[image: image23.wmf]Application Report

[image: image24.wmf]Lit. Number – December 2014


[image: image25.wmf][image: image26.wmf]Overwrite this text with the Lit. Number

Overwrite this text with the Lit. Number 

KeyStone II SOC Memory Performance
Brighton Feng, Vincent Han

Abstract

KeyStone II SOC integrates up to eight 1.2GHz C66x DSP cores and four 1.4GHz ARM Cortex A15 cores. Each DSP core has up to 1MB Local memory; all DSP cores and ARM cores share up to 6MB internal shared memory; 64-bit 1600MTS DDR3 interface is provided to support up to 8GB external memory. All the memories can be accessed by DSP cores, ARM cores and multiple DMA masters through TeraNet switch fabric.
Memory access performance is very critical for software running on the KeyStone II SOC. This application report provides measured performance data including throughput and latency achieved under various operating conditions. Some factors affecting memory access performance are discussed, such as access stride, index and conflict, etc.
The application report should be helpful for analyzing following common questions:

1. Should I use DSP core, ARM core or DMA for data copy?
2. How should I partition data processing tasks between DSP cores and ARM cores?
3. How many cycles will be consumed for my function with many memory accesses?

4. How much degradation will be caused by multiple masters sharing memory?
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Introduction

Figure 1 shows the memory system of KeyStone II SOC. The number on the line is the bus width. Most modules run at DSP CoreClock/n; ARM core speed may be different from DSP core speed; the DDR typically runs at 1600MTS (Million Transfer per Second).
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Figure 1. KeyStone II SOC Memory System

For different devices in the KeyStone II family, the size of memory are different, the number of CPU core and the number of EDMA transfer controller are also different. Table 1 summarizes these differences of KeyStone II devices.

Table 1. KeyStone II Memory system comparison
	
	K2H/K2K
	K2L
	K2E

	L1D(KB/core)
	32
	32
	32

	L1P/L1I(KB/core)
	32
	32
	32

	Local L2 (KB/core) of DSP core
	1024
	1024
	512

	Shared L2 cache (KB) of all ARM cores
	4096
	1024
	4096

	Multicore Shared RAM (KB)
	6144
	2048
	2048

	Number of DDR3 controller
	2
	1
	1

	Maximum DDR3 memory space (GB)
	10
	8
	8

	Number of DSP core
	8
	4
	1

	Number of ARM core
	4
	2
	4

	Number of EDMA transfer controller
	14
	10
	14


The KeyStone II devices has up to eight C66x DSP cores, each of them has:

· 32KB L1D (Level 1 Data) SRAM, which runs at the DSP Core speed, can be used as normal data memory or cache;
· 32KB L1P (Level 1 Program) SRAM,  which runs at the DSP Core speed, can be used as normal program memory or cache;
· 512KB or 1MB LL2 (Local Level 2) SRAM, which runs at the DSP Core speed divided by two, can be used as normal RAM or cache for both data and program.
The KeyStone II devices has up to four Cortex A15 ARM cores, each of them has:

· 32KB L1D (Level 1 Data) cache;
· 32KB L1I (Level 1 Instruction) cache;
All Cortex A15 cores share 1MB to 4MB L2 cache, which is unified for data and program.

All DSP cores and ARM cores share 2MB to 6MB MSRAM (Multicore Shared RAM), which runs at the DSP Core speed divided by two, can be used as data or code memory. 

64-bit 1600MTS DDR3 SDRAM interface is provided on the SOC to support up to 8GB external memory, which can be used as data or program memory. The interface can also be configured to only use 32 bits or 16 bits data bus. 
Memory access performance is very critical for software running on the SOC. On KeyStone II SOC, all the memories can be accessed by DSP cores, ARM cores and multiple DMA masters.

Each C66x core has the capability of sustaining up to 128 bits of load/store operations per cycle to the level-one data memory (L1D), capable of handling up to 19.2GB/second at 1.2GHz DSP core speed.  When accessing data in the level-two (L2) unified memory or external memory, the access rate will depend on the memory access pattern and cache. 
There is an internal DMA (IDMA) engine that can move data at a rate of the DSP Core speed, capable of handling up to 9.6GB/second at a 1.2GHz core clock frequency. The IDMA can only transfer data between level-one (L1), local level-two (LL2) and peripheral configuration port, it can not access external memory.

The TeraNet switch fabric, which provides the interconnection between the C66x cores (and their local memories), ARM cores, external memory, the Enhanced DMA v3 (EDMA3) controllers, and on-chip peripherals. The TeraNet runs at DSP core frequency divided by three. There are two main TeraNet switch fabrics, one has 128 bit access bus to each end point, so, in theory, capable of sustaining up to 6.4GB/second at 1.2GHz core clock frequency; the other TeraNet switch fabric has 256 bit access bus to each end point, so, in theory, capable of sustaining up to 12.8GB/second at 1.2GHz core clock frequency. 
There are ten or fourteen EDMA transfer controllers that can be programmed to move data, concurrently, in the background of CPUs activity, between the on-chip level-one (L1) of DSP cores, level-two (LL2) memory of DSP cores, MSRAM, external memory, and the peripherals on the device, two or four of them connect to the 256-bit TeraNet switch, the other eight or ten connect to the 128-bit TeraNet switch. The EDMA3 architecture has many features designed to facilitate simultaneous multiple high-speed data transfers. With a working knowledge of this architecture and the way in which data transfers interact and are performed, it is possible to create an efficient system and maximize the throughput utilization of the EDMA3. 

This document gives designers a basis for estimating memory access performance, provides measured performance data achieved under various operating conditions. Most of the tests operate under best-case situations to estimate maximum throughput that can be obtained. Most of the performance data in this document is examined on the KeyStone II EVM (EValuation Module) with 64-bit 1600MTS DDR memory.
Comparison of DSP Core, ARM core and EDMA3/IDMA for memory copy
The throughput of memory copy is limited by the worst of following three factors:

1. Bus bandwidth

2. source throughput

3. destination throughput

Following tables summarizes the theoretical bandwidth of the C66x core, ARM A15 core, IDMA and EDMA on KeyStone II.
Table 2. Theoretical bus bandwidth of CPU, and DMA on 1.2GHz KeyStone II
	Master
	Maximum bandwidth MB/s
	Comments

	C66x core

A15 core
	19,200
	(128 bits)/ (8 bit/byte)*1200M= 19200MB/s

	IDMA
	9,600
	(64 bits)/ (8 bit/byte)*1200M = 8000MB/s

	EDMA (256-bit width TC)
	12,800
	(256 bits)/(8 bit/byte)*(1200M/3)=12800MB/s

	EDMA (128-bit width TC)
	6,400
	(128 bits)/(8 bit/byte)*(1200M/3)=6400MB/s


Table 3 summarizes the theoretical throughput of different memories on KeyStone II EVM with 64-bit 1600MTS DDR external memory.

Table 3. Maximum Throughput of Different Memory Endpoints on 1.2GHz KeyStone II
	Memory
	Maximum Bandwidth MB/s
	Comments

	LL2
	16,000
	(256 bits)/ (8 bit/byte)*(1200M/2) = 16000MB/s

	MSRAM
	153,600
	(8*256 bits)/ (8 bit/byte)*(1200M/2) = 307200MB/s

	DDR3
	12,800
	(64 bits)/(8 bit/byte)*(1600M)=12800MB/s


Following table shows the transfer throughput measured for large linear memory block copy with EDMA, IDMA and CPUs for different scenarios on 1.2GHz KeyStone II EVM with 64-bit 1600MTS DDR. 
The C code for the memory copy test with CPU is as following:
//Copy multiple of 8 bytes data to show the max throughput of data transfer by CPU
void MemCopy8(unsigned long long * restrict dst, unsigned long long * restrict src, Uint32 uiCount)
{

int i;

for(i=0; i< uiCount/4; i++)

{


*dst++=*src++;


*dst++=*src++;


*dst++=*src++;


*dst++=*src++;

}
}
On DSP, the test result with this C code is reasonable; on ARM, we use gcc ARM compiler v4.7.3, the test result with this C code is not good because the compiler does not utilize advanced features of ARM core. To achieve better performance on ARM core, following hand-optimized assembly code is used.

AsmMemCopy:

PUSH    {r4-r5}
Loop_start: 

PLD   [r1,#256] 

SUBS  r2,r2,#64 

LDRD  r4,r5,[r1,#0]  

STRD  r4,r5,[r0,#0]  

LDRD  r4,r5,[r1,#8]  

STRD  r4,r5,[r0,#8]  

LDRD  r4,r5,[r1,#16] 

STRD  r4,r5,[r0,#16] 

LDRD  r4,r5,[r1,#24] 

STRD  r4,r5,[r0,#24] 

LDRD  r4,r5,[r1,#32] 

STRD  r4,r5,[r0,#32] 

LDRD  r4,r5,[r1,#40] 

STRD  r4,r5,[r0,#40] 

LDRD  r4,r5,[r1,#48] 

STRD  r4,r5,[r0,#48] 

LDRD  r4,r5,[r1,#56] 

STRD  r4,r5,[r0,#56] 

ADD   r1,r1,#64 

ADD   r0,r0,#64 

BGT   Loop_start  



POP     {r4-r5}

BX      lr
In these tests, the memory block size is 128KB, the memory block size for other EDMA copy is 128KB; IDMA LL2->LL2 block size is 32KB.
The throughput is measured by taking total bytes copied and dividing it by the time it used. 
Table 4. Transfer throughput comparison between DSP core, EDMA and IDMA
	Throughput(MB/s) for Src-> Dst
	C66x 

(C code)
	A15 (Assembly code)
	EDMA

	LL2 -> LL2 (DSP L1 cache only)
	3833 
	
	6294

	LL2-> MSRAM (DSP L1 cache only)
	4499 
	
	6307

	MSRAM-> LL2 (DSP L1 cache only) 
	4137 
	
	6307

	MSRAM-> MSRAM (non-cacheable) 
	518 
	147
	11399

	MSRAM-> MSRAM (DSP L1 cache only; ARM L1D and L2 cache) 
	3916 
	4269
	

	LL2 -> DDR3A (DSP non-cacheable)
	1554 
	
	6294

	LL2 -> DDR3A (DSP L1 cache only)
	3132 
	
	

