
LCD Controller

Author: Texas Instruments®, Sitara™ ARM® Processors

Sept 2012

LAB: None

LCDC Features

• LIDD Character/Graphic Based Panels with internal frame buffer

– Supports 2 Panels (CS0 and CS1) with independent and programmable bus timing

parameters when in asynchronous Hitachi, Motorola and Intel modes

– Supports 1 Panel (CS0) with programmable bus timing parameters when in

synchronous Motorola and Intel modes

– Can be used as a generic 16 bit address/data interleaved MPU bus master with no

external stall

• Passive Matrix LCD Panels

2

• Passive Matrix LCD Panels

– Panel types including STN, DSTN, and C-DSTN

– AC Bias Control

• Active Matrix LCD Panels

– Panel types including TN TFT

• OLED Panels

– Passive Matrix (PM OLED) with frame buffer and controller IC inside the Panel

– Active Matrix (AM OLED)

LIDD = LCD Interface display Driver

High Level Block Diagram

LCD Raster Path

Palette

RAM

Grayscaler Serializer

Passive Matrix

Active Matrix

DMA

OCP

Master

Port

l3_clk domain

3

LCD Character Display Path

Passive Matrix

LIDD

CPU

Host

Port

Config

Regs

OCP

Slave

Port

lcd_clk domain

l4_clk domain
Clock/Reset Controller

4

RASTER MODE

Raster - Features

• Single panel support

• Programmable pixel display modes (1, 2, 4, 8, 12, 16, and 24 bit)

• Pallet RAM support for 1, 2, 4, and 8-bit pixel modes

• Passive Matrix Panel Support

• Active Matrix Panel Support

5

• Active Matrix Panel Support

• 24-bit Packed data mode

• 126MHz maximum pixel clock

Raster – Pixel CLK, Frame Rate, & Resolution

Number of PCLKs Per Line = PPL + HSW + HFP + HBP

Number of PCLKs Per Frame = (LPP + VSW + VFP + VBP) * PCLKs Per Line

Refresh/Frame Rate = PCLK Freq / PCLKs Per Frame

6

PCLK = Pixel Clock

PPL = Pixels Per Line (X resolution of LCD)

LPP = Lines Per Panel (Y resolution of LCD)

HSW = Horizontal Sync Width

HFP = Horizontal Front Porch

HBP = Horizontal Back Porch

VSW = Vertical Sync Width

VFP = Vertical Front Porch

VBP = Vertical Back Porch

Raster – Memory Bandwidth

To calculate the memory bandwidth requirement for a 16-bit or 24-bit display:

MB/s = PPL x LPP x Bytes Per Pixel x Frame Rate

When LCDC is 16-bit mode the Bytes Per Pixel = 2

When LCDC is set to 24-bit mode the Bytes Per Pixel = 4

7

The higher the refresh rate and LCD resolution, the high the bandwidth

requirement!

Raster – 24bit Data Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word X X Pixel X Pixel X Pixel X

Word X+1 X Pixel X+1 Pixel X+1 Pixel X+1

Word X+2 X Pixel X+2 Pixel X+2 Pixel X+2

Word X+3 X Pixel X+3 Pixel X+3 Pixel X+3

24-bit Unpacked Format

8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word X Pixel X+1 Pixel X Pixel X Pixel X

Word X+1 Pixel X+2 Pixel X+2 Pixel X+1 Pixel X+1

Word X+2 Pixel X+3 Pixel X+3 Pixel X+3 Pixel X+2

24-bit Packed Format

Using packed format reduces frame buffer size by 25%

LCDC Connections – 24-bit RGB Mode

The blue and red color assignments to the LCD data pins are reversed when

operating in RGB888 (24bpp) mode compared to RGB565 (16bpp) mode. In order

to correctly display RGB888 data from the SGX, or any source formatted as RGB

in memory, it is necessary to connect the LCD panel as shown in. Using the LCD

Controller with this connection scheme limits the use of RGB565 mode. Any data

generated for the RGB565 mode requires the red and blue color data values be

swapped in order to display the correct color.

