

Copyright © 2014 Texas Instruments Incorporated. All rights reserved.

Information in this document is subject to change without notice. Texas Instruments may have pending
patent applications, trademarks, copyrights, or other intellectual property rights covering matter in this
document. The furnishing of this documents is given for usage with Texas Instruments products only and
does not give you any license to the intellectual property that might be contained within this document.
Texas Instruments makes no implied or expressed warranties in this document and is not responsible for
the products based from this document.

Page 1 of 32

Vision SDK TDA2xx

(v03.04.00)

User Guide

Page 2 of 32

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to
discontinue any product or service without notice, and advise customers to obtain the latest version of relevant
information to verify, before placing orders, that information being relied on is current and complete. All
products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment,
including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with
TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems
necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards ought to be provided by the customer so as to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right of TI covering or relating to any combination, machine, or process in which such
products or services might be or are used. TI’s publication of information regarding any third party’s products or
services does not constitute TI’s approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation
or reproduction of this information with alteration voids all warranties provided for an associated TI product or
service, is an unfair and deceptive business practice, and TI is neither responsible nor liable for any such use.

Resale of TI’s products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service, is
an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products.
www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments
Post Office Box 655303

Dallas, Texas 75265

Copyright © 2014, Texas Instruments Incorporated

Page 3 of 32

TABLE OF CONTENTS

1 Introduction ... 4

1.1 References .. 4

2 System Requirements .. 5

2.1 Windows Installation... 5

2.2 Linux Installation ... 5

2.3 Hardware Requirements .. 7

2.4 Software Installation .. 13

3 Build and Run ... 14

3.1 Overview of application in release .. 14

3.2 Building the application ... 14

3.3 Uart settings .. 17

3.4 Boot Modes ... 17

3.5 Load using SD card .. 18

3.6 Load using QSPI ... 19

3.7 Load using NOR ... 21

3.8 Load using CCS .. 24

3.9 Run the demo .. 31

4 Revision History ... 32

Page 4 of 32

1 Introduction

Vision Software Development Kit (Vision SDK) is a multi-processor software

development package for TI’s family of ADAS SoCs. The software framework allows

users to create different ADAS application data flows involving video capture, video

pre-processing, video analytics algorithms, and video display. The framework has

sample ADAS data flows which exercises different CPUs and HW accelerators in the

ADAS SoC and demonstrates how to effectively use different sub-systems within the

SoC. Frame work is generic enough to plug in application specific algorithms in the

system.

Vision SDK is currently targeted for the TDA2xx family of SoCs

1.1 References

Refer the below additional documents for more information about Vision SDK

Document Description

VisionSDK_ReleaseNotes.pdf Release specific information

VisionSDK_UserGuide.pdf This document. Contains install, build,

execution information

VisionSDK_DataSheet.pdf Summary of features supported, not

supported in a release. Performance and

benchmark information.

VisionSDK_ApiGuide.CHM User API interface details

VisionSDK_SW_Architecture.pdf Overview of software architecture

VisionSDK_DevelopmentGuide.pdf Details how to create data flow (s) & add new

functionality

VisionSDK_SurroundView_DemoSet

UpGuide.pdf

Document contains the steps for hardware

setup for calibrated surround view demo

VisionSDK_FAQs.pdf Document contains FAQ

Page 5 of 32

2 System Requirements

This chapter provides a brief description on the system requirements (hardware and

software) and instructions for installing Vision SDK.

2.1 Windows Installation

2.1.1 PC Requirements

Installation of this release needs a windows machine with about 8GB of free disk

space. Building of the SDK is supported on windows environment.

2.1.2 Software Requirements

All software packages required to build and run the Vision SDK are included as part

of the SDK release package except for the ones mentioned below

2.1.2.1 A15 Compiler, Linker

The windows installer for the GCC ARM tools should be downloaded from below link

https://launchpad.net/gcc-arm-embedded/+milestone/4.9-2015-q3-update

The tools need to be installed under

 “<install dir>/ti_components/cg_tools/windows/”.

IMPORTANT NOTE: A15 Compiler and linker MUST be installed before

proceeding else compile will fail. Also make sure the compiler is installed at

the exact path mentioned above

2.1.3 Code Composer Studio

CCS is needed to load, run and debug the software. CCS can be downloaded from

the below link. CCS version 6.0.1.00040 or higher should be installed.

http://processors.wiki.ti.com/index.php/Download_CCS

2.2 Linux Installation

2.2.1 PC Requirements

Installation of this release needs a Linux Ubuntu 14.04 machine.

IMPORTANT NOTE: If you are installing Ubuntu on a virtual machine, ensure its a

64 bit Ubuntu.

