Lamarr JESD204B

Debugging Guide

Texas Instruments

ASP — DSPS - Cl — Digital Radio (Graychip)

Revision History

Date Revision | Changes

2014-Feb-20 0.0 initial release
2014-Mar-10 | 0.1 FIFO errors
2014-Mar-14 | 0.2 Initialization sequence
2014-Mar-27 | 0.3 RX lane errors

If you have any questions regarding this document, please contact:
Geo Tu

geo@ti.com

(408) 543-5413

Table of Contents

INEFOUCTION .ttt ettt et b e bt e b e e b e e s bt e sbe e sheesanesatesane eesbeesaeenneenaes 3
2 To =T o 2 T oY (U o TSP 4
] 1 2B] S OO TP P PP UOPPPPPPTTON 4
1) 4 OO P PP PP 4
L@NES ettt ettt e et eaaeaaaaaeaaaaaaaaaaeaaaaaaeaa e nanan taetbereeereteaaaaraaaaaes 4
0}] 2 =L OO UTP O PPPPPPPTN 5
JESD-SERDES FIFOS ..ttt ettt ettt e e s e sttt e e e e s et ettt e e e e saanebe et e e e e esannbnareeesesan seeeesnn 6
JESD INTEIATIZAION .ttt s e s e s e bt e s e e e ne e sreeeneean 7
BreaKing the LiNK.....oco oottt et e e e e e e e e e e e e e aataeeeeeeeesanssraeeeaaeeessstaaseaaaas raaeaaanann 8
]] B) OO P PO PP PPPPPTPPPPPPPPPTNE 9
JESD TX Status @and Error SIZNAISeeicuuiii ittt et e s te e e ssate e e s sbte e e esabaeeesnteeeesbaeeeeanes 9
JESD RX ettt ettt ettt st h e st sttt e a ettt e b e e bt e b e bt e b et eh et eh et ea et ean e e bt e bt et eanesabeereeneereen 11
JESD RX Status and ErrOr SIZNaAIS.....ceccuieeiiiiiie ettt ecite et e et e e e s ata e e sstaeeesnabaeeeensaeessnsseeesnnsaeeaan 11
JESD RX LAN@ EFTOFS ittt sttt ettt et e s st e e s sme e s s be e e s s b e e e s smaeeesenrene s s oe 13
Introduction

While the JESD IP is customizable with compile-time parameters for integration into multiple chips, this
document is specific to Lamarr’s JESD block.

This document describes issues regarding board bringup, SYSREF, asynchronous FIFOs, initialization,
status signals, and error signals.

Board Bringup

Bringing up a board with a JESD link has a few challenges and things to verify. This section offers a list of
things to check.

SERDES

JESD data lanes are transmitted via SERDES, which typically is implemented using differential pair
transmission lines. Getting the SERDES link operational, running at the desired rates, and passing BER
tests is a set of prerequisites to verifying the JESD link.

Another issue that affects the SERDES RX is clock recovery. JESD RX logic has asynchronous FIFOs that
transfer the data from the SERDES RX byte clocks to the JESD/DFE clock domain. If the SERDES RX byte
clocks are not stable when the JESD RX is initialized, the FIFOs will overflow or underflow. In order to
successfully recover the byte clock, the SERDES RX needs to see a stream of comma codes at its input.
This means any JESD TX device should be initialized before any JESD RX device so that it can send that
stream of comma codes. If done in reverse order, then the JESD RX block in the JESD RX device needs to
be reinitialized by software by reasserting the init_state signal in order to reset the asynchronous FIFOs.

SYNC

Any JESD link has one or more data lanes driven by the transmitting device to the receiving device, for
example from a DSP to a DAC or from an ADC to a DSP. Every JESD link also has one SYNC signal driven in
the opposite direction by the receiving device to the transmitting device. This signal must also be
connected for the JESD link to work, whether it is connected physically on the board or connected
internally in loopback testing by link programming.

Lanes
If a lane is enabled by programming but not physically connected, the JESD link will not successfully
initialize. In other words, be sure to disable any unconnected lanes in the configuration file.