9

LCD Controller Output Pin Mapping (LCD DATA[23:0])

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PIXEL n

B[0] G[0] R[0] B[1] G[1] R[1] B[2] R[2] B[7:3] G[7:2] R[7:3]

16-bit panel

24-bit Panel

Raster – 16-bit Data Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word X Pixel X+1 Pixel X+1 Pixel X+1 Pixel X Pixel X Pixel X

10

The frame buffer size for 16-bit is 50% less than the unpacked 24-bit.

However the is a noticeable reduction in color depth.

Word X+1 Pixel X+3 Pixel X+3 Pixel X+3 Pixel X+2 Pixel X+2 Pixel X+2

Word X+2 Pixel X+5 Pixel X+5 Pixel X+5 Pixel X+4 Pixel X+4 Pixel X+4

LCDC Connections – 16-bit RGB Mode

When operating the LCD Controller in RGB565 mode the LCD panel should be

connected as shown in Figure 3. Using the LCD Controller with this connection

scheme limits the use of RGB888 mode. Any data generated for the RGB888

mode requires the red and blue color data values be swapped in order to

display the correct color.

LCD Controller Output Pin Mapping (LCD DATA[23:0])

11

LCD Controller Output Pin Mapping (LCD DATA[23:0])

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PIXEL n

0 0 0 0 0 0 0 0 R[7:3] G[7:2] B[7:3]

16-bit panel

24-bit Panel

12

LIDD MODES

LIDD - Features

• Intel 8080, Motorola 68K, and Hitachi Modes

• 2 Asynchronous Panels (same mode) or 1 Synchronous Panel

• Up to 42MHz clock rate using OPP100

• Can be used as a generic 16 bit address/data interleaved MPU bus

master (external stall not supported).

13

• DMA support for DATA (Always uses fb0)

• CPU support for DATA and COMMAND/ADDRESS

LIDD - Signal Mapping

Ball Name Raster
Motorola

SYNC

Motorola

ASYNC

INTEL

SYNC

INTEL

ASYNC
Hitachi

lcd_pclk PCLK EN EN Rs Rs N/A

lcd_hsync HSYNC Dir Dir Ws Ws Dir

lcd_vsync VSYNC Ale Ale Ale Ale Ale

lcd_ac_bias_en DATA EN Cs0 Cs0 Cs0 Cs0 E0

lcd_memory_clk N/A Mclk Cs1 Mclk Cs1 E1

14

This table shows the mapping of AM335x ball names to the mode functional names

PCLK = Pixel Clock

HSYNC = Horizontal Sync

VSYNC = Vertical Sync

DATA EN = Data Enabled/Valid Data

EN = Enable

Rs = Read Strobe

Dir = Direction

Ws = Write Strobe

Ale = Address Latch enable

Mclk = Memory clock

Ex = Enable x

Csx = Chip Select x

LIDD – Hitachi Asynchronous Interface

Read data Write data

ALE

DIR

E0

w_strobe w_su w_hold ta r_su r_strobe r_hold

intMclk

Write Cycle Read Cycle

DATA

DATA_OEN

 Write Cycle Read Cycle

Command Mode

15

Read data Write data

ALE

DIR

E0

w_strobe w_su w_hold ta r_su r_strobe r_hold

intMclk

DATA

DATA_OEN

The Hitachi style bus model is shown here. intMclk is the internal bus clock and is shown for

reference only. ALE is low during the transaction if the Host is reading or writing a command. A

command is initiated by writing to the LIDD_CSx_ADDR register. DIR determines whether the bus

transaction is a read or a write. E0, shown to be active high, is the data strobe for device 0. For a

read, external read data is expected to be ready the intMCLK cycle just before E0 goes inactive

Data Mode

LIDD – Motorola 68K Interface

LCD

Controller
Transparent Latch

D[15:0] Q[15:0]

EN

SOC

ALE

DATA[15:0]

Peripheral Device

A[15:0]

DQ[15:0]

16

The Motorola 68k mode uses a shared 16-bit address/data bus. The address is sent first, latched

externally, and then data is sent to complete the bus transaction. The external logic required for

using the shared address/data bus is shown here.