	LL2 -> DDR3A (DSP L1 and L2 cache)
	2231 
	
	

	DDR3A -> LL2 (DSP non-cacheable)
	179 
	
	6080

	DDR3A -> LL2 (DSP L1 cache only)
	1321 
	
	

	DDR3A -> LL2 (DSP L1 and L2 cache)
	2192 
	
	

	MSRAM -> DDR3A (non-cacheable)
	1543 
	147
	11061

	MSRAM -> DDR3A (DSP L1 cache only)
	3124 
	
	

	MSRAM -> DDR3A (L1 and L2 cache)
	1081 
	4183
	

	DDR3A -> MSRAM (non-cacheable)
	170 
	65
	7503

	DDR3A -> MSRAM (DSP L1 cache only)
	1291 
	
	

	DDR3A -> MSRAM (L1 and L2 cache)
	2145 
	3496
	

	DDR3A -> DDR3A (non-cacheable)
	154 
	65
	3991

	DDR3A -> DDR3A (DSP L1 cache only)
	831 
	
	

	DDR3A -> DDR3A (L1 and L2 cache)
	1802 
	2763
	

	LL2 -> DDR3B (DSP non-cacheable)
	1516 
	
	6203

	LL2 -> DDR3B (DSP L1 cache only)
	2995 
	
	

	LL2 -> DDR3B (DSP L1 and L2 cache)
	1527 
	
	

	DDR3B -> LL2 (DSP non-cacheable)
	116 
	
	5894

	DDR3B -> LL2 (DSP L1 cache only)
	867 
	
	

	DDR3B -> LL2 (DSP L1 and L2 cache)
	1493 
	
	

	MSRAM -> DDR3B (non-cacheable)
	1416 
	147 
	10752

	MSRAM -> DDR3B (DSP L1 cache only)
	2789
	
	

	MSRAM -> DDR3B (L1 and L2 cache)
	751
	4045
	

	DDR3B -> MSRAM (non-cacheable)
	112
	47
	7671

	DDR3B -> MSRAM (DSP L1 cache only)
	853
	
	

	DDR3B -> MSRAM (L1 and L2 cache)
	1487
	2861
	

	DDR3B -> DDR3B (non-cacheable)
	103
	47
	4396

	DDR3B -> DDR3B (DSP L1 cache only)
	615
	
	

	DDR3B -> DDR3B (L1 and L2 cache)
	1215
	2293
	

	DDR3A -> DDR3B (DSP non-cacheable)
	169
	65
	7255

	DDR3A -> DDR3B (DSP L1 cache only)
	1194
	
	

	DDR3A -> DDR3B (DSP L1 and L2 cache)
	1342
	3380
	

	DDR3B -> DDR3A (DSP non-cacheable)
	110
	47
	7633

	DDR3B -> DDR3A (DSP L1 cache only)
	814
	
	

	DDR3B -> DDR3A (DSP L1 and L2 cache)
	1388
	2831
	


The measured IDMA throughput for copying 32KB inside LL2 is 4014MB/s. IDMA can not access MSRAM or external memory.
Above test result shows EDMA is much better than CPU for transfer of big data block. DSP core can access LL2 and MSRAM efficiently; ARM core can also access MSRAM efficient (ARM does not have LL2 RAM). Using CPU to access external data directly is a bad use of resources and should be avoided. 

CPU accessing DDR3B is slower than CPU accessing DDR3A because CPU accessing DDR3B goes through additional bus switches/bridges (refer to Figure 1). While DMA accessing DDR3B is slightly faster than DMA accessing DDR3A.

Above EDMA throughput data is measured on TC0 (Transfer Controller 0) of EDMA CC0 (Channel Controller 0), while the throughput of other EDMA CC modules may not as good as EDMA CC0, see more details in following section for the comparison between all DMA transfer controllers.

The cache and prefetch configurations dramatically affect the CPU performance, but it does not affect EDMA and IDMA performance. In all these tests, the prefecth buffer is also enabled if cache is enabled. All test data for CPU in this application note are based on cold cache, i.e, all the caches are flushed before the test.
For accessing DDR, the ARM core can achieve better throughput than DSP core. Two features of the ARM core help improve the throughput:
1. Write streaming no-allocate;

2. Memory Hint instructions: PLD.
DSP core does not support “Write streaming no-allocate”, its L2 cache is always write-allocate, that is, when DSP core tries to write data to DDR, the data in DDR will be read to L2 cache firstly, and then the data will be modified in L2 cache. DSP core’s L1 cache is not write-allocate, that is why throughput for copying to DDR with L2 cache is even worse than using L1 cache only.
DSP core does not directly support memory hint instruction like PLD in ARM, similar function may be implemented with hand-optimized assembly code on DSP, however it is a little bit complex and NOT a common usage, so it is not used in this test.

When the GCC ARM compiler compiles the C code, it does not use PLD instruction, that is the key reasonable the performance of C code is worse than the hand-optimized assembly code.
Latency of DSP core access memory

L1 runs at the same speed as DSP core, so DSP core can access L1 memory one time per cycle. For some special application which requires accessing a small data block very quickly, part of the L1 can be used as normal RAM to store the small data block. 
Normally, L1 is used as cached, if cache hit happens, DSP core can access data in one cycle; if cache miss happens, the DSP core stalls until the data coming into the cache. 
The following sections examine the access performance for DSP Core accesses internal memory and external DDR memory. The pseudo codes for this test are like following:
flushCache();

startCycle= getTimeStampCount();

for(i=0; i< accessTimes; i++)

{



Access Memory at address;



address+= stride;

}

cycles = getTimeStampCount()-startCycle;

cycles/Access= cycles/accessTimes;

Latency of DSP core access LL2

Following figure shows data collected from 1.2GHz KeyStone II EVM. The cycles used for 512 consecutive LDDW (LoaD Double Word) or STDW (STore Double Word) instructions was measured, and the average cycles for each instruction is reported. 32KB L1D cache is used for this test. The cycles for LDB/STB, and LDW/STW are same as LDDW/STDW.
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Figure 2. DSP Core access LL2
Since the L1D is a read-allocate cache, DSP core read LL2 should always go through L1D cache. So, DSP core access LL2 highly depends on the cache. The address increment (or memory stride) affects cache utilization. Contiguous accesses utilize cache to the fullest. A memory stride of 64 bytes or more causes every access to miss in the L1 cache because the L1D cache line size is 64 bytes.

Since the L1D is not a write-allocate cache, and the cache is flushed before the test, any write to the LL2 goes through L1D write buffer (4x32bytes). For write operation, if stride is less than 32 bytes, several writes may be merged into one write to the LL2 in the L1D write buffer, thus achieves the efficiency close to 1 cycle/write. When the stride is multiple of 128 bytes, every write always access to the same sub-bank of LL2 (because the LL2 is organized as 2 banks, each with 4 16-byte sub-banks), which requires 4 cycles. For other strides, the Consecutive writes access to different banks of LL2, they may be overlapped with pipeline, which requires less cycle. 
Latency of DSP core access MSRAM
Following figure shows data collected from 1.2GHz KeyStone II EVM. The cycles used for 512 LDDW (LoaD Double Word) or STDW (STore Double Word) instructions was measured, and the average cycles for each instruction is reported. 32KB L1D cache is used for this test. The cycles for LDB/STB, and LDW/STW are same as LDDW/STDW.
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Figure 3. DSP Core access MSRAM
DSP core read MSRAM should normally goes through L1D cache, so, DSP core access MSRAM highly depends on the cache just like LL2. There is an additional data prefetch buffer (8x128bytes) inside XMC, which can be looked as an additional cache for read only, which is configurable by software through PFX (PreFetchable eXternally) bit of MAR (Memory Attribute Register), enabling it will benefit mulit-core access, it improves the performance of consecutive read from the MSRAM dramatically. But prefetch buffer does not help write operation.
MSRAM can be accessed through default space at 0x0C000000, which is always cacheable, normally that is also be configured as prefetchable. MSRAM can be remapped to other memory space through XMC, normally that is for non-cacheable nonprefetchable access, but it can also be configured as cacheable and prefetchable. Access through default space is a little bit faster than access through remapped space, because the address remapping consumes about one more cycle. 

Since the L1D is not a write-allocate cache, any write may go through L1D write buffer (4x32bytes) to the MSRAM. For write operation, if stride is less than 32 bytes, several writes may be merged into one write to the MSRAM in the L1D write buffer, thus achieves better efficiency.
Following figure shows performance comparison of DSP core access MSRAM vs LL2. For memory stride less than 16 bytes, the performance of MSRAM access is almost same as LL2. For access with bigger memory stride, the performance of MSRAM is worse than LL2. So, MSRAM is suitable for linearly accessed codes or read only data.
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Figure 4. Performance of DSP core access MSRAM vs LL2

Latency of DSP core access external DDR memory

DSP core access external DDR memory highly depends on the cache. When the DSP core accesses external memory spaces, a TR (transfer request) may be generated (depending on whether the data are cached and prefetchable) to the XMC. The TR will be for one of the following: 
· a single element - if the memory space is non-cacheable, nonprefetchable
· a L1 cache line - if the memory space is cacheable and the L2 cache is disabled, 
· a L2 cache line - if the memory space is cacheable and L2 cache is enabled. 
· If the space is prefetchable, prefetch may be generated for a prefetch buffer slot.
No transfer request is generated in the case of an L1/L2 cache or prefetch hit. 

An external memory can be cached by L1 cache, L2 cache, or neither. If the PC (Permit Copy) bit of appropriate MAR (Memory Attribute Register) for a memory space is not set, it is not cacheable. If the PC bit of MAR is set and L2 cache size is zero (all L2 is defined as SRAM), the external memory space is cached by L1. If the MAR bit is set and L2 cache size is greater than 0, the external memory space is cached by L2 and L1. 
Read to external memory can also utilize the prefetch buffer in XMC, which is programmable by software through PFX (PreFetchable eXternally) bit of MAR (Memory Attribute Register).