SYSREF

In any JESD204B Subclass 1 link, the local multiframe clock (LMFC) generated within each device is
aligned to an external input signal called SYSREF to achieve deterministic latency. With both LMFC’s in
the transmit and receive devices aligned to an external reference signal, a known relationship can be
determined between the LMFC's in the two devices. This allows for a known alignment between the
frame counters in each device, which ultimately allows for deterministic latency to be achieved across
the link. There are a few important things to note about using the SYSREF signal.

The SYSREF signal’s period must be an integer multiple of the LMFC period. The LMFC period varies
across configurations since it is calculated from the product of the frame length (F octets per frame) and
the multiframe length (K frames per multiframe) divided by the number of octets processed per clock
cycle (2 in Lamarr). In most Lamarr use cases, we’ve simply set the SYSREF period to a large 2" integer
multiple of the DFE clock rate.

However, this solution may not always work. If the JESD logic is running on a gated clock that is not
gated by a factor of 2", you may need to program SYSREF to operate at a different frequency. For
example, if the DFE clock is set to 368.64 MHz, and the JESD clock gating logic is gating off 1 of every 3
clocks to operate JESD an effective 245.76 MHz, then the SYSREF period may need to be changed by a
factor of 1.5.

The JESD logic has the ability to trigger an interrupt due to a “SYSREF error.” This error bit can indicate
different things. In normal operation, it would indicate that a sampled SYSREF edge does not align with
previously sampled SYSREF edges. This could be caused by an alignment drift, an asynchronous sampling
of SYSREF that is out of the margin of error, an incorrect programming of the SYSREF frequency given
the multiframe length, or an invalid programming of the multiframe length given available SYSREF
frequencies.

Depending on the reliability of the SYSREF generating device, the SYSREF signal may glitch when it is
initially turned on. To avoid sampling a potential glitch or glitches, the JESD may be programmed to
ignore the first one or two SYSREF edges. This is done by programming the control signal “sysref_mode”
in the JESD link layers.

By programming the JESD link layer to sample SYSREF continuously (sysref_mode =1, 4, or 6), the
SYSREF programming can be verified by simply checking for no SYSREF errors.

Once SYSREF operation has been verified, then deterministic latency can be achieved by programming
the JESD RX Elastic Buffers buffer delay (RBD). Instructions for this can be found in the section called “RX
Elastic Buffers” in the JESD204B Transmit and Receive Link Layer IP Cores integration spec named
TI_GC_JESD204B.docx.

JESD-SERDES FIFOs

One of the first potential problem causes to check is whether the JESD-SERDES FIFOs are operating
normally. Each JESDTX lane has a FIFO to transfer data from the JESD (gated) clock domain to the
SERDES byte clock domain. Each JESDRX lane has a FIFO to transfer data from the SERDES byte clock
domain to the JESD (gated) clock domain. These clock frequencies must precisely match for the FIFOs to
run. If they don’t match, the FIFOs could overflow or underflow as indicated by the write error and read
error bits for each FIFO.

Each lane has four FIFO flag bits:

[0] read_empty - empty flag

[1] read_error - asserted if read request when empty (cleared by syncing FIFO with init_state)
[2] write_full - full flag

[3] write_error - asserted if write request when full (cleared by syncing FIFO with init_state)

The FIFO flags are all connected to interrupt logic. Since the FIFO empty flag is asserted by default out of
reset, the interrupt bit may be high the first time it is read. To confirm that a FIFO truly is empty, you
must write a 0 to the register bit to clear the interrupt and read it again.

The FIFO interrupt register addresses are documented in the tables towards the end of this document.

JESD Initialization

Transmittens) Receiver(s)
[Syne_request -
__SYNC
.
fK28,5/
TDATA__
ki1 synchronized
_SYNG

-

'Wait for rising edge of
LMFC

Y
send initial lane
alignment L

DATA decode data
check synchronization

Figure 32 — Synchronization process for Subclass 1 or 2

Figure 32 from the JESD204B standard shows the order of events for successful initialization of a JESD
lane. The TX has one state machine whose status register is called sync_state, and the RX has two state
machines called c¢s_state for code group synchronization and fs_state for frame synchronization. To
elaborate on this figure, the following is a list of the state machine status registers to check for each
event during initialization.

sync_request

RX cs_state = 0 = CS_INIT, waiting for commas, assert sync request

RX fs_state = 0 = FS_INIT, sync request asserted or still receiving commas
TX sync_state = 0 = SYNC, waiting for sync request, transmitting commas

Note that a register to check in the TX is first_sync_request. This is a sticky bit that is asserted when the
first sync request is received from the JESD receiver. If DFE initialization successfully finishes, this should
be high and remain high.