CS

EN

RnWr

CS0

EN

DIR

LIDD – Motorola 68K Write Transaction

Write data Write address

ALE

DIR

EN

intMclk

Address Cycle Write Data Cycle

DATA

CS0

DATA_OEN

17

Signals are shown active high. DIR is shown to be high for a Read and low for a Write.

The address is written to the external latch when the CPU writes the target location to

LIDD_CSx_ADDR. This CPU write activates ALE for the transaction.

The CPU next writes the data to LIDD_CSx_DATA. ALE is inactive this transaction cycle. CS0 is

active for both the address and data transactions. EN is used as a strobe signal to the external

device.

DATA_OEN is used to tri-state an output buffer. It is active low when valid write data is available.

EN

w_strobe w_su w_hold ta r_su r_strobe r_hold

LIDD – Motorola 68K Read Transaction

Read data Read address

ALE

DIR

EN

intMclk

Address Cycle Read Data Cycle

DATA

CS0

DATA_OEN

18

The address is loaded into the external latch when the CPU writes a value to LIDD_CSx_ADDR. ALE is

active and DIR is low (write).

The read transaction is initiated when the CPU reads from the LIDD_CSx_DATA register. ALE is

inactive for a data read transaction. DIR is high (read). External read data is expected to be ready the

intMCLK cycle just before EN goes inactive. CS0 is active for both the address and data transactions.

EN is used as a strobe signal to the external device. External read data is expected to be ready the

intMCLK cycle just before EN goes inactive.

DATA_OEN is used to tristate an output buffer. It is active low when valid write data is available

EN

w_strobe w_su w_hold ta r_su r_strobe r_hold

LIDD – Motorola 68K Read Status Transaction

Read data

ALE

DIR

intMclk

Status Read Data Cycle

DATA

CS0

DATA_OEN

19

The Motorola bus allows a transaction to read a single status vector from the target peripheral. This

status read transaction does not require an address, since it returns only a single vector. The CPU

initiates a status read transaction when it reads from the LIDD_CSx_ADDR register.

ALE is active, signaling a read-status transaction. CS0 is active. EN is used as a strobe signal to the

external device. External read data is expected to be ready the intMCLK cycle just before EN goes

inactive.

DATA_OEN is used to tristate an output buffer. It is active low when valid write data is available

EN

ta r_su r_strobe r_hold

CS0

LIDD – Intel Interface

LCD

Controller
Transparent Latch

D[15:0] Q[15:0]

EN

SOC

ALE

DATA[15:0]

Peripheral Device

A[15:0]

20

DQ[15:0]

CS

RS

WS

CS0

RS

WS

The Intel interface mode uses a shared 16-bit address/data bus. The address is sent first, latched

externally, and then data is sent to complete the bus transaction.

LIDD – Intel Write Transaction

Write data Write address

ALE

RS

intMclk

Address Cycle Write Data Cycle

DATA

CS0

DATA_OEN

21

WS

w_strobe w_su w_hold ta r_su r_strobe r_hold

Signals are shown active high.

The address is written to the external latch when the CPU writes the target location to LIDD_CSx_ADDR.

This CPU write activates ALE for the transaction.

The CPU next writes the data to LIDD_CSx_DATA. ALE is inactive this transaction cycle. CS0 is active

for both the address and data transactions. WS is used as a write strobe signal to the external device.

DATA_OEN is used to tri-state an output buffer. It is active low when valid write data is available.

LIDD – Intel Read Transaction

Read data Read address

ALE

RS

intMclk

Address Cycle Read Data Cycle

DATA

CS0

DATA_OEN

22

WS

w_strobe w_su w_hold ta r_su r_strobe r_hold

CS0

The address is loaded into the external latch when the CPU writes a value to LIDD_CSx_ADDR. This

CPU write activates ALE for the transaction.

The read transaction is initiated when the CPU reads from the LIDD_CSx_DATA register. ALE is inactive

for a data read. CS0 is active for both the address and data transactions. External read data is expected

to be ready the intMCLK cycle just before the RS read strobe goes inactive.