The address increment (or memory stride) affects cache and prefetch buffer utilization. Contiguous accesses utilize cache and prefetch memory to the fullest. A memory stride of 64 bytes or more causes every access to miss in the L1 cache because the L1 line size is 64 bytes. A memory stride of 128 bytes causes every access to miss in L2 because the L2 line size is 128 bytes. 
If cache miss happens, the DSP Core will stall, waiting for the return data. The length of the stall is equal to the sum of the transfer latency, transfer duration, data return time, and some small cache request overhead. 

Following figures show data collected from 1.2GHz KeyStone II EVM with 64-bit 1600MTS DDR. The cycles required for 512 LDDW (LoaD Double Word) or STDW (STore Double Word) instructions was measured, and the average cycles for each instruction is reported. 32KB L1D cache and 256KB L2 cache are used for this test. The cycles for LDB/STB, and LDW/STW are same as LDDW/STDW.
Note, the second figure is the zoom in version of the first figure.
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Figure 5. DSP Core Load/Store on DDR3A
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Figure 6. DSP Core Load/Store on DDR3B

For memory stride less than 128 bytes, the performance is dominated by cache as discussed above. 
L2 cache is a write-allocate cache, for any write operation, it always read the 128 bytes including the accessed data into a cache line firstly, and then modify the data in the L2 cache. This data will be written back to real external memory if cache conflict happens or by manual writeback. When the memory stride equals to multiple of KB, the cycles for L2 cacheable write operation increases dramatically, because the conflict happens frequently for big memory stride, thus every write operation may result in a cache line write back (for conflict) and a cache line read (for write-allocate).
For memory stride larger than 512 bytes, DDR row switch overhead becomes a main factor of performance degrading. The DDR row size or bank width on the KeyStone II EVM is 8KB, the DDR is organized as 8 banks. For access with memory stride equal to multiple of 64KB, the performance becomes worst because every read or write access to a new row in same bank, the row switch result in about 60 extra cycles. Please note, the DDR SDRAM row switch overhead may be different for different DDR SDRAM.
The latency for DSP core accessing DDR3B is higher than DSP core accessing DDR3A because DSP core accessing DDR3B goes through additional bus switches/bridges (refer to Figure 1).
Latency of ARM core access memory

Similar methods introduced in above sections are used to measure the latency of ARM core accessing memories. 

Latency of ARM core access MSRAM

Following figure shows data collected from 1.2GHz KeyStone II EVM. The cycles required for 512 consecutive LDRD (load double word) or STRD (store double word) instructions was measured, and the average cycles for each instruction is reported. 
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Figure 7. ARM Core access MSRAM

The test result shows ARM core access MSMC highly depends on the cache. The address increment (or memory stride) affects cache utilization. Contiguous accesses utilize cache to the fullest. A memory stride of 64 bytes or more causes every access to miss in the cache because the ARM cache line size is 64 bytes.

The latency for DSP core to access MSRAM is a little bit less than the ARM core to access MSRAM.
Latency of ARM core access extern DDR memory
Following figure shows data collected from 1.2GHz KeyStone II EVM with 64-bit 1600MTS DDR. The time required for 512 consecutive LDRD (load double word) or STRD (store double word) instructions was measured, and the average time for each instruction is reported. 

Note, the second figure is the zoom in version of the first figure.
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Figure 8. ARM Core access DDR3A
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Figure 9. ARM Core access DDR3B

For memory stride less than 64 bytes, the performance is dominated by cache as discussed above. For memory stride of multiple KB, DDR row switch overhead becomes a main factor of performance degrading. 
The latency for ARM core accessing DDR3B is higher than ARM core accessing DDR3A because ARM core accessing DDR3B goes through additional bus switches/bridges (refer to Figure 1).

The latency for DSP core to access DDR is a little bit less than the ARM core access DDR.

Performance of DMA access memory

The EDMA3 architecture has many features designed to facilitate simultaneous multiple high-speed data transfers. Its performance affected by the memory type and many other factors discussed in following sections.
DMA Transfer overhead 

Initial latency is defined as the time between DMA event happen to real data transfer begin. Since initial latency is hard to measure. We measured transfer overhead instead; it is defined as the sum of the Latency, and the time to transfer smallest element. The values vary based on the type of source/destination endpoints. Following tables show the average cycles measured between EDMA trigger (write ESR) and EDMA completion (read IPR=1) for smallest transfer (1 word) between different ports on 1.2GHz KeyStone II EVM with 64-bit 1600MTS DDR. 

Table 5. EDMA CC0 and CC4 Transfer Overhead
	destination

source
	LL2
	MSRAM
	DDR3A
	DDR3B

	LL2
	376 
	325 
	376 
	376 

	MSRAM
	325 
	325 
	325 
	325 

	DDR3A
	427 
	376 
	478 
	427 

	DDR3B
	427 
	376 
	427 
	478 


Table 6. EDMA CC1, CC2 and EDMA CC3 Transfer Overhead
	destination

source
	LL2
	MSRAM
	DDR3A
	DDR3B

	LL2
	325 
	376 
	376 
	376 

	MSRAM
	325 
	376 
	478 
	376 

	DDR3A
	427 
	427 
	529 
	478 

	DDR3B
	376 
	427 
	478 
	529 


Since EDMA CC0 and CC4 are connected to TeraNet switch fabric close to MSRAM and DDR3A (refer to Figure 1), so it’s overhead to access MSRAM and DDR3A is smaller. While EDMA CC1 CC2 and CC3 are connected to TeraNet switch fabric close to DDR3B and DSP CorePac which including LL2 (refer to Figure 1), so their overhead to access LL2 and DDR3B is smaller.
The average measured IDMA transfer overhead is about 66 cycles.

Transfer overhead is a big concern for short transfers and need to be included when scheduling DMA traffic in a system. Single-element transfer performance will be latency-dominated. So, for small transfer, you should make the trade off between DMA and CPU. 
EDMA performance Difference between 14 transfer engines 

EDMA3 on KeyStone II includes up to 14 TC (transfer controller). The 14 transfer engines are not exactly same. Table 7 is a summary of the difference.

Table 7. Difference between TCs

	
	CC0
	CC1
	CC2
	CC3
	CC4

	
	TC0
	TC1
	TC0
	TC1
	TC2
	TC3
	TC0
	TC1
	TC2
	TC3
	TC0
	TC1
	TC0
	TC1

	Bus Width (bits)
	256
	256
	128
	128
	128
	128
	128
	128
	128
	128
	128
	128
	256
	256

	Speed ratio to DSP core
	1/3
	1/3
	1/3
	1/3
	1/3
	1/3
	1/3
	1/3
	1/3
	1/3
	1/3
	1/3
	1/3
	1/3

	FIFO Size (bytes)
	1024
	1024
	1024
	1024
	1024
	1024
	1024
	1024
	1024
	1024
	1024
	1024
	1024
	1024

	Default Burst Size (bytes)
	128
	128
	128
	128
	128
	128
	128
	128
	128
	128
	128
	128
	64
	64


Following tables compare the maximum throughput measured for different TCs on 1.2GHz KeyStone II EVM with 64-bit 1600MTS DDR. AB_Sync is used, ACNT=1024, BCNT=128.
Table 8. Throughput comparison between TCs on 1.2GHz KeyStone II
	MB/s
	CC0
	CC1
	CC2
	CC3
	CC4

	LL2 → LL2
	6291 
	6033 
	6033 
	6033 
	6291 

	LL2 → MSRAM
	6304 
	6021 
	6021 
	6021 
	6304 

	MSRAM → LL2
	6304 
	6021 
	6021 
	6021 
	6304 

	MSRAM → MSRAM
	11388 
	6009 
	6009 
	6009 
	11388 

	LL2 → DDR3A
	6291 
	6009 
	6009 
	5783 
	6291 

	DDR3A → LL2
	6080 
	5446 
	5524 
	5189 
	6092 

	DDR3A → DDR3A
	3991 
	3257 
	3263 
	3423 
	3971 

	MSRAM→DDR3A
	11061 
	6009 
	6009 
	5816 
	11181 

	DDR3A→MSRAM
	7503 
	5398 
	5388 
	5180 
	7448 

	LL2 → DDR3B
	6215 
	5917 
	5827 
	5666 
	6279 

	DDR3B → LL2
	6080 
	5584 
	5584 
	5544 
	5962 

	DDR3B → DDR3B
	4396 
	3458 
	3427 
	3591 
	4473 

	MSRAM→DDR3B
	11141 
	5827 
	5849 
	5816 
	10789 

	DDR3B→MSRAM
	7807 
	5564 
	5751 
	5504 
	8137 

	DDR3A→DDR3B
	7255 
	5287 
	5305 
	4876 
	7290 

	DDR3B→DDR3A
	7907 
	5554 
	5564 
	5296 
	7787 


For data transfer between MSRAM and DDR, CC0 and CC4 achieve about two times throughput as other TCs. Without special note, all performance data in this application report is measured on CC0 TC0.

EDMA Throughput vs Transfer Flexibility
EDMA3 channel parameters allow many different transfer configurations. Most typical transfers burst properly, and memory bandwidth is fully utilized. However, in some less common configurations, transfers are unable to burst, reducing performance. To properly design a system, it is important to know which configurations offer the best performance for high speed operations, and which must trade throughput for flexibility. 
First Dimension Size (ACNT) Considerations, Burst width 
To make full utilization of bandwidth in the transfer engine, it is important to fully utilize the bus width available and allow for data bursting. 

ACNT size should be multiple of 16 bytes to fully utilize 128bit or 256bit bus width; ACNT should be multiple of 64 bytes to fully utilize default burst size; ACNT should be multiple of 1024 bytes to fully utilize the FIFO.

