-infoadas.dts (for
TDA2x)

Modify the start address of IPU1, IPU2, DSP1, DSP2 or CMEM, if any of this is changed in
the memory map,

/* Update the CMA regions for Vision SDK binaries */
&ipu2_cma_pool {

 reg = <0x0 0x94000000 0x0 0x5000000>;
};

&dsp1_cma_pool {

 reg = <0x0 0x99000000 0x0 0x4000000>;
};

&ipu1_cma_pool {
 reg = <0x0 0x9d000000 0x0 0x2000000>;

};

&dsp2_cma_pool {
 reg = <0x0 0x9f000000 0x0 0x1000000>;

};

This file reserves the memory for SR1, SR0, CMEM and EVE data/code memory sections
and the size. If any changes in the memory map for any of these sections, then update

the below code,
&reserved_mem {

 cmem_pool: cmem@A8000000 {
 compatible = "shared-dma-pool";

 reg = <0x0 0xA8000000 0x0 0x2000000>;
 no-map;

 status = "okay";
 };

 vsdk_sr1_mem: vsdk_sr1_mem@84000000 {
 compatible = "shared-dma-pool";

 reg = <0x0 0x84000000 0x0 0x10000000>;

 Application Note www.ti.com

16 Memory Map Configuration of vision SDK

 status = "okay";
 };

 vsdk_sr0_mem: vsdk_sr0_mem@A0000000 {

 compatible = "shared-dma-pool";
 reg = <0x0 0xA0000000 0x0 0x2000000>;

 status = "okay";
 };

 vsdk_eve_mem: vsdk_eve_mem@A2000000 {
 compatible = "shared-dma-pool";

 reg = <0x0 0xA2000000 0x0 0x4000000>;
 status = "okay";
 };
};

<2>

/ti_components/os_tools/kernel/omap/arch/arm/boot/dts/dra7-evm.dts (for TDA2x)

This file reserves the memory for IPU, DSP data/code memory sections and the size. If
any changes in the memory map for any of these sections, then update the below code,

 reserved_mem: reserved-memory {
 #address-cells = <2>;

 #size-cells = <2>;
 ranges;

 ipu2_cma_pool: ipu2_cma@95800000 {

 compatible = "shared-dma-pool";
 reg = <0x0 0x95800000 0x0 0x3800000>;
 reusable;

 status = "okay";
 };

 dsp1_cma_pool: dsp1_cma@99000000 {

 compatible = "shared-dma-pool";
 reg = <0x0 0x99000000 0x0 0x4000000>;

 reusable;
 status = "okay";

 };

 ipu1_cma_pool: ipu1_cma@9d000000 {

 compatible = "shared-dma-pool";
 reg = <0x0 0x9d000000 0x0 0x2000000>;

 reusable;
 status = "okay";
 };

 dsp2_cma_pool: dsp2_cma@9f000000 {
 compatible = "shared-dma-pool";
 reg = <0x0 0x9f000000 0x0 0x800000>;

 reusable;
 status = "okay";

 };

www.ti.com Application Note

17 Memory Map Configuration of vision SDK

 };

<3>
/ti_components/os_tools/kernel/omap/arch/arm/boot/dts/dra72-evm-infoadas.dts (for

TDA2Ex)
Modify the start address of IPU1, IPU2, DSP1 or CMEM, if any of this is changed in the

memory map,

/* Update the CMA regions for Vision SDK binaries */
&ipu2_cma_pool {
 reg = <0x0 0x94000000 0x0 0x5000000>;

};

&dsp1_cma_pool {
 reg = <0x0 0x99000000 0x0 0x4000000>;

};

&ipu1_cma_pool {
 reg = <0x0 0x9d000000 0x0 0x2000000>;

};

This file reserves the memory for SR1, SR0 and CMEM sections and the size. If any

changes in the memory map for any of these sections, then update the below code,
&reserved_mem {

 cmem_pool: cmem@A6000000 {
 compatible = "shared-dma-pool";

 reg = <0x0 0xA8000000 0x0 0x2000000>;
 no-map;

 status = "okay";
 };

 vsdk_sr1_mem: vsdk_sr1_mem@84000000 {
 compatible = "shared-dma-pool";

 reg = <0x0 0x84000000 0x0 0x10000000>;
 status = "okay";

 };

 vsdk_sr0_mem: vsdk_sr0_mem@A0000000 {
 compatible = "shared-dma-pool";

 reg = <0x0 0xA0000000 0x0 0x2000000>;
 status = "okay";
 };

};

<4>
/ti_components/os_tools/kernel/omap/arch/arm/boot/dts/dra72-evm.dts (for TDA2Ex)

This file reserves the memory for IPU, DSP data/code memory sections and the size. If

any changes in the memory map for any of these sections, then update the below code,

 reserved_mem: reserved-memory {

 #address-cells = <2>;
 #size-cells = <2>;

 ranges;

 Application Note www.ti.com

18 Memory Map Configuration of vision SDK

 ipu2_cma_pool: ipu2_cma@95800000 {
 compatible = "shared-dma-pool";

 reg = <0x0 0x95800000 0x0 0x3800000>;
 reusable;

 status = "okay";
 };

 dsp1_cma_pool: dsp1_cma@99000000 {

 compatible = "shared-dma-pool";
 reg = <0x0 0x99000000 0x0 0x4000000>;
 reusable;

 status = "okay";
 };

 ipu1_cma_pool: ipu1_cma@9d000000 {

 compatible = "shared-dma-pool";
 reg = <0x0 0x9d000000 0x0 0x2000000>;

 reusable;
 status = "okay";

 };
 };

Clean and Rebuild Kernel & VSDK.

Note1: If SR1 or IPU1-2 memory needs to be increased to very high value, then Move
DSP1-2 or EVE1-4 out of 0xA000 0000 address space. This will avoid the need of any IPU

AMMU reconfiguration.

Note2: To build SBL, Build appropriate secondary boot loader as per your memory
configuration. Refer file \vision_sdk\build\makerules\build_sbl.mk for all valid
configurations. For examples, EMIFMODE = DUAL_EMIF_1GB_512MB (default) or

DUAL_EMIF_2X512MB or SINGLE_EMIF_256MB

Note3: In case of A15 Linux, You also need to change DMM configuration in Uboot to set
the DDR configuration, i.e., the EMIF and LISA map configuration as per custom board or

memory map.

7. Revision History

Version # Date Author Name Revision History

0.1 26/12/2016 Shiju S First draft

	1. Introduction
	2. Memory Sections in VISION SDK Memory Map
	3. VSDK Memory Map Table
	4. Software and Hardware Constraints to Consider For Deciding Memory Map
	2
	3
	4
	4.1 Hardware Constraints
	4.2 Software Constraints

	5. Memory Allocation
	5.1 External Buffer Memory Allocation
	5.2 Internal Buffer Memory Allocation
	5.3 Static Memory sections Allocation

	6. Memory map of the application
	6.1 Adding a new section to memory map
	6.2 Changing size of a section in the memory map
	6.3 How To - Add a new memory map
	6.4 How To – Modify Linux/Bios VSDK Memory Map
	6
	6.4.1 Cache and MMU configurations
	6.4.2 Modify default memory maps of VSDK

	7. Revision History