DATA_OEN is used to tri-state an output buffer. It is active low when valid write data is available

LIDD – Intel Read Status Transaction

Read data

ALE

RS

intMclk

Status Read Data Cycle

DATA

CS0

DATA_OEN

23

The Intel bus allows a transaction to read a single status vector from the target peripheral. This status

read transaction does not require an address, since it returns only a single vector. The CPU initiates a

status read transaction when it reads from the LIDD_CSx_ADDR register. ALE is active, signaling a read-

status transaction. CS0 is active. RS is used as a strobe signal to the external device. External read

data is expected to be ready the intMCLK cycle just before RS goes inactive.

DATA_OEN is used to tri-state an output buffer. It is active low when valid write data is available.

WS

ta r_su r_strobe r_hold

CS0

LIDD - DMA Mode Issue

DETAILS After a DMA transfer is complete, the

CFG_LIDD_DMA_EN bit is driven low and the

read/write pointers of the Asynchronous FIFO are

designed to reset. However, only the write pointer

gets reset and therefore the FIFO sequence is

corrupt.

24

WORKAROUND After receiving LIDD Frame Done interrupt, modify

the CLKC_ENABLE register to perform software

reset in the L3 and LIDD clock domains after each

DMA transfer. This will return the write and read

FIFO pointers to their default values and allow for

proper FIFO operation

25

BUFFER MANAGEMENT

Timing Relationships

EOF0

INT

EOF1

INT

DMA Fetches

Immediately from

cfg_fb1_base/

cfg_fb1_ceil

EOF0

INT

DMA Fetches

Immediately from

cfg_fb0_base/

cfg_fb0_ceil

time

26

ISR Cannot update

registers until here

ISR Cannot update

registers until here

λ λ

After an EOF0 or EOF1 interrupt, it takes a certain latency λ before the ISR can set

cfg_fb0_base, cfg_fb0_ceil, cfg_fb1_base, and cfg_fb1_ceil.

Meanwhile, the DMA uses the current values of those registers for the next frame

immediately after firing the interrupt.

λ = 10 cycles of the L3 or L4 clocks (whichever is slower)

Incorrect Ping Pong Buffer Usage

Cfg_lcd_

en=1

(start)

EOF1

INT

DMA Fetches from

cfg_fb0_base/ cfg_fb0_ceil

B0

EOF0

INT

DMA Fetches Immediately

from cfg_fb1_base/

cfg_fb1_ceil

???

DMA Fetches Immediately

from cfg_fb0_base/

cfg_fb0_ceil

B0

EOF0

INT

DMA Fetches Immediately

from cfg_fb1_base/

cfg_fb1_ceil

B1

EOF1

INT

DMA Fetches Immediately

from cfg_fb0_base/

cfg_fb0_ceil

B0 B1 B2 B3 B4

B2

Expected

Actual

27

Cfg_fb0_base &

cfg_fb0_ceil set to B0

Cfg_fb1_base and

cfg_fb1_ceil set to

Unknown

B0 ???

cfg_fb1_base

/ cfg_fb1_ceil

set to B1

B0

cfg_fb0_base

/ cfg_fb0_ceil

set to B2

B1

cfg_fb1_base

/ cfg_fb1_ceil

set to B3

cfg_fb0_base

/ cfg_fb0_ceil

set to B4

B2Actual

The intent is to try and set the upcoming framebuffer location at each EOF0/EOF1

ISR with the expected result shown in Blue.

However, the hardware displays the contents of frames two back in time. The Actual

results are in Red.

Use Case 1: Recommended Ping Pong
Buffer Usage

Cfg_lcd_

en=1

(start)

EOF1

INT

DMA Fetches from

cfg_fb0_base/ cfg_fb0_ceil

B0

EOF0

INT

DMA Fetches Immediately

from cfg_fb1_base/

cfg_fb1_ceil

B1

DMA Fetches Immediately

from cfg_fb0_base/

cfg_fb0_ceil

B0

EOF0

INT

DMA Fetches Immediately

from cfg_fb1_base/

cfg_fb1_ceil

B1

EOF1

INT

DMA Fetches Immediately

from cfg_fb0_base/

cfg_fb0_ceil

B0

28

Cfg_fb0_base &

cfg_fb0_ceil set to B0

Cfg_fb1_base and

cfg_fb1_ceil set to B1

Two frames, B0 and B1, are needed at the start. However, B0 can be a black

frame (the Host creates a black frame in DDR). In this case, a video display

framebuffer must be available at the start and for every ISR.