2.2.2 Software Requirements

All software packages required to build and run the Vision SDK are included as part

of the SDK release package except for the ones mentioned below

2.2.2.1 A15 Compiler, Linker

The Linux installer for the GCC ARM tools should be downloaded from below link

https://launchpad.net/gcc-arm-embedded/+milestone/4.9-2015-q3-update

The tools need to be installed under

 “<install dir>/ti_components/cg_tools/linux/”.

IMPORTANT NOTE: A15 Compiler and linker MUST be installed before initiating the

build else compilation will fail. Also make sure the compiler is installed at the exact

path mentioned above after installation of vision sdk.

Use following steps to install the toolchain

$> cd $INSTALL_DIR/ti_components/cg_tools/linux

$> tar -xvf gcc-arm-none-eabi-4_9-2015q3-20150921-linux.tar.tar

https://launchpad.net/gcc-arm-embedded/+milestone/4.9-2015-q3-update
http://processors.wiki.ti.com/index.php/Download_CCS
https://launchpad.net/gcc-arm-embedded/+milestone/4.9-2015-q3-update

Page 6 of 32

IMPORTANT NOTE: Ensure the toolchain is for 32 / 64 bit machine as per

configuration of installation machine

If your machine is 64 bit and you have downloaded toolchain from link above

Execute following step on installation machine

$>sudo apt-get install ia32-libs lib32stdc++6 lib32z1-dev lib32z1 lib32ncurses5
lib32bz2-1.0

2.2.3 Other software packages for build depending upon OS baseline

Ensure these packages/tools are installed on the installation machine

uname, sed, mkimage, dos2unix, dtrx, mono-complete, git, lib32z1

lib32ncurses5 lib32bz2-1.0 libc6:i386 libc6-i386 libstdc++6:i386

libncurses5:i386 libz1:i386 libc6-dev-i386 device-tree-compiler mono-

complete

To install

$>sudo apt-get install <package_name>

Page 7 of 32

2.3 Hardware Requirements

Hardware setup for Single Camera View (SCV), Multichannel AVB Multi-Channel View

usecase and LVDS Multi Camera View (LVDS MCV) use-case is described in this

section

2.3.1 SCV/AVB Use-case Hardware Setup

SCV/AVB use-case needs the below hardware

1. TDA2xx EVM (Rev D)

2. TDA2xx Vision Application Board (Rev C)

3. OV10635 Sensor (for SCV only)

4. 1Gbps Ethernet Cable (for AVB only)

5. WVGA LCD DC from Spectrum Digital (part #703663) OR

6. HDMI 1080p60 capable Display Monitor

Setup is shown below

(Physical components placement might have changed in different board versions)

2.3.2 LVDS MCV Use-case Hardware Setup

LVDS MCV use-case needs the below hardware

1. TDA2xx EVM (Rev D)

2. TDA2xx Vision Application Board (Rev C)

3. 6 channel FPD-Link III FMC SV600964 Daughter Board (Rev E1)

4. 4 x DS90UB913A EVMs (Rev A)

5. 4 x OV10635 Sensor (additional 5th DS90UB913A EVM, OV10635 sensor and cable

would be required in order to run the Surround view demo).

6. 4 x Rosenberger HSD connectors and cables

7. WVGA LCD DC from Spectrum Digital (part #703663) OR

8. HDMI 1080p60 capable Display Monitor

Page 8 of 32

The LVDS MCV use case setup is shown in the snapshots below:

2.3.2.1 DeSerializer board

IMPORTANT NOTE: Camera 1, Camera 2, Camera 3 and Camera 4 are used for 4

channel LVDS use-case and MUST be connected as shown in above figure.

5th Camera is used for Edge detection currently connected for Cam 6 to enable both

AVB and LVDS usecase

IMPORTANT NOTE: To enable 6th Camera or 6CH LVDS capture, networking MUST

be disabled, since there is pinmux conflict between VIP port used for 6th camera

capture and Ethernet port. To disable Ethernet and enable 6CH capture do below

change,

File: \vision_sdk\$(MAKEAPPNAME)\configs\$(MAKECONFIG)\cfg.mk

NDK_PROC_TO_USE=none

File: \vision_sdk \$(MAKEAPPNAME)\src\rtos\video_sensor\include\video_sensor.h

#define VIDEO_SENSOR_NUM_LVDS_CAMERAS (6)

Do, “gmake -s showconfig” to and check value of NDK_PROC_TO_USE to confirm

this setting will get applied.