Figure 10 shows performance data from 1.2GHz KeyStone II EVM with 64-bit 1600MTS DDR, transferring 1~24K bytes from MSRAM to DDR using an EDMA3 channel.
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Figure 10. effect of ACNT size on EDMA throughput
As conclusion, the bigger ACNT, the more bandwidth can be utilized.
Two Dimension Considerations, Transfer Optimization

If 2D transfer (AB_Sync) is linear (BIDX=ACNT), and the ACNT value is a power of 2, the 2D transfer will be optimized as 1D transfer.  Various ACNT and BCNT combinations were investigated; however, the overall transfer size (ACNT * BCNT) was proved to have more bearing than the particular combination settings. Figure 11 is linear 2D transfer test result on 1.2GHz KeyStone II EVM with 64-bit 1600MTS DDR, it shows, no matter what BCNT, the throughput are similar as long as ACNTxBCNT are same. 
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Figure 11. Linear 2D transfer

If 2D transfer is not linear, the bandwidth utilization is determined by the ACNT as showed in Figure 8.
Index Consideration

Index dramatically affects the EDMA throughput. Linear transfer (Index= ACNT) fully utilizes bandwidth; Other index modes may lower the EDMA performance. Odd index has worst performance. If index is power of 2, and it is larger than 8, the performance degradation is very small.

Figure 12 shows the index effect on EDMA throughput, transferring 1024 rows (BCNT= 1024) of 2D data form MSRAM to DDR, with different index on 1.2GHz KeyStone II EVM with 64-bit 1600MTS DDR.
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Figure 12. Index effect on EDMA throughput
Please note, for Index= ACNT, and ACNT is a power of 2, the 2D transfer will is optimized as 1D transfer, thus achieve much better performance.

Without special note, all performance data in this application report is measured with Index= ACNT.
Address Alignment

Address alignment may slightly impact the performance. The default burst size of EDMA3 is 64bytes or 128 bytes, if the transfer across the 64 bytes boundary, then the EDMA3 TC breaks the ACNT array into 64-bytes burst to the source/destination addresses. So, if the source or destination address is not align to 64 bytes boundary, and the transfer across 64 bytes boundary, extra burst will be generated to handle the unaligned head and tail data. 

For big transfer this overhead may be ignored. All data presented in this document are based on the address aligned transfer. 
Performance of Multiple masters sharing memory
Since the KeyStone 2 includes up to 12 cores and multiple DMA masters, they may access memory in parallel. This section discusses the performance of multiple masters sharing memory.

Following figures show the typical test setup for CPU and EDMA sharing memory.
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Figure 13. Multiple DSP cores copy date to/from same shared memory
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Figure 14. Multiple ARM cores copy date to/from same shared memory


[image: image19.emf]EDMA 

CC1 TC1

Core1

LL2

MSRAM

EDMA 

CC1 TC2

Core2

LL2

EDMA 

CC1 TC3

Core3 

LL2

EDMA 

CC2 TC0

DDR3A

EDMA 

CC2 TC1

Core4 

LL2

EDMA 

CC2 TC2

Core5 

LL2

EDMA 

CC2 TC3

Core6 

LL2

EDMA 

CC3 TC0

Core7 

LL2

EDMA 

CC0 TC0

EDMA 

CC0 TC1

EDMA 

CC1 TC0

Core0 

LL2

EDMA 

CC3 TC1

EDMA 

CC4 TC0

DDR3B

EDMA 

CC4 TC1


Figure 15. Multiple EDMA TCs copy date to/from MSRAM
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Figure 16. Multiple EDMA TCs copy date to/from DDR3A
Each master copies data from its source buffer to its destination buffer. In shared memory, each master has separated buffer. All masters transfer data simultaneously, total data bytes transferred by each master in same time period (about 3 seconds) are counted; the throughput each master achieved is calculated by taking total bytes copied and dividing it by the time period.
Performance of Multiple masters sharing MSMC RAM

The data on MSMC RAM is organized as following.

	Bank 0
	Bank 1
	
	Bank 7

	byte 0
	…
	byte 31
	byte 128
	…
	byte 159
	…
	…
	…
	byte 896
	…
	byte 927

	byte 32
	…
	byte 63
	byte 160
	…
	byte 191
	…
	…
	…
	byte 928
	…
	byte 959

	byte 64
	…
	byte 95
	byte 192
	…
	byte 223
	…
	…
	…
	byte 960
	…
	byte 991

	byte 96
	…
	byte 127
	byte 224
	…
	byte 255
	…
	…
	…
	byte 992
	…
	byte 1023

	byte1024
	
	byte 1055
	…
	…
	…
	…
	…
	…
	…
	…
	…

	…
	…
	…
	…
	…
	…
	…
	…
	…
	…
	…
	…


Figure 17. Data organization on MSMC RAM banks

All masters can access the 8 MSMC RAM banks through MSMC (Multicore Shared Memory Controller), which is actually a bus switch. Multiple masters can access different banks in parallel; if multiple masters access same bank, it is arbitrated based on priority.

Following tables show the performance data measured when multiple masters access MSMC RAM simultaneously on 1.2GHz KeyStone 2. 
In following tables, each column represents a test case, different test case use different number of masters to access memory simultaneously, the blank cell in a column means corresponding master is not used for that case, and the number in a cell means the throughput the corresponding master achieve in that case. The last row is the total throughput achieved by all masters for that case.
Performance of Multiple DSP cores sharing MSMC RAM
In this test, DSP core L1D cache size is set to 32KB, L2 cached is not used, prefetch buffer is enabled. 

Table 9. Performance of Multiple DSP cores sharing MSMC RAM
	MSMC RAM->LL2 throughput(MB/s), same priority

	Core0
	2784
	2780
	2780
	2781
	2782
	2783
	      
	      
	      
	      
	      

	Core1
	      
	2761
	2761
	2760
	2761
	2761
	      
	      
	      
	      
	      

	Core2
	      
	      
	2761
	2760
	2761
	2761
	2761
	      
	      
	      
	      

	Core3
	      
	      
	      
	2760
	2761
	2761
	2761
	      
	      
	      
	      

	Core4
	      
	      
	      
	      
	2761
	2761
	2761
	2762
	      
	      
	      

	Core5
	      
	      
	      
	      
	2761
	2761
	2761
	2762
	2762
	      
	      

	Core6
	      
	      
	      
	      
	      
	2761
	2761
	2762
	2762
	2762
	      

	Core7
	      
	      
	      
	      
	      
	2761
	2761
	2762
	2762
	2762
	2762

	Total
	2784
	5541
	8302
	11061
	16587
	22110
	16566
	11048
	8286
	5524
	2762

	LL2->MSMC RAM throughput(MB/s), same priority

	Core0
	4350
	4351
	4351
	4353
	4353
	4353
	      
	      
	      
	      
	      

	Core1
	      
	4303
	4303
	4303
	4302
	4301
	      
	      
	      
	      
	      

	Core2
	      
	      
	4303
	4303
	4302
	4301
	4304
	      
	      
	      
	      

	Core3
	      
	      
	      
	4303
	4302
	4301
	4304
	      
	      
	      
	      

	Core4
	      
	      
	      
	      
	4302
	4301
	4304
	4304
	      
	      
	      

	Core5
	      
	      
	      
	      
	4302
	4301
	4304
	4304
	4304
	      
	      

	Core6
	      
	      
	      
	      
	      
	4301
	4304
	4304
	4304
	4304
	      

	Core7
	      
	      
	      
	      
	      
	4301
	4304
	4304
	4304
	4304
	4304

	Total
	4350
	8654
	12957
	17262
	25863
	34460
	25824
	17216
	12912
	8608
	4304


Above data proves the MSMC RAM is NOT the bottle neck for multiple DSP cores access MSMC RAM simultaneously. The MSMC RAM has enough bandwidth (600M x 32 x 8 = 153600MB/s) to support multiple cores access simultaneously. The throughput limitation is on DSP core itself. 

Since the MSMC RAM bandwidth is enough for multiple core access, the priority of different core is not important for these cases.
Performance of Multiple EDMA sharing MSMC RAM
Table 10. Performance of Multiple EDMA sharing MSMC RAM

	Throughput (MB/s), Write to MSRAM, same priority

	CC0 TC0
	
	6722
	4942
	4044
	4167
	3623
	3614
	3497
	3333
	      
	      
	      
	      
	      
	      
	      

	CC0 TC1
	
	      
	4942
	5828
	4167
	3623
	3614
	3497
	2113
	      
	      
	      
	      
	      
	      
	      

	CC1 TC0
	
	      
	      
	4328
	4293
	4021
	2018
	1935
	1763
	2731
	      
	      
	      
	      
	      
	      

	CC1 TC1
	
	      
	      
	4328
	4293
	4021
	2013
	1935
	1763
	2729
	      
	      
	      
	      
	      
	      

	CC1 TC2
	
	      
	      
	      
	4293
	4021
	3962
	2607
	1436
	1899
	1908
	      
	      
	      
	      
	      

	CC1 TC3
	
	      
	      
	      
	4293
	4021
	3949
	1855
	1037
	1352
	1357
	      
	      
	      
	      
	      

	CC2 TC0
	
	      
	      
	      
	      
	2805
	2836
	3043
	4087
	4722
	4689
	4725
	      
	      
	      
	      

	CC2 TC1
	
	      
	      
	      
	      
	6027
	6022
	6001
	5354
	5337
	5217
	5310
	      
	      
	      
	      

	CC2 TC2
	
	      
	      
	      
	      
	      
	1988
	1901
	1733
	2665
	5141
	5228
	6020
	      
	      
	      

	CC2 TC3
	
	      
	      
	      
	      
	      
	1989
	1902
	1734
	2666
	5131
	5216
	6020
	      
	      
	      

	CC3 TC0
	
	      
	      
	      
	      
	      
	      
	1343
	730
	971
	974
	2948
	3437
	3433
	      
	      

	CC3 TC1
	
	      
	      
	      
	      
	      
	      
	1825
	1026
	1334
	1339
	2550
	2910
	2918
	      
	      