Host CPU Keep Out Regions

Cfg_lcd_

en=1

(start)

EOF1

INT

DMA Fetches from

cfg_fb0_base/ cfg_fb0_ceil

B0

EOF0

INT

DMA Fetches Immediately

from cfg_fb1_base/

cfg_fb1_ceil

B1

DMA Fetches Immediately

from cfg_fb0_base/

cfg_fb0_ceil

B2

EOF0

INT

DMA Fetches Immediately

from cfg_fb1_base/

cfg_fb1_ceil

B3

EOF1

INT

DMA Fetches Immediately

from cfg_fb0_base/

cfg_fb0_ceil

B4

29

Cfg_fb0_base &

cfg_fb0_ceil set to B0

Cfg_fb1_base and

cfg_fb1_ceil set to B1

cfg_fb0_base

/ cfg_fb0_ceil

set to B2

cfg_fb1_base

/ cfg_fb1_ceil

set to B3

cfg_fb0_base

/ cfg_fb0_ceil

set to B4

cfg_fb1_base

/ cfg_fb1_ceil

set to B5

The DMA engine uses a base address and a ceiling address to define a framebuffer. It

is imperative that these base-ceiling pairs match up when the hardware reads them.

Say the Host CPU updates only the base register and has not had a chance to update

the ceiling register when the DMA engine does the read. This framebuffer, as

understood by the DMA engine, will be way off. It will lead to sync error interrupts and

possibly affect system performance. The Red bars denote keep-out regions where the

Host CPU cannot update the same config registers that are being read by the DMA

engine.

Use Case 2: Using Ping Pong Buffers
Where Host CPU Has Large ISR Latency

Cfg_lcd_

en=1

(start)

EOF1

INT

DMA Fetches from

cfg_fb0_base/ cfg_fb0_ceil

B0

EOF0

INT

DMA Fetches Immediately

from cfg_fb1_base/

cfg_fb1_ceil

B1

DMA Fetches Immediately

from cfg_fb0_base/

cfg_fb0_ceil

B2

EOF0

INT

DMA Fetches Immediately

from cfg_fb1_base/

cfg_fb1_ceil

B3

EOF1

INT

DMA Fetches Immediately

from cfg_fb0_base/

cfg_fb0_ceil

B4

30

Cfg_fb0_base &

cfg_fb0_ceil set to B0

Cfg_fb1_base and

cfg_fb1_ceil set to B1

cfg_fb0_base

/ cfg_fb0_ceil

set to B2

cfg_fb1_base

/cfg_fb1_ceil

set to B3

cfg_fb0_base

/ cfg_fb0_ceil

set to B4

cfg_fb1_base

/ cfg_fb1_ceil

set to B5

cfg_fb0_base

/ cfg_fb0_ceil

set to B6

B0, B1, and B2 can be black frames. A video framebuffer must be available every EOF interrupt.

On the first EOF0 ISR, configure fb0 (only if B2 is not a Black frame) and fb1. Then, subsequent

EOF1 ISRs update fb0 and EOF0 ISRs update fb1.

The ISRs after EOF1 now have up to two frame times to perform config register updates before

the register values are used. However, there is one additional frame time of output latency.

Use Case 3: Single Buffer Usage Model

Cfg_lcd_

en=1

(start)

EOF0

INT

DMA Fetches from

cfg_fb0_base/ cfg_fb0_ceil

EOF0

INT

DMA Fetches Immediately

from cfg_fb0_base/

cfg_fb0_ceil

DMA Fetches Immediately

from cfg_fb0_base/

cfg_fb0_ceil

EOF0

INT

DMA Fetches Immediately

from cfg_fb0_base/

cfg_fb0_ceil

EOF1

INT

DMA Fetches Immediately

from cfg_fb0_base/

cfg_fb0_ceil

31

Cfg_fb0_base &

cfg_fb0_ceil set to B0

B0 B1 B2 B3 B4

The Single Buffer Usage Model was designed for the case where

the framebuffer pointers are static. A fixed display buffer in DDR

has new frames copied into it by the CPU or DMA.