Do “gmake -s -j depend_ndk_fatfs;gmake -s -j” to do an incremental build with

modified settings

For SRV Demo setup Ref: VisionSDK_SurroundView_DemoSetUpGuide.pdf

Page 9 of 32

2.3.2.2 Complete LVDS Setup

2.3.3 Capture Pin Settings

Video Config pins needs to set for different capture inputs

VIDEO CONFIG switch settings (SW3 on TDA2xx Vision Application
Board (set for Ov10635 in Original version of CPLD))

Capture

Type

Hardware controlled pin settings

Vision Application Board (Rev C CPLD)

(default cpld image)

Software controlled pin settings

New Version Of CPLD flashed

(cpld_1_cam3_shift.pof)

 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

OV10635 OFF ON OFF ON OFF ON OFF ON OFF OFF OFF OFF OFF OFF OFF OFF

LVDS OFF OFF ON OFF OFF ON OFF ON OFF OFF OFF OFF OFF OFF OFF OFF

HDMI OFF OFF ON ON OFF ON OFF ON OFF OFF OFF OFF OFF OFF OFF OFF

Cpld image is required for VIP input Muxing,

With the cpld_1_cam3_shift.pof and later the software control will work,

On default Rev C board the captured image won’t be proper. Either program the Cpld

with new image or use hardware controlled pin settings.

2.3.4 EDID Programming for HDMI Capture.

EDID information needs to be programmed on the EEPROM present on Vision

Application board. This is required for the HDMI source to recognize the format and

resolution supported by the receiver (TDA2xx SoC). If this step is not done or if this

step fails, then TDA2xx SoC will not be able to receive data via HDMI.

IMPORTANT NOTE: It’s recommended to program the HDMI receivers EDID.

The default EDID is programmed to receive 1080P60 video streams only. If

stream of different resolution is required (or EDID is corrupted), the EDID

Page 10 of 32

would require an update. Refer the EDID programming points in the section

Running VPS Application on (TDAXXX EVM) documented in VPS User Guide

in PDK.

NOTE: Refer Load and Run using CCS for details of running the binaries

IMPORTANT NOTE: If LVDS Setup is connected, EDID programming may fail.

Disconnect the LVDS Daughter board and then program EDID.

If EDID is not programmed correctly detect video will fail when HDMI capture is

done.

2.3.5 Surround view use-case using TIDA00455/OV490

This use-case need following hardware

1. TDA2XX base EVM

2. TIDA00455 daughter card

Modifications needed:

a. SPI flashes on-board TIDA00455 must be configured with correct firmware

b. MSP430 on-board TIDA00455 must be configured with correct firmware

c. Modify R30 on TIDA00455 to ensure correct output on Power-on-coax

network as required by camera modules

3. 4 cameras modules sending serialized video data in RAW (Bayer) format

connected to TIDA00455 using FPD-Link-III coax-cables.

DS90UB913EVM/SAT0074 with an appropriate camera module and adapter can

be used. For testing, DS90UB813EVM with OV10640 camera’s was used.

Page 11 of 32

Modifications needed:

a. If using DS90UB913EVM for camera modules, modify R56 to appropriate

value to ensure correct I/O voltage to camera

b. If using DS90UB913EVM for camera modules, modify MSP430 firmware such

that GPIO1 is not set to “1” to limit current usage by GPIO1 LED.

Contact your local FAE to get access to appropriate firmware for MSP430 and OV490.

2.3.6 1Gig Ethernet link does not come up on some EVMs

On few of TDA2xx EVMs, we have seen stability issues with 1Gbps Ethernet link. The

issue symptoms are

1. Link not detected when connected to 1Gbps switch/router

2. Stability issues with 1Gbps link - multiple connect/disconnect

3. Data transfer not happening due to CRC errors on Ethernet Rx

These are known timing issues due to PHY “wire” side connection and not with the

TDAx processor. Spectrum Digital screens all the EVMS and places a sticker labelled

100Mbps if any of EVM fails such test. The EVM boards having TI DP83867 PHY do

not have this issue.

Note: Not all failing EVMs have 100Mbps sticker, in order to identify if 1Gbps link is

supported run VSDK network application.

100Mbps sticker

Page 12 of 32

2.3.7 INA226 Self power measurement setup

In order to measure power of the TDA2xx voltage rails from the TDA2xx device itself

without the need for an extra daughter card the TDA2xx EVM should be modified as shown

below. Without this board modification the power measurement software which runs on the

device will fail.

STEP 1: Change the select for RU113 multiplexer on the board by making R264 = 10k &

R265 = NO-POP. This allows DCAN2 Signaling.

STEP 2: Then perform a blue wiring for the following connections:

 DCAN2_TX (JP3 pin 1) to PM_I2C_SDA (J8 pin 2)

 DCAN2_RX (JP3 pin 2) to PM_I2C_SCL (J8 pin 1)

From Software Configure the PAD configuration registers such that the gpio6_14 and

gpio6_15 pads operate as I2C3_SDA and I2C3_SCL respectively. Note that this is taken

care from software. Additionally ensure SEL_I2C3_CAN2 is high.

Page 13 of 32

2.4 Software Installation

PROCESSOR_SDK_VISION_03_xx_xx_xx_setupwin.exe is the SDK package installer.