	CC4 TC0
	
	      
	      
	      
	      
	      
	      
	      
	1989
	2550
	2563
	2656
	3047
	3054
	5552
	      

	CC4 TC1
	
	      
	      
	      
	      
	      
	      
	      
	1989
	2550
	2563
	2656
	3047
	3054
	5552
	7310

	Total
	
	6722
	9884
	18528
	25506
	32162
	32005
	31341
	30087
	31506
	30882
	31289
	24481
	12459
	11104
	7310

	Throughput (MB/s), Write to MSRAM, different priority

	CC0 TC0
	0
	6721
	4888
	4031
	4101
	2870
	2863
	2869
	3638
	      
	      
	      
	      
	      
	      
	      

	CC0 TC1
	1
	      
	4888
	5829
	4101
	2866
	2863
	2868
	2266
	      
	      
	      
	      
	      
	      
	      

	CC1 TC0
	2
	      
	      
	4333
	4320
	4691
	2440
	2409
	2156
	3158
	      
	      
	      
	      
	      
	      

	CC1 TC1
	3
	      
	      
	4332
	4320
	4622
	2438
	2407
	2155
	3150
	      
	      
	      
	      
	      
	      

	CC1 TC2
	4
	      
	      
	      
	4320
	4614
	4486
	3004
	1589
	2079
	2152
	      
	      
	      
	      
	      

	CC1 TC3
	5
	      
	      
	      
	4320
	4613
	4475
	2122
	1139
	1486
	1540
	      
	      
	      
	      
	      

	CC2 TC0
	6
	      
	      
	      
	      
	2110
	2111
	2108
	2850
	3667
	4058
	4278
	      
	      
	      
	      

	CC2 TC1
	7
	      
	      
	      
	      
	5650
	5467
	5196
	3972
	3966
	4466
	4756
	      
	      
	      
	      

	CC2 TC2
	0
	      
	      
	      
	      
	      
	2389
	2359
	2115
	3012
	5941
	5955
	6029
	      
	      
	      

	CC2 TC3
	1
	      
	      
	      
	      
	      
	2390
	2360
	2115
	3020
	5921
	5941
	6029
	      
	      
	      

	CC3 TC0
	2
	      
	      
	      
	      
	      
	      
	1552
	810
	1066
	1100
	3347
	3506
	3500
	      
	      

	CC3 TC1
	3
	      
	      
	      
	      
	      
	      
	2086
	1127
	1467
	1520
	2914
	3056
	3063
	      
	      

	CC4 TC0
	4
	      
	      
	      
	      
	      
	      
	      
	2151
	2732
	2819
	2924
	3077
	3084
	6574
	      

	CC4 TC1
	5
	      
	      
	      
	      
	      
	      
	      
	2120
	2614
	2692
	2706
	2818
	2828
	4507
	7316

	Total
	
	6721
	9776
	18525
	25482
	32036
	31922
	31340
	30203
	31417
	32209
	32821
	24515
	12475
	11081
	7316

	Throughput (MB/s), Read from MSRAM, same priority

	CC0 TC0
	
	10004
	5048
	4981
	4961
	3356
	3359
	3352
	3910
	      
	      
	      
	      
	      
	      
	      

	CC0 TC1
	
	      
	5048
	4981
	4961
	3356
	3358
	3352
	2255
	      
	      
	      
	      
	      
	      
	      

	CC1 TC0
	
	      
	      
	3871
	3838
	4535
	2263
	2315
	1893
	2975
	      
	      
	      
	      
	      
	      

	CC1 TC1
	
	      
	      
	3870
	3838
	4535
	2261
	2313
	1892
	2970
	      
	      
	      
	      
	      
	      

	CC1 TC2
	
	      
	      
	      
	3838
	4535
	4398
	2069
	1171
	1467
	1531
	      
	      
	      
	      
	      

	CC1 TC3
	
	      
	      
	      
	3838
	4535
	4380
	2225
	1166
	1493
	1560
	      
	      
	      
	      
	      

	CC2 TC0
	
	      
	      
	      
	      
	3293
	3299
	3326
	3843
	5527
	5677
	5927
	      
	      
	      
	      

	CC2 TC1
	
	      
	      
	      
	      
	5988
	6007
	5967
	5907
	5559
	5677
	5927
	      
	      
	      
	      

	CC2 TC2
	
	      
	      
	      
	      
	      
	2219
	2265
	1858
	2880
	5677
	5927
	5586
	      
	      
	      

	CC2 TC3
	
	      
	      
	      
	      
	      
	2220
	2266
	1858
	2884
	5676
	5927
	5586
	      
	      
	      

	CC3 TC0
	
	      
	      
	      
	      
	      
	      
	1391
	615
	852
	892
	1917
	2572
	2586
	      
	      

	CC3 TC1
	
	      
	      
	      
	      
	      
	      
	1151
	586
	753
	787
	1691
	2136
	2130
	      
	      

	CC4 TC0
	
	      
	      
	      
	      
	      
	      
	      
	2241
	2844
	2972
	3210
	3848
	3848
	5732
	      

	CC4 TC1
	
	      
	      
	      
	      
	      
	      
	      
	2241
	2844
	2972
	3210
	3848
	3848
	5732
	10654

	Total
	
	10004
	10096
	17703
	25274
	34133
	33764
	31992
	31436
	33048
	33421
	33736
	23576
	12412
	11464
	10654

	Throughput (MB/s), Read from MSRAM, different priority

	CC0 TC0
	0
	10000
	5710
	5000
	4910
	4848
	4850
	4849
	4851
	      
	      
	      
	      
	      
	      
	      

	CC0 TC1
	1
	      
	4377
	4998
	4867
	3634
	3637
	3649
	3638
	      
	      
	      
	      
	      
	      
	      

	CC1 TC0
	2
	      
	      
	3870
	3865
	3822
	1932
	1924
	1917
	2764
	      
	      
	      
	      
	      
	      

	CC1 TC1
	3
	      
	      
	3870
	3865
	3800
	1930
	1923
	1916
	2762
	      
	      
	      
	      
	      
	      

	CC1 TC2
	4
	      
	      
	      
	3866
	4157
	4128
	1589
	1090
	1348
	1367
	      
	      
	      
	      
	      

	CC1 TC3
	5
	      
	      
	      
	3865
	4144
	4115
	1847
	655
	805
	817
	      
	      
	      
	      
	      

	CC2 TC0
	6
	      
	      
	      
	      
	403
	406
	395
	406
	1546
	1778
	1717
	      
	      
	      
	      

	CC2 TC1
	7
	      
	      
	      
	      
	1369
	1246
	718
	651
	1545
	1777
	1718
	      
	      
	      
	      

	CC2 TC2
	0
	      
	      
	      
	      
	      
	1935
	1926
	1920
	2701
	5221
	5192
	5488
	      
	      
	      

	CC2 TC3
	1
	      
	      
	      
	      
	      
	1936
	1926
	1921
	2702
	5211
	5183
	5488
	      
	      
	      

	CC3 TC0
	2
	      
	      
	      
	      
	      
	      
	2149
	1684
	1746
	1760
	3044
	3301
	3328
	      
	      

	CC3 TC1
	3
	      
	      
	      
	      
	      
	      
	1845
	1542
	1906
	1920
	2633
	2861
	2911
	      
	      

	CC4 TC0
	4
	      
	      
	      
	      
	      
	      
	      
	2377
	3937
	3978
	4086
	4313
	4356
	6107
	      

	CC4 TC1
	5
	      
	      
	      
	      
	      
	      
	      
	220
	1578
	1611
	1485
	1777
	1741
	5280
	10649

	Total
	
	10000
	10087
	17738
	25238
	26177
	26115
	24740
	24788
	25340
	25440
	25058
	23228
	12336
	11387
	10649


Though MSMC RAM has very high bandwidth, but all EDMA TCs access it through three bridges (1/3 core clock speed, 256-bit) on TeraNet switch fabric, the port on the switch fabric becomes the bottleneck, refer to section “System Interconnect” in device data manual for more details. The theoretic bandwidth of those ports is 400MHz x 32 bytes x 3 = 38400MB/s. 
The memory bandwidth allocation between EDMA TCs is affected by following factors:

1. Bus width of TCs. The bus width of CC0 and CC4 is 256 bits, the other CCs are 128 bits.

2. The connection to the bridges. Each TC connects to shared memory through one of the three bridges. There are up to 14 TCs, but only 3 bridges, so, some TCs share same bridge, refer to section “System Interconnect” in device data manual for more details.
3. Priority. Different priority is shown in the second column of above tables
If these factors are equivalent for several TCs, then the bandwidth will be allocated between them almost equally.
Performance of Multiple masters sharing DDR

If multiple masters access DDR at same time, it is arbitrated based on priority of the masters.

The bank number of different DDR device may be different. The DDR controller on KeyStone 2 can support DDR memory with 1, 2, 4, or 8 banks. The DDR on KeyStone 2 EVM has 8 banks; the data on it is organized as following. Please note, the row size for different DDR device may be different.
	
	Bank0
	Bank1
	…
	Bank7

	Row 0
	byte 0~8191
	byte 8192~8192*2-1
	…
	byte 8192*7~8192*8-1

	Row 1
	byte 8192*8~8192*9-1
	byte 8192*9~8192*10-1
	…
	byte 8192*15~8192*16-1

	…
	…
	…
	…
	…


Figure 18. Data organization on DDR banks

Though DDR has multiple banks, but there is NO multiple buses connect to each bank like MSMC RAM. So, the bank number does not directly improve the throughput.

The DDR SDRAM is accessed based on row or page. Before a master accesses data in a page, it must open the page firstly, and then it can randomly access any bytes in the page. If master wants to access data in a new row in same bank, the old row must be closed firstly, and then open the new row in the same bank for access. The row switch (row close/open) operations introduce extra delay cycles, which is called row switch overhead.