/K28.5/
TX sync_state = 0 = SYNC, waiting for sync request, transmitting commas

If the TX state machine is stuck in this state, it means either it has not yet received a sync request from
the RX or the RX is asserting and holding the sync request and has not deasserted it yet.

synchronized
RX cs_state = 2 = CS_DATA, enough commas received, deassert sync request (operational state)

If the RX state machine is stuck in this state, it means that it has received enough commas from the TX
to achieve code group synchronization, but the TX has not started sending an initial lane alignment (ILA)
sequence or data.

send initial lane alignment (ILA)
TX sync_state = 1 = INIT_LANE, transmitting initial lane alignment (ILA) sequence

Chances are low for reading back this value for the TX state machine, because it should only be in this
state momentarily while it is transmitting the initial lane alignment (ILA) sequence.

decode data check synchronization
TX sync_state = 2 = DATA_ENC, transmitting data (operational state)
RX fs_state =1 =FS_DATA, lanes have been aligned, receiving data (operational state)

Once the link has been successfully initialized, the state machines should remain in the following states:
TX sync_state = 2 = DATA_ENC, transmitting data (operational state)

RX cs_state = 2 = CS_DATA, enough commas received, deassert sync request (operational state)

RX fs_state =1 =FS_DATA, lanes have been aligned, receiving data (operational state)

Breaking the Link

One way to purposely break the link is to transmit invalid 8b/10b codes. An easy way to do this is to
assert the clear_data signal in the JESD TX, which clears the output to the SERDES. Since a value of all
zeros is an invalid 10b code, this would throw the JESD RX code group synchronization state machine
back to its initial state (cs_state = 0), which would cause the JESD RX to assert a sync request on the
SYNC signal.

JESD TX

JESD TX Status and Error Signals

The following table includes the JESD TX status and error signals.

Signal Address Bits For Description
sync_state 0x25D00030 | 1:0 lane 0 | alignment state machine status. All lanes on
0x25D00030 | 5:4 lane 1 | the same link should be in the same state.
(read only) 0x25D00030 | 9:8 lane 2 | 0 =SYNC, waiting for sync request or
0x25D00030 | 13:12 | lane 3 | waiting for sync request to deassert,
transmitting commas
1 = INIT_LANE, transmitting initial lane
alignment (ILA) sequence (only in this state
momentarily)
2 = DATA_ENC, transmitting data —
operational state (verify with this value)
3 = UNDEFINED
fifo_flags 0x25D01C08 | 11:8 lane 0 | SerDes FIFO flags and errors
0x25D01C48 11:8 lane 1 [3] write_error - asserted if write request
(interrupt, 0x25D01C88 | 11:8 lane 2 | when full (cleared by syncing FIFO with
write 0 to clear) 0x25D01CC8 | 11:8 lane 3 | init_state)
[2] write_full - full flag
[1] read_error - asserted if read request
when empty (cleared by syncing FIFO with
init_state)
[0] read_empty - empty flag
These are interrupt bits, so you must write
a 0 to the bit to clear it.
first_sync_request | 0x25D00034 | O link O sticky bit that is asserted when the first
0x25D00034 | 4 link 1 sync request is received from the JESD
(read only) receiver, cleared with init_state
sysref_err 0x25D02008 | 8 link O if SYSREF comes at an unexpected time.
0x25D02008 |9 link 1 When the core is requesting the SYSREF

(interrupt,
write 0 to clear)

signal and it arrives misaligned to the LMFC,
this error will be asserted high. The first
SYSREF edge sampled according to the
sysref_mode will not trigger this error. This
only applies when the sysref mode is one
that continuously samples the SYSREF.