Copy the installer to the path of your choice.

Double click the installer to begin the installation.

Follow the self-guided installer for installation.

IMPORTANT NOTE: On some computers running as administrator is needed. Right

click on the installer and select option of “Run as administrator”. If this is not done

then you may see a message like “This program might not have installed correctly”

On completion of installation a folder by name

PROCESSOR_SDK_VISION_03_xx_xx_xx would have got created in the installation

path.

2.4.1 Uninstall Procedure

To uninstall, double click on uninstall.exe created during installation in the folder

PROCESSOR_SDK_VISION_03_xx_xx_xx.

At the end of uninstall, PROCESSOR_SDK_VISION_03_xx_xx_xx folder still remains.

It is just an empty folder. It can be deleted manually.

Page 14 of 32

3 Build and Run

This chapter provides a brief overview of the sample application or use case present

in the SDK and procedure to build and run it.

3.1 Overview of application in release

The Vision SDK supports the following use-cases as examples

 Single channel capture use-cases

o All single camera usecase.

 Multi-channel LVDS capture use-cases

o All LVDS camera usecase.

 AVB RX Use-cases,

o All AVB usecase.

 Dual Display Use cases

o All Dual display usecase.

 ISS Use cases

o All ISS capture usecase

 TDA2x Stereo Use cases

o All Stereo usecase running on TDA2xx

 Network RX/TX Use cases

o All Network test usecase

Refer to VisionSDK_DataSheet.pdf for detailed description of use-case.

The demos support following devices as capture source

 OV10635 sensor (default)

 HDMI source

The demos support following devices as display devices

 LCD 800x480

 HDMI 1080p60 (default)

Use option "s" on the main menu in UART to select different capture and display

devices.

3.2 Building the application

1. On windows command prompt, go inside the directory

PROCESSOR_SDK_VISION_03_xx_xx_xx\vision_sdk\build.

2. Open file \vision_sdk\build\Rules.make and set required config

MAKECONFIG=tda2xx_evm_bios_all

3. Open file \vision_sdk\$(MAKEAPPNAME)\configs\tda2xx_evm_bios_all\cfg.mk

a. For Building AVB application

 NDK_PROC_TO_USE is to be set for ipu1_1

4. Build is done by executing gmake. “gmake” is present inside XDC package.

For “gmake” to be available in windows command prompt, the XDC path must

be set in the windows system path.

Page 15 of 32

IMPORTANT NOTE: xdc path is needed to be set in environment variables.

If not, then set it using the set PATH =

<Install_dir>/ti_components/os_tools/windows/xdctools_x_xx_xx_xx;%PATH

% in command prompt

Ensure that gmake is picked from vision sdk xdc path only.

Use which gmake or where gmake depending upon the git bash or win cmd

IMPORTANT NOTE: A15 Compiler and linker MUST be installed before

proceeding else compile will fail. Also make sure the compiler is installed at

the exact path as mentioned in build/tools_path.mk.

IMPORTANT NOTE: If the installation folder depth is high then

windows cmd prompt fails with error that it cannot find a file, even in

file is present in mentioned path, this is because Windows has a

limitation of 8191 characters for the commands that can execute. In

such a situation as a workaround either restrict the folder depth to

d:/ or if it cannot be restricted use git bash to build. Refer

https://support.microsoft.com/en-in/kb/830473 for more details.

Git version used for testing is 2.13

(Always point to xdc path gmake only)

5. Under vision_sdk directory

a. When building first time run the below sequence of commands

 > gmake -s -j depend

 > gmake -s -j

IMPORTANT NOTE: For Windows PC use “-j<number of CPUs>” instead of

just –j. For example if PC has 2 CPUs then use “-j2”. Random build

dependency issues has been noticed with –j & windows PC. If not sure about

the number of CPUs of PC, then suggests not using –j option with windows

build environment.

b. When building after the first time or incremental build, run the below

command

> gmake -s -j

Executing “gmake -s -j depend “ will build all the necessary components (PDK drivers, EDMA

drivers and sdk dependent files) and “gmake -s -j” will build the Vision SDK framework and
examples.

IMPORTANT NOTE: For incremental build, make sure to do "gmake -s -j depend"

before "gmake -s -j” when below variables specified in

\vision_sdk\$(MAKEAPPNAME)\configs\$(MAKECONFIG)*cfg.mk are changed

 when PROC_$(CPU)_INCLUDE is changed

 when DDR_MEM is changed

 when PROFILE is changed

 when ALG plugin or usecase is enabled or disabled in

\vision_sdk\$(MAKEAPPNAME)\configs\$(MAKECONFIG) *_cfg.mk

 when any .h or .c file in TI component is installed in ti_components is changed

 when any new TI component is installed in ti_components

 when some links are added or removed

If "gmake -s -j depend" not done in these cases then build and/or execution may fail

https://support.microsoft.com/en-in/kb/830473

Page 16 of 32

IMPORTANT NOTE: When options (other than those specified above) are changed

in \vision_sdk\$(MAKEAPPNAME)\configs\$(MAKECONFIG)\cfg.mk a clean build is

recommended for the updated settings to take effect.