Use Case 4: Updating Single Buffer
Pointers in Runtime

Cfg_lcd_

en=1

(start)

EOF0

INT

DMA Fetches from

cfg_fb0_base/ cfg_fb0_ceil

B0

EOF0

INT

DMA Fetches Immediately

from cfg_fb0_base/

cfg_fb0_ceil

B0

DMA Fetches Immediately

from cfg_fb0_base/

cfg_fb0_ceil

B1

EOF0

INT

DMA Fetches Immediately

from cfg_fb0_base/

cfg_fb0_ceil

B2

EOF0

INT

DMA Fetches Immediately

from cfg_fb0_base/

cfg_fb0_ceil

B3

32

Cfg_fb0_base &

cfg_fb0_ceil set to B0

cfg_fb0_base

/ cfg_fb0_ceil

set to B1

cfg_fb1_base

/ cfg_fb1_ceil

set to B2

cfg_fb0_base

/ cfg_fb0_ceil

set to B3

cfg_fb1_base

/ cfg_fb1_ceil

set to B4

B0 can be a black frame. A video framebuffer must be available every EOF0

interrupt, which is used to trigger the ISR that updates cfg_fb0_base and

cfg_fb0_ceil. This scenario is very similar to Use Case 1, which uses Ping

Pong Buffers.

Race Condition: Changing Single Buffer
Pointers in Use Case 4

Cfg_lcd_

en=1

(start)

EOF0

INT

DMA Fetches from

cfg_fb0_base/ cfg_fb0_ceil

B0

EOF0

INT

DMA Fetches Immediately

from cfg_fb0_base/

cfg_fb0_ceil

B0

DMA Fetches Immediately

from cfg_fb0_base/

cfg_fb0_ceil

B1

EOF0

INT

DMA Fetches Immediately

from cfg_fb0_base/

cfg_fb0_ceil

B2

EOF0

INT

DMA Fetches Immediately

from cfg_fb0_base/

cfg_fb0_ceil

B3

33

Cfg_fb0_base &

cfg_fb0_ceil set to B0

cfg_fb0_base

/ cfg_fb0_ceil

set to B1

cfg_fb1_base

/ cfg_fb1_ceil

set to B2

cfg_fb0_base

/ cfg_fb0_ceil

set to B3

cfg_fb1_base

/ cfg_fb1_ceil

set to B4

For Use Case 4, there is a Race Condition in which the Host CPU must not

update cfg_fb0_base and cfg_fb0_ceil until after the DMA engine has read

the values in the CPU Keep-out regions shown in Red. Practically, though,

the interrupt latency for the CPU is expected to be long enough to ensure

that the configuration registers cannot change in the Keep-out region. The

ISR must update the pointers before the next interrupt, though.

34

LCDC COMAPARED TO DSS

Display modes : DSS LCDC
Programmable pixel display modes (1, 2, 4, 8, 12, 16, and 24 bit-per-pixel modes) YES1 YES

Programmable display size YES YES2

Pallet Size 24-bit 12-bit

Maximum Programmable pixel rate 75MHz 126MHz

Display support : DSS LCDC
Passive & Active Matrix panel. YES YES

Remote Frame Buffer support through the RFBI module. 2 Panels 2 Panels

Signal processing : DSS LCDC
Overlay support YES NO3

Feature Comparison

35

Overlay support YES NO

Video resizer : upsampling (up to x8) downsampling (down to 1/4) YES NO

Rotation 90°, 180°, and 270° YES4 NO

Transparency color key (source and destination) YES NO

Programmable video color space conversion YcbCr 4:2:2 into RGB YES NO

Gamma curve support YES NO

Mirroring support YES NO

Programmable Color Phase Rotation (CPR) YES NO

Notes

1. DSS Also supports 18 bit modes

2. Pixels Per Line must be multiple of 16

3. Overlay support using software and SGX Under development.

4. Using EDMA