These are interrupt bits, so you must write
a 0 to the bit to clear it.

err_cnt

(read only,
write 1 to clear)

0x25D01828
0x25D01868

15:0
15:0

link 0
link 1

error count as reported by the RX via the
SYNC~ interface. The RX can report errors
that do not require re-initialization to the
TX by asserting the SYNC~ signal for two
frame periods. The error count maxes out
at 16 bits and does not overflow. The error
count is cleared automatically whenever
there is a synchronization request, and it
can be cleared manually by writing a 1 to
the register. Note that the TX error count is
not as accurate as the RX error count,
because multiple errors that are detected
in the RX within a short period may be
reported as only one error over the SYNC~
interface.

10

JESD RX

JESD RX Status and Error Signals
The following table includes the JESD RX status and error signals.

Signal Address Bits Per Description
cs_state 0x25D40030 | 1:0 lane 0 | code group synchronization state machine status
0x25D40030 | 5:4 lane 1 | 0 =CS_INIT, waiting for commas, assert sync
(read only) 0x25D40030 | 9:8 lane 2 | request
0x25D40030 | 13:12 lane 3 | 1=CS_CHECK, temporary state triggered by
8b/10b error
2 = CS_DATA, enough commas received, deassert
sync request — operational state (verify with this
value)
3 = UNDEFINED
fs_state 0x25D40034 | 1:0 lane 0 | frame synchronization state machine status
0x25D40034 | 5:4 lane 1 | 0 =FS_INIT, sync request asserted or still
(read only) 0x25D40034 | 9:8 lane 2 | receiving commas
0x25D40034 | 13:12 lane 3 | 1 =FS_DATA, lanes have been aligned, receiving
data — operational state (verify with this value)
2 =FS_CHECK, temporary state triggered by
receiving a comma after initialization
3 = UNDEFINED
lane_errors 0x25D41C08 | 7:0 lane 0 | lane errors
0x25D41C48 | 7:0 lane 1 | [7] multiframe alignment error
(interrupts, 0x25D41C88 | 7:0 lane 2 | [6] frame alignment error
write 0 to clear) | 0x25D41CC8 | 7:0 lane 3 | [5] link configuration error
[4] elastic buffer overflow error (bad RBD value)
[3] elastic buffer match error (first non-/K/
doesn't match match_ctrl and match_data)
[2] code group synchronization error
[1] 8B/10B not-in-table code error
[0] 8B/108B disparity error
These are interrupt bits, so you must write a 0 to
the bit to clear it.
fifo_flags 0x25D41C08 | 11:8 lane 0 | SerDes FIFO flags and errors
0x25D41C48 | 11:8 lane 1 | [3] write_error - asserted if write request when
(interrupts, 0x25D41C88 | 11:8 lane 2 | full (cleared by syncing FIFO with init_state)
write O to clear) | 0x25D41CC8 | 11:8 lane 3 | [2] write_full - full flag

[1] read_error - asserted if read request when
empty (cleared by syncing FIFO with init_state)
[0] read_empty - empty flag

These are interrupt bits, so you must write a 0 to
the bit to clear it.

11

test_seq_err

(interrupts,
write 0 to clear)

0x25D41C08
0x25D41C48
0x25D41C88
0x25D41CC8

12
12
12
12

lane 0
lane 1
lane 2
lane 3

test sequence error. When test_seq_sel for is
programmed to a non-zero value to verify a
specific test sequence and the test sequence
verification fails, the test_seq_err bit will be
asserted. This is not a sticky bit.

test seq_sel =1 —test_seq_err asserted
whenever input is not /D.21.5/

test seq_sel =2 —test_seq_err asserted
whenever input is not /K.28.5/

test seq_sel =3 —test_seq_err asserted
whenever code group synchronization has not
been achieved or when input does not match the
repeating initial lane alignment (ILA) sequence

These are interrupt bits, so you must write a 0 to
the bit to clear it.

lane_skew

(read only)

0x25D4182C
0x25D4186C

4:0
4:0

link O
link 1

lane-to-lane skew measurement in units of gated
clocks. This measurement automatically updates
and holds the output value whenever the elastic
buffers are released. This could happen
repeatedly if the skew causes buffer overflow,
which subsequently causes repeated
synchronization requests. Only a reset or
init_state assertion will clear the register.

sysref_err

(interrupts,
write O to clear)

0x25D42008
0x25D42008

link O
link 1

if SYSREF comes at an unexpected time. When
the core is requesting the SYSREF signal and it
arrives misaligned to the LMFC, this error will be
asserted high. The first SYSREF edge sampled
according to the sysref_mode will not trigger this
error. This only applies when the sysref_mode is
one that continuously samples the SYSREF.