6. On a successful build completion, following executables will be generated in

the below path

\vision_sdk\binaries\$(MAKEAPPNAME)\$(MAKECONFIG)\vision_sdk\bin\tda2xx-evm

 vision_sdk_a15_0_release.xa15fg

 vision_sdk_arp32_1_release.xearp32F

 vision_sdk_arp32_2_release.xearp32F

 vision_sdk_c66xdsp_1_release.xe66

 vision_sdk_c66xdsp_2_release.xe66

 vision_sdk_ipu1_0_release.xem4

 vision_sdk_ipu1_1_release.xem4

7. To speed up the incremental builds the following can be done as required.

The number of processors included in the build can be changed by modifying

below values in

\vision_sdk\$(MAKEAPPNAME)\configs\$(MAKECONFIG)\cfg.mk. A value of

"no" means CPU not included in build, value of "yes" means CPU included in

build. Make sure to do “gmake -s -j depend” before “gmake -s- j” when

number of CPUs included is changed

PROC_DSP1_INCLUDE=yes

PROC_DSP2_INCLUDE=yes

PROC_EVE1_INCLUDE=yes

PROC_EVE2_INCLUDE=yes

PROC_EVE3_INCLUDE=yes

PROC_EVE4_INCLUDE=yes

PROC_A15_0_INCLUDE=yes

PROC_IPU1_0_INCLUDE=yes

PROC_IPU1_1_INCLUDE=yes

PROC_IPU2_INCLUDE=yes

8. The build config that is selected in config file can be confirmed by doing below

> gmake -s showconfig

Cleaning the build can be done by following command

> gmake -s clean

Built binaries need to deleted by

> rm -rf ..\binaries\$(MAKEAPPNAME)\$(MAKECONFIG)

Page 17 of 32

3.3 Uart settings

Connect a serial cable to the UART port of the EVM and the other end to the serial

port of the PC (configure the HyperTerminal at 115200 baud rate) to obtain logs and

select demo.

3.4 Boot Modes
Supported boot modes on TDA2xx ES1.1 device:

Boot Mode EVM Switch Setting
SYSBOOT(SW2)[1:16]

EVM Switch Setting
SW5[1:10]

QSPI_1 01101100 10000001 1110100000

QSPI_4 11101100 10000001 1110100000

NOR 10101100 10000101 0100100000

SD 00001100 10000001 0001100000

Debug/CCS 00000000 10000001 XXXXXXXX

Supported boot modes on TDA2xx ES1.0 device:

Boot Mode EVM Switch Setting
SYSBOOT(SW2)[1:16]

EVM Switch Setting
SW5[1:10]

QSPI 01101100 10000001 1110100000

NOR 10101100 10000101 0100100000

SD 11100000 10000001 0001100000

Debug/CCS 00000000 10000001 XXXXXXXX

Page 18 of 32

3.5 Load using SD card

NOTE: The application can be run using SD card and SD card boot or using CCS. This

section shows how to run using SD card boot.

Application image is run on the SoC via Secondary Boot Loader (SBL) present in SD

card.

3.5.1 Option 1: Steps to prepare a bootable SD card

 Ensure Empty SD card (at least 256MB, preferably 4GB SDHC) is available.

 Ensure SD memory card reader is available.

 Create a primary FAT partition on MMC/SD card (FAT32 format with sector

size 512) and mark it as Active. A partition manager utility has to be used for

the same.

 Format SD card from DOS command line as below.

“format <drive> /A:512 /FS:FAT32”

Make SD card partition as active using below tool

http://www.pcdisk.com/download.html

IMPORTANT NOTE: Create a primary FAT partition on MMC/SD card (FAT32

format with sector size 512 bytes mark the partition as active.

3.5.2 Option 2: Steps to prepare a bootable SD card using DISKPART

 Open windows 7 Command prompt and Run as Administrator mode

 Enter command "diskpart.exe"

C:\Windows\system32>diskpart.exe will take you DISKPART prompt

Warning: Enter below command carefully w.r.t your computer/laptop SD card

disk number. Choosing wrong disk number may delete data present in other

drive

To list all disk drive present on computer

DISKPART> list disk

Select the SD card disk number, in my case it is disk 1

DISKPART> select disk 1

Now all next command applicable only to disk 1(SD card)

Delete entire partition

DISKPART> clean

To create Primary partition

DISKPART> create partition primary

To list partition

DISKPART> list partition

Select partition

DISKPART> select partition 1

To list volume

DISKPART> list volume

Select volume associated with SD card, In my case its 3

DISKPART> select volume 3

http://www.pcdisk.com/download.html

Page 19 of 32

Format SD card, please wait this may take few seconds

DISKPART>format quick fs=fat32 unit=512 label=SD_BOOT

Make disk active

DISKPART> active

To exit utility

DISKPART> exit

3.5.3 Steps to generate MLO

NOTE: SBL MLO image is built from PDK package.