Every bank can have one open row, so the DDR with 8 banks can have 8 open rows at the same time, which reduces the probability of row switch. For example, after a master opens row 0 in bank 0 for access, it can open row 1 in bank 1 without closing the row 0 in bank 0, and then the master can access both row 0 in bank 0 and row 1 in bank 1 randomly without row switch overhead.

Two data structures for test are defined to verify the effect of DDR row switch (row close/open) overhead. 

	
	Bank 0
	Bank 1
	Bank2
	…
	Bank n
	…

	Row 0
	Master 0 Access Range
	
	
	
	
	

	Row 1
	Master 1 Access Range
	
	
	
	
	

	Row 2
	Master 2 Access Range
	
	
	
	
	

	…
	…
	
	
	
	
	

	Row n
	Master n Access Range
	
	
	
	
	

	…
	…
	
	
	
	
	


Figure 19. Multiple master access different rows on same DDR bank

Above case is the worst case with maximum row switch overhead. Every master access may result in row switch. 

Following case is the best case without any row switch because every master always access an open row dedicated for it.
	
	Bank 0
	Bank 1
	Bank2
	…
	Bank n
	…

	Row 0
	Master 0 Access Range
	
	
	
	
	

	Row 1
	
	Master 1 Access Range
	
	
	
	

	Row 2
	
	
	Master 2 Access Range
	
	
	

	…
	
	
	
	…
	
	

	Row n
	
	
	
	
	Master n Access Range
	

	…
	…
	
	
	
	
	…


Figure 20. Multiple master access different rows on different DDR banks

Following table shows the Performance of Multiple DSP cores sharing the 64-bit 1600M DDR3A on 1.2GHz KeyStone 2 EVM under different scenarios. Test result for sharing DDR3B is almost same. Every master accesses its own data buffer on the DDR repeatedly. Total data bytes transferred by each master in same time period (about 3 seconds) are counted; the throughput each master achieved is calculated by taking total bytes copied and dividing it by the time period.
In following tables, each column represents a test case, different test case use different number of masters to access memory simultaneously, the blank cell in a column means corresponding master is not used for that case, and the number in a cell means the throughput the corresponding master achieves in that case. The last row is the total throughput achieved by all masters for that case.
Performance of Multiple DSP cores sharing DDR
The DDR is cacheable and prefetchable for this test, and the L1D cache is set to 32KB, L2 cache size is set to 256KB, prefetch buffer is enabled. Non-cacheable case is not measured because it demands much less bandwidth than cacheable case.
Table 11. Performance of Multiple DSP cores sharing DDR
	DDR->LL2 throughput(MB/s), different row in different bank, same priority

	Core0
	
	1652
	1637
	1633
	1633
	1602
	1454
	       
	       
	       
	       
	       

	Core1
	
	       
	1613
	1616
	1617
	1587
	1450
	       
	       
	       
	       
	       

	Core2
	
	       
	       
	1616
	1617
	1587
	1449
	1596
	       
	       
	       
	       

	Core3
	
	       
	       
	       
	1616
	1587
	1449
	1587
	       
	       
	       
	       

	Core4
	
	       
	       
	       
	       
	1586
	1448
	1587
	1633
	       
	       
	       

	Core5
	
	       
	       
	       
	       
	1585
	1448
	1586
	1621
	1634
	       
	       

	Core6
	
	       
	       
	       
	       
	       
	1448
	1585
	1621
	1621
	1633
	       

	Core7
	
	       
	       
	       
	       
	       
	1448
	1585
	1620
	1621
	1619
	1647

	Total
	  
	1652
	3250
	4865
	6483
	9534
	11594
	9526
	6495
	4876
	3252
	1647

	DDR->LL2, different row in different bank, different priority

	Core0
	0
	1650
	1638
	1641
	1648
	1645
	1632
	       
	       
	       
	       
	       

	Core1
	1
	       
	1610
	1613
	1620
	1621
	1626
	       
	       
	       
	       
	       

	Core2
	2
	       
	       
	1603
	1610
	1609
	1616
	1644
	       
	       
	       
	       

	Core3
	3
	       
	       
	       
	1593
	1592
	1596
	1623
	       
	       
	       
	       

	Core4
	4
	       
	       
	       
	       
	1553
	1550
	1611
	1642
	       
	       
	       

	Core5
	5
	       
	       
	       
	       
	1449
	1445
	1595
	1622
	1637
	       
	       

	Core6
	6
	       
	       
	       
	       
	       
	1174
	1555
	1611
	1617
	1633
	       

	Core7
	7
	       
	       
	       
	       
	       
	788
	1440
	1595
	1608
	1614
	1647

	Total
	  
	1650
	3248
	4857
	6471
	9469
	11427
	9468
	6470
	4862
	3247
	1647

	DDR->LL2 throughput(MB/s), different row in same bank, same priority

	Core0
	
	1650
	1398
	1287
	1088
	741
	554
	       
	       
	       
	       
	       

	Core1
	
	       
	1394
	1285
	1085
	739
	553
	       
	       
	       
	       
	       

	Core2
	
	       
	       
	1285
	1085
	739
	553
	739
	       
	       
	       
	       

	Core3
	
	       
	       
	       
	1085
	739
	553
	739
	       
	       
	       
	       

	Core4
	
	       
	       
	       
	       
	739
	553
	739
	1077
	       
	       
	       

	Core5
	
	       
	       
	       
	       
	739
	553
	739
	1077
	1286
	       
	       

	Core6
	
	       
	       
	       
	       
	       
	552
	739
	1077
	1286
	1373
	       

	Core7
	
	       
	       
	       
	       
	       
	516
	739
	1077
	1286
	1373
	1648

	Total
	
	1650
	2792
	3857
	4343
	4436
	4387
	4434
	4308
	3858
	2746
	1648

	LL2->DDR throughput(MB/s), different row in different bank, same priority

	Core0
	
	1821
	1814
	1812
	1810
	1749
	1478
	       
	       
	       
	       
	       

	Core1
	
	       
	1791
	1791
	1789
	1731
	1473
	       
	       
	       
	       
	       

	Core2
	
	       
	       
	1792
	1790
	1731
	1473
	1738
	       
	       
	       
	       

	Core3
	
	       
	       
	       
	1789
	1731
	1473
	1729
	       
	       
	       
	       

	Core4
	
	       
	       
	       
	       
	1731
	1473
	1729
	1800
	       
	       
	       

	Core5
	
	       
	       
	       
	       
	1731
	1473
	1729
	1789
	1802
	       
	       

	Core6
	
	       
	       
	       
	       
	       
	1473
	1729
	1791
	1791
	1801
	       

	Core7
	
	       
	       
	       
	       
	       
	1473
	1729
	1790
	1792
	1787
	1812

	Total
	  
	1821
	3605
	5395
	7178
	10404
	11789
	10383
	7170
	5385
	3588
	1812

	LL2->DDR, different row in different bank, different priority

	Core0
	0
	1820
	1813
	1821
	1825
	1824
	1811
	       
	       
	       
	       
	       

	Core1
	1
	       
	1775
	1785
	1789
	1787
	1790
	       
	       
	       
	       
	       

	Core2
	2
	       
	       
	1780
	1783
	1785
	1784
	1813
	       
	       
	       
	       

	Core3
	3
	       
	       
	       
	1767
	1771
	1770
	1788
	       
	       
	       
	       

	Core4
	4
	       
	       
	       
	       
	1693
	1679
	1785
	1817
	       
	       
	       

	Core5
	5
	       
	       
	       
	       
	1455
	1403
	1770
	1791
	1811
	       
	       

	Core6
	6
	       
	       
	       
	       
	       
	961
	1688
	1785
	1784
	1801
	       

	Core7
	7
	       
	       
	       
	       
	       
	545
	1442
	1769
	1778
	1772
	1811

	Total
	  
	1820
	3588
	5386
	7164
	10315
	11743
	10286
	7162
	5373
	3573
	1811

	LL2->DDR throughput(MB/s), different row in same bank, same priority

	Core0
	
	1821
	1531
	1334
	1103
	741
	555
	       
	       
	       
	       
	       

	Core1
	
	       
	1527
	1330
	1100
	739
	554
	       
	       
	       
	       
	       

	Core2
	
	       
	       
	1330
	1100
	739
	554
	739
	       
	       
	       
	       

	Core3
	
	       
	       
	       
	1100
	739
	554
	739
	       
	       
	       
	       

	Core4
	
	       
	       
	       
	       
	739
	554
	739
	1100
	       
	       
	       

	Core5
	
	       
	       
	       
	       
	739
	554
	739
	1100
	1330
	       
	       

	Core6
	
	       
	       
	       
	       
	       
	553
	739
	1100
	1330
	1499
	       

	Core7
	
	       
	       
	       
	       
	       
	482
	739
	1100
	1330
	1499
	1812

	Total
	
	1821
	3058
	3994
	4403
	4436
	4360
	4434
	4400
	3990
	2998
	1812


The performance of multiple cores access different rows on same DDR bank is worse than the performance of multiple cores access different rows on different DDR banks, the reason is the DDR row switch overhead.

Above table shows the DDR bandwidth (1600 x 8 = 12800MB/s) is NOT enough for all DSP cores access simultaneously, the priority of different core affects the bandwidth allocation between these cores. When the priority is same, the bandwidth is allocated between cores almost equally; while priority is different (different priority is shown in the second column of above tables), the low priority core gets lower bandwidth.

The DDR controller has the feature to momentarily raise the priority of oldest request to avoid starvation. There are configurable counters, which specifies Number of DDR3CLKOUT cycles after which DDR3 controller momentarily raises the priority of oldest request. Without special note, all tests for this application report are done with this counter to be 16x16=256. In 256 DDR3CLKOUT cycles, 256x2x8=4K bytes can be transferred, that is, after transfer of 4K bytes, DDR controller may raise the priority of oldest request.

Following tables show the performance of Multicore sharing the 64-bit 1600M DDR3A on 1.2GHz KeyStone 2 EVM with different priority raise count. Different priority is shown in the second column of the tables.