These are interrupt bits, so you must write a 0 to
the bit to clear it.

err_cnt

(read only,
write 1 to clear)

0x25D41830
0x25D41870

15:0
15:0

link O
link 1

error count. The control signal error_ena
determines which type of errors to count. The
error count maxes out at 16 bits and does not
overflow. The error count is cleared automatically
whenever there is a synchronization request, and
it can be cleared manually by writing a 1 to the
register.

12

JESD RX Lane Errors

Each RX lane provides eight “lane error” bits. Like all the error bits, these are connected to interrupt
logic, so you must write a 0 to the bit to clear it.

[0] 8B/10B disparity error

This error triggers whenever the input encoded 10b character is able to be decoded into an 8b value but
does not match the expected running disparity based on the previous input. In other words, if the
current disparity is negative, and a negative disparity code (containing 6 0’s and 4 1’s) was the next
input, this error would be triggered. Conversely if the current disparity were positive, and a positive
disparity code (containing 6 1’s and 4 Q’s) was the next input, this error would be triggered.

[1] 8B/10B not-in-table code error

This error triggers whenever the input encoded 10b character is not able to be decoded into an 8b
value. It is named “not-in-table code error” because there is no lookup value for the 10b code. When
this occurs, the decoder outputs an 8b value of 0.

NOTE: The control signal sync_request_ena is a mask register that determines which error bits trigger a
re-initialization sync request, which is sent to the transmitter device by asserting SYNC~ signal for a
“long” period. By default, this mask enables all error bits except 0 and 1 — the 8B/10B disparity error and
the 8B/10B not-in-table code error. By default, these two types of errors are reported to the transmitter
device by asserting the SYNC™~ signal for a “short” period, which is also known as the “error reporting”
mechanism.

[2] code group synchronization error

This error occurs when the code group synchronization state machine (cs_state) returns to its initial
state CS_INIT = 0, which occurs when the 8b/10b decoder outputs too many invalid decoded values
within a short period. To debug this error, ensure the SERDES connection is stable and reliable.

[3] elastic buffer match error (first non-/K/ doesn't match match_ctrl and match_data)

Each lane’s elastic buffer is triggered to start buffering data when it detects a transition from receiving
commas (/K/ codes) to a non-comma. Usually, the very first octet received is an /R/ code to mark the
start of the initial lane alighment (ILA) sequence. However, it could be programmed to expect something
different. The elastic buffer match error occurs when the first octet received does not match what was
programmed/expected. To debug this error, verify whether the TX device is sending an ILA or
transitioning directly from sending commas to sending data.

13

[4] elastic buffer overflow error (too much lane skew or bad RBD value)

This error occurs when the elastic buffer overflows. This can happen for two reasons. If the skew
between the earliest arriving lane and the latest arriving lane is too large, the elastic buffer can
overflow. If the RX buffer delay or RBD value (rbd_m1) is selected poorly, the delay between when the
buffer begins to buffer data and the next release opportunity might be too large.

[5] link configuration error

This error occurs if the initial lane alignment (ILA) sequence received from the TX device does not match
what was expected. This can be due to either a mismatch in the counting sequence or a mismatch in the
link configuration parameters sent in the second multiframe of the ILA. To debug this error, double
check the link programming in both devices.

[6] frame alignment error

The TX device will occasionally replace the octet at the end of a frame with an /F/ code in a manner that
allows for the replaced data to be restored in the RX device. This allows the RX device to continuously
monitor frame alignment. The frame alignment error occurs if /F/ frame alignment replacement codes
are consistently received in a position that is not at the end of a frame.

[7] multiframe alignment error

The TX device will occasionally replace the octet at the end of a multiframe with an /A/ code in a
manner that allows for the replaced data to be restored in the RX device. This allows for the RX device to
continuously monitor multiframe alignment. The multiframe alignment error occurs if /A/ multiframe
alignment replacement codes are consistently received in a frame that is not the last frame of a
multiframe.

14