To build MLO Run the command gmake -s sbl from vision_sdk\build dir

This generates an MLO under

vision_sdk\binaries\$(MAKEAPPNAME)\$(MAKECONFIG)\sbl\sd

To build the mlo for different memory map, select required configuration in

Makefile under vision_sdk (follow comments from Makefile under SBL build

Targets).

3.5.4 Steps to generate appImage

Following steps need to be followed to generate the application image

1. Make sure the executables are built as shown in Building the application

2. To generate the application image run below command from

“vision_sdk\build” folder

> gmake -s appimage

IMPORTANT NOTE: The config options, like CPUs to use, debug or release

profile etc, used to make the application image will be the values specified in

\vision_sdk\$(MAKEAPPNAME)\configs\$(MAKECONFIG)\cfg.mk file

3.5.5 SD Card setup

Once the AppImage and MLO are generated , Copy the MLO and AppImage at

root folder of formatted SD Card

3.5.6 Hardware Pin settings for SD Boot

Make sure the Boot Mode Select Switch is set for the SD boot mode on

TDA2xx Base EVM. This is done by setting the pins SYSBOOT (SW2+SW3)

 Please refer Boot Modes

3.6 Load using QSPI

3.6.1 Steps to generate qspi writer tools

NOTE: SBL qspi image is built from PDK package.

To build qspi Run the command gmake -s sbl from vision_sdk\build dir

This generates all required tools under
vision_sdk\binaries\$(MAKEAPPNAME)\$(MAKECONFIG)\sbl\qspi\$(OPP)\$(PLATFORM)

vision_sdk\binaries\$(MAKEAPPNAME)\$(MAKECONFIG)\sbl\QSPI_flash_writer\$(PLAT
FORM)
1. sbl_qspi_$(OPP_MODE)_a15_0_release.tiimage
2. qspi_flash_writer_ipu1_0_release.xem4

To build the qspi for different memory map, select required configuration in

Makefile under vision_sdk (follow comments from Makefile under SBL build

Targets).

Page 20 of 32

IMPORTANT NOTE: Refer section “Board Modification” under SBL_userguide
for hardware modifications if required.

3.6.2 Steps to generate appImage

Following steps need to be followed to generate the application image

Make sure the executables are built as shown in Building the application

To generate the application image run below command from

“vision_sdk\build” folder

> gmake -s appimage

IMPORTANT NOTE: The config options, like CPUs to use, debug or release

profile etc, used to make the application image will be the values specified in

\vision_sdk\$(MAKEAPPNAME)\configs\$(MAKECONFIG)\cfg.mk file

 The Surround View LUT and Perspective Matrix are flashed at

an offset of 20 MB in the QSPI hence make sure the generated

appImage doesn’t exceed 20 MB in case Surround View use

cases are intended to be run.

3.6.3 Flashing steps

Flashing pin settings:

 Please refer Boot Modes

For loading binaries using CCS refer Load using CCS till step 8.

1. Connect A15. Do CPU reset

Select CortexA15_0, navigate to Scripts->DRA7xx MULTICORE Initialization

DRA7xx_MULTICORE_EnableALLCores

2. Connect M4 (IPU)

Halt A15 core, and Load image on M4

vision_sdk\binaries\$(MAKEAPPNAME)\$(MAKECONFIG)\sbl\qspi_flash_writer
\$(SOC)\qspi_flash_writer_ipu1_0_release.xem4

3. Run the core. You would see below console logs

[Cortex_M4_IPU1_C0]
QSPI Flash writer application
Enter Device type to use
1 - 1 bit read from flash

2 - 4 bit (Quad) read from flash

Select appropriate Device Type, for TDA2x EVM, press ‘2’.

MID - 1

DID - 18

Enter 0 for Erase-Only (without flashing any image)

Note : File size should be less than 33554432 Bytes.

Enter the file path to flash:

<PATH>\sbl_qspi_$(OPP_MODE)_a15_0_release.tiimage

Enter the Offset in bytes (HEX) 0x00

Erase Options:

 0 -> Erase Only Required Region

 1 -> Erase Whole Flash

 2 -> Skip Erase

Enter Erase Option: 1

Load Options:

 0 -> fread using code (RTS Library)

 1 -> load raw using CCS (Scripting console)

Enter Load Option: 0

Read xxxxxx bytes from [100%] file...Done.