Table 12. Effect of DDR priority raise count

	LL2->DDR, different bank, different priority, priority raise count = 0

	Core0
	0
	1799
	1764
	1702
	1591
	1427
	       
	       
	       
	       

	Core1
	1
	1783
	1751
	1694
	1585
	1421
	1586
	       
	       
	       

	Core2
	2
	1783
	1751
	1694
	1585
	1421
	1586
	1705
	       
	       

	Core3
	3
	1783
	1751
	1694
	1585
	1421
	1586
	1705
	1752
	       

	Core4
	4
	       
	1751
	1694
	1585
	1421
	1586
	1705
	1752
	1807

	Core5
	5
	       
	       
	1694
	1585
	1421
	1586
	1705
	1752
	1807

	Core6
	6
	       
	       
	       
	1584
	1421
	1586
	1705
	1752
	1807

	Core7
	7
	       
	       
	       
	       
	1421
	1585
	1705
	1752
	1807

	Total
	  
	7148
	8768
	10172
	11100
	11374
	11101
	10230
	8760
	7228

	LL2->DDR, different bank, different priority, priority raise count = 256 

	Core0
	0
	1825
	1826
	1824
	1821
	1811
	       
	       
	       
	       

	Core1
	1
	1789
	1791
	1787
	1783
	1790
	1810
	       
	       
	       

	Core2
	2
	1783
	1786
	1785
	1781
	1784
	1789
	1813
	       
	       

	Core3
	3
	1767
	1770
	1771
	1769
	1770
	1785
	1788
	1816
	       

	Core4
	4
	       
	1686
	1693
	1693
	1679
	1769
	1785
	1791
	1817

	Core5
	5
	       
	       
	1455
	1455
	1403
	1685
	1770
	1785
	1791

	Core6
	6
	       
	       
	       
	992
	961
	1436
	1688
	1769
	1785

	Core7
	7
	       
	       
	       
	       
	545
	987
	1442
	1684
	1769

	Total
	  
	7164
	8859
	10315
	11294
	11743
	11261
	10286
	8845
	7162

	LL2->DDR, different bank, different priority, priority raise count = 4080

	Core0
	0
	1827
	1827
	1825
	1823
	1814
	       
	       
	       
	       

	Core1
	1
	1791
	1792
	1788
	1785
	1791
	1811
	       
	       
	       

	Core2
	2
	1786
	1787
	1785
	1784
	1786
	1790
	1814
	       
	       

	Core3
	3
	1770
	1771
	1772
	1772
	1774
	1786
	1789
	1816
	       

	Core4
	4
	       
	1687
	1696
	1700
	1689
	1771
	1785
	1792
	1817

	Core5
	5
	       
	       
	1454
	1465
	1416
	1692
	1772
	1786
	1791

	Core6
	6
	       
	       
	       
	985
	966
	1443
	1691
	1770
	1785

	Core7
	7
	       
	       
	       
	       
	516
	978
	1440
	1684
	1769

	Total
	  
	7174
	8864
	10320
	11314
	11752
	11271
	10291
	8848
	7162


According to above result, priority raise count=0 actually disable the priority scheme. The bigger the count, the priority scheme makes more difference. So, for real application, designer may chose a value between 0 and the maximum (4080) for the count according to his application requirement.
Performance of Multiple EDMA sharing DDR
Following table shows the Performance of Multiple EDMA TCs sharing 64-bit 1600M DDR3A on 1.2GHz KeyStone 2 EVM under different conditions. Test result for sharing DDR3B is almost same.
Table 13. Performance of Multiple EDMA sharing DDR
	Write to DDR3A, different bank, same priority

	CC0 TC0
	
	11894
	6054
	2077
	2025
	1350
	1129
	1161
	1172
	       
	       
	       
	       
	       
	       
	       

	CC0 TC1
	
	       
	6053
	5893
	2025
	1351
	1133
	1161
	707
	       
	       
	       
	       
	       
	       
	       

	CC1 TC0
	
	       
	       
	2065
	2011
	1344
	569
	586
	592
	938
	       
	       
	       
	       
	       
	       

	CC1 TC1
	
	       
	       
	2065
	2011
	1344
	569
	586
	592
	938
	       
	       
	       
	       
	       
	       

	CC1 TC2
	
	       
	       
	       
	2011
	1344
	1135
	777
	472
	627
	639
	       
	       
	       
	       
	       

	CC1 TC3
	
	       
	       
	       
	2011
	1344
	1134
	586
	355
	472
	481
	       
	       
	       
	       
	       

	CC2 TC0
	
	       
	       
	       
	       
	2019
	1701
	1751
	1767
	1873
	1911
	2021
	       
	       
	       
	       

	CC2 TC1
	
	       
	       
	       
	       
	2019
	1701
	1751
	1767
	1872
	1911
	2021
	       
	       
	       
	       

	CC2 TC2
	
	       
	       
	       
	       
	       
	567
	583
	589
	935
	1911
	2021
	3035
	       
	       
	       

	CC2 TC3
	
	       
	       
	       
	       
	       
	567
	583
	589
	935
	1911
	2021
	3035
	       
	       
	       

	CC3 TC0
	
	       
	       
	       
	       
	       
	       
	393
	238
	316
	322
	1011
	1519
	3194
	       
	       

	CC3 TC1
	
	       
	       
	       
	       
	       
	       
	583
	354
	470
	480
	1011
	1519
	2909
	       
	       

	CC4 TC0
	
	       
	       
	       
	       
	       
	       
	       
	702
	931
	949
	1011
	1519
	3019
	5717
	       

	CC4 TC1
	
	       
	       
	       
	       
	       
	       
	       
	702
	931
	949
	1011
	1519
	3018
	5717
	7409

	Total
	
	11894
	12107
	12100
	12094
	12115
	10205
	10501
	10598
	11238
	11464
	12128
	12146
	12140
	11434
	7409

	Write to DDR3A, different bank, different priority

	CC0 TC0
	0
	11905
	7004
	2316
	2277
	2250
	1949
	1867
	1856
	       
	       
	       
	       
	       
	       
	       

	CC0 TC1
	1
	       
	5117
	4502
	1493
	1367
	1302
	1258
	761
	       
	       
	       
	       
	       
	       
	       

	CC1 TC0
	2
	       
	       
	2291
	2255
	2228
	990
	947
	941
	1381
	       
	       
	       
	       
	       
	       

	CC1 TC1
	3
	       
	       
	2291
	2250
	2223
	990
	947
	941
	1381
	       
	       
	       
	       
	       
	       

	CC1 TC2
	4
	       
	       
	       
	1485
	1360
	1297
	842
	508
	624
	613
	       
	       
	       
	       
	       

	CC1 TC3
	5
	       
	       
	       
	1483
	1359
	1296
	635
	382
	470
	462
	       
	       
	       
	       
	       

	CC2 TC0
	6
	       
	       
	       
	       
	173
	231
	231
	224
	227
	227
	195
	       
	       
	       
	       

	CC2 TC1
	7
	       
	       
	       
	       
	173
	231
	231
	224
	227
	226
	195
	       
	       
	       
	       

	CC2 TC2
	0
	       
	       
	       
	       
	       
	981
	940
	934
	1367
	2715
	3259
	3353
	       
	       
	       

	CC2 TC3
	1
	       
	       
	       
	       
	       
	981
	940
	934
	1367
	2714
	3258
	3353
	       
	       
	       

	CC3 TC0
	2
	       
	       
	       
	       
	       
	       
	426
	256
	315
	309
	1031
	1154
	3214
	       
	       

	CC3 TC1
	3
	       
	       
	       
	       
	       
	       
	632
	381
	468
	460
	1031
	1152
	2980
	       
	       

	CC4 TC0
	4
	       
	       
	       
	       
	       
	       
	       
	755
	924
	907
	1031
	1154
	3004
	6548
	       

	CC4 TC1
	5
	       
	       
	       
	       
	       
	       
	       
	755
	924
	907
	1031
	1153
	2852
	4857
	7413

	Total
	
	11905
	12121
	11400
	11243
	11133
	10248
	9896
	9852
	9675
	9540
	11031
	11319
	12050
	11405
	7413

	Write to DDR3A, same bank,  same priority

	CC0 TC0
	
	11938
	4160
	756
	523
	344
	298
	262
	233
	       
	       
	       
	       
	       
	       
	       

	CC0 TC1
	
	       
	4160
	2207
	523
	344
	298
	262
	140
	       
	       
	       
	       
	       
	       
	       

	CC1 TC0
	
	       
	       
	754
	522
	343
	149
	131
	117
	171
	       
	       
	       
	       
	       
	       

	CC1 TC1
	
	       
	       
	754
	522
	343
	149
	131
	117
	171
	       
	       
	       
	       
	       
	       

	CC1 TC2
	
	       
	       
	       
	522
	343
	298
	174
	93
	114
	136
	       
	       
	       
	       
	       

	CC1 TC3
	
	       
	       
	       
	522
	343
	298
	131
	70
	85
	102
	       
	       
	       
	       
	       

	CC2 TC0
	
	       
	       
	       
	       
	515
	448
	393
	351
	341
	409
	427
	       
	       
	       
	       

	CC2 TC1
	
	       
	       
	       
	       
	515
	447
	393
	351
	341
	409
	427
	       
	       
	       
	       

	CC2 TC2
	
	       
	       
	       
	       
	       
	149
	131
	117
	170
	409
	427
	908
	       
	       
	       

	CC2 TC3
	
	       
	       
	       
	       
	       
	149
	131
	117
	170
	409
	426
	908
	       
	       
	       

	CC3 TC0
	
	       
	       
	       
	       
	       
	       
	87
	47
	57
	68
	213
	454
	1113
	       
	       

	CC3 TC1
	
	       
	       
	       
	       
	       
	       
	131
	70
	85
	102
	213
	454
	1111
	       
	       

	CC4 TC0
	
	       
	       
	       
	       
	       
	       
	       
	140
	170
	204
	213
	454
	1119
	3841
	       

	CC4 TC1
	
	       
	       
	       
	       