 QSPI whole chip erase in progress

 QSPI file write started

 *********QSPI flash completed sucessfully**************

4. Reset the board and Repeat step 1,2 and 3.

Page 21 of 32

5. Reset the board and Repeat step 1 and 2

[Cortex_M4_IPU1_C0]
QSPI Flash writer application
Enter Device type to use
1 - 1 bit read from flash

2 - 4 bit (Quad) read from flash

Select appropriate Device Type, for TDA2x
EVM, press ‘2’.

MID - 1

DID - 18

Enter the File Name

C:\vision_sdk\binaries\$(MAKEAPP

NAME)\$(MAKECONFIG)\vision_sdk

\bin\$(SOC)\sbl_boot\AppImage_B

E

Enter the Offset in bytes (HEX): 0x80000

Erase Options:

 0 -> Erase Only Required Region

 1 -> Erase Whole Flash

 2 -> Skip Erase

Enter Erase Option: 0

Load Options:

 0 -> fread using code (RTS Library)

 1 -> load raw using CCS (Scripting console)

Enter Load Option: 1

Open Scripting console window by clicking
“Menu -> View -> Scripting console” and enter
below command on scripting console as shown
3.5.3.1

loadRaw(0x80500000,0, "C:/
vision_sdk/binaries/$(MAKEAPPNAME)/$(
MAKECONFIG)/vision_sdk/bin/$(SOC)/sbl
_boot/AppImage_BE ", 32, false);

IMPORTANT NOTE: The load address in
loadRaw command could be different based on
the board/SBL size etc. SBL figures out the
address and prints it on CCS console. Use this
address in loadRaw command for copying
AppImage_BE.

In CCS console Enter any alpha-numeric key
once loadraw is complete... as shown in below
image

QSPI file write started

****QSPI flash completed successfully*******

2.5.3.1 CCS console and scripting console

6. On completion change the pin setting as shown in Boot Modes table.

3.7 Load using NOR

3.7.1 Steps to generate nor writer tools

NOTE: SBL nor image is built from PDK package.

To build nor Run the command gmake -s sbl from vision_sdk\build dir

This generates all required tools under
vision_sdk\binaries\$(MAKEAPPNAME)\$(MAKECONFIG)\sbl\nor\$(OPP)\$(PLATFORM)
vision_sdk\binaries\$(MAKEAPPNAME)\$(MAKECONFIG)\sbl\nor_flash_writer\$(PLATF
ORM)

Page 22 of 32

1. sbl_nor_$(OPP_MODE)_a15_0_release.bin

2. nor_flash_writer_ipu1_0_release.xem4

To build the nor for different memory map, select required configuration in

Makefile under vision_sdk (follow comments from Makefile under SBL build

Targets).

IMPORTANT NOTE: Refer section “Board Modification” under SBL_userguide
user guide for hardware modifications if required.

3.7.2 Steps to generate appImage

Following steps need to be followed to generate the application image

Make sure the executables are built as shown in Building the application

To generate the application image run below command from

“vision_sdk\build” folder

> gmake -s appimage

IMPORTANT NOTE: The config options, like CPUs to use, debug or release

profile etc, used to make the application image will be the values specified in

\vision_sdk\$(MAKEAPPNAME)\configs\$(MAKECONFIG)\cfg.mk file

3.7.3 Flashing steps

Flashing pin settings:

 Please refer Boot Modes

For loading binaries using CCS refer Load using CCS till step 8.

1. Connect A15. Do CPU reset

Load image

vision_sdk\binaries\$(MAKEAPPNAME)\$(MAKECONFIG)\sbl\nor_flash_writer
\$(SOC)\nor_flash_writer_ipu1_0_release.xem4

2. Run the core.

Page 23 of 32

[CortexA15_0] Starting NOR Flash Writer.

CFI Query...passed.

NOR Initialization:

 Command Set: Spansion

 Manufacturer: SPANSION

 Size: 0x40 MB

Enter the File Name

<PATH>\sbl_nor_ $(OPP_MODE)_a15_0_release.bin

Enter the Offset in bytes (HEX) 0x00

Erase Options:

0 -> Erase Only Required Region

1 -> Erase Whole Flash

 2 -> Skip Erase

Enter Erase Option: 1

Erasing the NOR Flash

Erased through 0x8020000

.

.

Erased through 0x9000000

Load Options:

 0 -> fread using code (RTS Library)

 1 -> load raw using CCS (Scripting console)

Enter Load Option:

0

Reading 71896 bytes from file...

Read 16384 bytes [22%] from file...

Read 32768 bytes [45%] from file...

Read 49152 bytes [68%] from file...

Read 65536 bytes [91%] from file...

Read 71896 bytes [100%] from file. Done!!