	       
	       
	       
	140
	170
	204
	213
	454
	1119
	3841
	7400

	Total
	
	11938
	8320
	4471
	3134
	3090
	2683
	2357
	2103
	2045
	2452
	2559
	3632
	4462
	7682
	7400

	Read from DDR3A, different bank, same priority

	CC0 TC0
	
	7470
	6032
	3169
	2694
	1807
	1756
	1780
	1775
	       
	       
	       
	       
	       
	       
	       

	CC0 TC1
	
	       
	6032
	4949
	2694
	1807
	1756
	1571
	805
	       
	       
	       
	       
	       
	       
	       

	CC1 TC0
	
	       
	       
	2029
	1690
	1131
	554
	563
	563
	1012
	       
	       
	       
	       
	       
	       

	CC1 TC1
	
	       
	       
	2029
	1690
	1131
	554
	563
	563
	1011
	       
	       
	       
	       
	       
	       

	CC1 TC2
	
	       
	       
	       
	1690
	1131
	1106
	603
	403
	504
	536
	       
	       
	       
	       
	       

	CC1 TC3
	
	       
	       
	       
	1690
	1131
	1106
	609
	404
	505
	537
	       
	       
	       
	       
	       

	CC2 TC0
	
	       
	       
	       
	       
	2010
	1960
	1985
	1983
	1986
	2107
	2209
	       
	       
	       
	       

	CC2 TC1
	
	       
	       
	       
	       
	2010
	1958
	1984
	1981
	1984
	2107
	2209
	       
	       
	       
	       

	CC2 TC2
	
	       
	       
	       
	       
	       
	552
	561
	560
	1003
	2107
	2209
	3141
	       
	       
	       

	CC2 TC3
	
	       
	       
	       
	       
	       
	552
	561
	560
	1003
	2106
	2209
	3141
	       
	       
	       

	CC3 TC0
	
	       
	       
	       
	       
	       
	       
	316
	203
	254
	270
	566
	1005
	2179
	       
	       

	CC3 TC1
	
	       
	       
	       
	       
	       
	       
	307
	202
	254
	270
	566
	1005
	2098
	       
	       

	CC4 TC0
	
	       
	       
	       
	       
	       
	       
	       
	798
	1002
	1065
	1119
	1959
	3897
	5595
	       

	CC4 TC1
	
	       
	       
	       
	       
	       
	       
	       
	798
	1002
	1065
	1119
	1958
	3897
	5595
	6945

	Total
	
	7470
	12064
	12176
	12148
	12158
	11854
	11403
	11598
	11520
	12170
	12206
	12209
	12071
	11190
	6945

	Read from DDR3A, different bank, different priority

	CC0 TC0
	0
	7474
	5932
	2438
	1987
	2040
	2191
	2181
	2178
	       
	       
	       
	       
	       
	       
	       

	CC0 TC1
	1
	       
	5932
	4050
	1963
	1935
	2050
	2026
	1927
	       
	       
	       
	       
	       
	       
	       

	CC1 TC0
	2
	       
	       
	1558
	1278
	1313
	683
	685
	683
	1165
	       
	       
	       
	       
	       
	       

	CC1 TC1
	3
	       
	       
	1558
	1276
	1312
	682
	686
	684
	1166
	       
	       
	       
	       
	       
	       

	CC1 TC2
	4
	       
	       
	       
	1255
	1244
	1333
	432
	379
	443
	447
	       
	       
	       
	       
	       

	CC1 TC3
	5
	       
	       
	       
	1254
	1242
	1332
	399
	146
	221
	219
	       
	       
	       
	       
	       

	CC2 TC0
	6
	       
	       
	       
	       
	180
	149
	84
	79
	441
	531
	520
	       
	       
	       
	       

	CC2 TC1
	7
	       
	       
	       
	       
	180
	149
	84
	79
	440
	531
	520
	       
	       
	       
	       

	CC2 TC2
	0
	       
	       
	       
	       
	       
	743
	742
	741
	1191
	2247
	2280
	2351
	       
	       
	       

	CC2 TC3
	1
	       
	       
	       
	       
	       
	743
	741
	741
	1191
	2245
	2279
	2350
	       
	       
	       

	CC3 TC0
	2
	       
	       
	       
	       
	       
	       
	767
	704
	691
	668
	1122
	1297
	2830
	       
	       

	CC3 TC1
	3
	       
	       
	       
	       
	       
	       
	742
	544
	819
	805
	1037
	1206
	2554
	       
	       

	CC4 TC0
	4
	       
	       
	       
	       
	       
	       
	       
	674
	1632
	1602
	1702
	1965
	3932
	5172
	       

	CC4 TC1
	5
	       
	       
	       
	       
	       
	       
	       
	8
	379
	376
	292
	473
	1501
	5172
	6952

	Total
	
	7474
	11864
	9604
	9013
	9446
	10055
	9569
	9567
	9779
	9671
	9752
	9642
	10817
	10344
	6952

	Read from DDR3A, same bank, same priority

	CC0 TC0
	
	7461
	4007
	1706
	1425
	765
	715
	589
	506
	       
	       
	       
	       
	       
	       
	       

	CC0 TC1
	
	       
	4007
	3259
	1425
	765
	715
	529
	228
	       
	       
	       
	       
	       
	       
	       

	CC1 TC0
	
	       
	       
	1070
	892
	478
	224
	184
	158
	277
	       
	       
	       
	       
	       
	       

	CC1 TC1
	
	       
	       
	1070
	892
	478
	224
	184
	158
	277
	       
	       
	       
	       
	       
	       

	CC1 TC2
	
	       
	       
	       
	892
	478
	448
	198
	114
	138
	147
	       
	       
	       
	       
	       

	CC1 TC3
	
	       
	       
	       
	892
	478
	448
	199
	114
	138
	147
	       
	       
	       
	       
	       

	CC2 TC0
	
	       
	       
	       
	       
	855
	801
	661
	569
	552
	589
	612
	       
	       
	       
	       

	CC2 TC1
	
	       
	       
	       
	       
	855
	801
	661
	569
	551
	589
	612
	       
	       
	       
	       

	CC2 TC2
	
	       
	       
	       
	       
	       
	224
	184
	158
	276
	589
	612
	1187
	       
	       
	       

	CC2 TC3
	
	       
	       
	       
	       
	       
	224
	184
	158
	276
	589
	612
	1187
	       
	       
	       

	CC3 TC0
	
	       
	       
	       
	       
	       
	       
	100
	57
	69
	74
	154
	373
	736
	       
	       

	CC3 TC1
	
	       
	       
	       
	       
	       
	       
	100
	57
	69
	74
	154
	373
	736
	       
	       

	CC4 TC0
	
	       
	       
	       
	       
	       
	       
	       
	227
	276
	295
	307
	737
	1435
	3516
	       

	CC4 TC1
	
	       
	       
	       
	       
	       
	       
	       
	227
	276
	295
	307
	737
	1435
	3516
	6914

	Total
	
	7461
	8014
	7105
	6418
	5152
	4824
	3773
	3300
	3175
	3388
	3370
	4594
	4342
	7032
	6914


Above table shows the DDR has NO enough bandwidth to support all EDMA TCs access it simultaneously. So, priority affects the bandwidth allocation between EDMAs. The low priority EDMA gets less bandwidth.

The performance of multiple EDMA TCs access different rows on same DDR bank is much worse than the performance of multiple EDMA TCs access different rows on different DDR banks, the reason is the DDR row switch overhead. The result becomes worse when DDR load becomes heavy. The worst case is multiple EDMA TCs write to different rows on same DDR bank, which is almost dominated by the row switch overhead because every write burst result in row switch.

The probability of row switch, i.e. multiple master accesses same DDR bank depends on the master number and DDR bank number. For example, if 4 EDMA randomly access DDR memory, the probability of at least two TCs access same DDR bank is:
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Following table list the probability for different master number.

Table 14. Probability of multiple masters access same DDR bank in 8 banks
	2 masters
	4 masters
	6 masters
	8 masters
	10 masters

	12.5%
	59%
	92.3%
	99.7%
	100%


The DDR controller on KeyStone 2 is optimized to alleviate the row switch overhead. An access to an open row may be given priority over the access to a closed row.
Performance of Multiple ARM cores sharing memory

Following table shows the Performance of Multiple ARM cores sharing MSRAM and 64-bit 1600M DDR3A on 1.2GHz KeyStone 2 EVM under different conditions.

Table 15. Performance of Multiple ARM cores sharing memory

	DDR3A->MSRAM throughput (MB/s)

	CPU 0
	2550
	1387
	962
	745
	      
	      
	      

	CPU 1
	      
	1498
	979
	781
	1000
	      
	      

	CPU 2
	      
	      
	991
	754
	999
	1356
	      

	CPU 3
	      
	      
	      
	735
	956
	1438
	2478

	Total
	2550
	2885
	2932
	3015
	2955
	2794
	2478

	MSRAM->DDR3A throughput (MB/s)

	CPU 0
	2793
	1951
	1382
	1100
	      
	      
	      

	CPU 1
	      
	1951
	1332
	1045
	1161
	      
	      

	CPU 2
	      
	      
	1341
	1001
	1161
	1914
	      

	CPU 3
	      
	      
	      
	1045
	1161
	1957
	2674

	Total
	2793
	3902
	4055
	4191
	3483
	3871
	2674


Since all ARM cores sharing same bus to MSMC, when multiple ARM cores access shared memory in parallel, the throughput of each core decreases obviously. This is different from DSP core, each DSP core has separate bus to MSMC (refer to Figure 1).

Following figure compares the performance of multiple cores sharing DDR3A.
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Figure 21. Comparison of multiple DSP cores and multiple ARM cores sharing DDR

The ARM core has big L2 cache, up to 4MB. In most usage cases, most data access will hit in L2 cache, and this will alleviate the contention on the bus to MSMC. However, in above test cases, the cache are flushed before each test case, and cores access shared memory through same bus in parallel, this is actually a worst case may rarely happen in real application.
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