Writing 0x118D8bytes to NOR...

NOR Write OK through 0x8008000.

NOR Write OK through 0x8010000.

NOR Write OK through 0x80118D8.

Done.

 !!! Successfully Flashed !!!

 NOR boot preparation was successful!

3. Reset the board and Repeat step 1 & 2

4. Reset the board and Repeat step 1

[CortexA15_0] Starting NOR Flash Writer.

CFI Query...passed.

NOR Initialization:

 Command Set: Spansion

 Manufacturer: SPANSION

 Size: 0x40 MB

Enter the File Name

<PATH>\sbl_nor_ $(OPP_MODE)_a15_0_release.bin

Enter the Offset in bytes (HEX) 0x80000

Erase Options:

0 -> Erase Only Required Region

1 -> Erase Whole Flash

2 -> Skip Erase

Enter Erase Option: 2

Load Options:

 0 -> fread using code (RTS Library)

 1 -> load raw using CCS (Scripting console)

Enter Load Option:

1

Use below command in CCS scripting console...

loadRaw(0x90000050,0,"<PATH>/AppImage_LE", 32, false);

Kindly use '/' (forward slash) in the file path

Enter any alpha-numeric key once loadraw is complete...

s1

Writing 0x1175F10bytes to NOR...

NOR Write OK through 0x8088000.

.

.

NOR Write OK through 0x91F5F10.

Done.

 !!! Successfully Flashed !!!

 NOR boot preparation was successful!

Page 24 of 32

4.6.3.1 CCS console and scripting console

5. On completion change the pin setting as shown in Boot Modes table.

3.8 Load using CCS

After installing CCS, follow below steps to complete the platform setup,

1. GELs are available in

<Install_dir>\ti_components\ccs_csp\auto_device_support_x.x.x.zip

NOTE:

 Latest GELs are also be available at

http://processors.wiki.ti.com/index.php/Device_support_files

Under Automotive pick

Automotive vX.X.X

 To install the new GEL versions, you need to extract the zip to

<CCS_INSTALL_DIR>/ccsv6/ccs_base

Change the following GEL files for vision SDK as below,

- TDA2xx_multicore_reset.gel
o Set VISION_SDK_CONFIG to 1
o Set VISION_SDK_CONFIG_OLD to 0

 For older versions of VisionSDK (2.08 and older) this should be set to 1

o Set EVE_SW_CONFIG to 0

2. CCS Target Configuration creation:

a. Open “Target Configurations” tab, by navigating through the menu

“View ->Target Configurations”.

http://processors.wiki.ti.com/index.php/Device_support_files

Page 25 of 32

b. Create a new Target Configuration (TDA2xx Target Configuration) by

navigating through the menu “File->New->Target Configuration File”.

c. Specify Connections as “Spectrum Digital XDS560V2 STM USB

Emulator”. Specify Board or Device as “TDA2x”. Then click on “Target

Configuration link”

Page 26 of 32

d. ByPass unused cores. Click on the core which needs to be bypassed

and check ByPass under Bypass Properties.

The settings is under advance setup tab. Following image is example

for TDA2x. Similar applies for other platforms.

Page 27 of 32

3. Connect JTAG to the board.

IMPORTANT NOTE: There are two JTAG connectors on the board. The one shown below MUST
be used for CCS debug.

Reset EVM through the blue button (SW4, out of two, the one away from the JTAG).

4. Now launch the previously created TDA2xx Target Configuration.

 JTAG ,
Emulato
r
connect
or

Reset
switch

Vayu EVM Base
Board

Page 28 of 32

5. Once the target configuration is launched successfully, the following log should be observed
on the CCS console:

CortexA15_1: GEL Output: --->>> DRA7xx Cortex A15 Startup Sequence DONE! <<<---

6. Connect to core CortexA15_0.

7. On successful connect, the following log appears on CCS console:

CortexA15_0: GEL Output: --->>> DRA7xx Target Connect Sequence DONE !!!!! <<<---

8. Select CortexA15_0, navigate to Scripts->DRA7xx MULTICORE Initialization
DRA7xx_MULTICORE_EnableALLCores

9. On successful script execution, the following log appears on CCS console:

CortexA15_0: GEL Output: --->>> PRUSS 1 and 2 Initialization is in complete ... <<<---

10. Now connect the core shown below,

Page 29 of 32

ARP32_EVE_1, ARP32_EVE_2, ARP32_EVE_3, ARP32_EVE_4
C66xx_DSP1, C66xx_DSP2, Cortex_M4_IPU1_C0, Cortex_M4_IPU1_C1.

11. Once the cores are connected, do CPU Reset for all the cores.

12. For VisionSDK 2.6 and older, on CortexA15_0, run the GEL “Scripts -> EVE MMU Config ->
EVE_MMU_Config”.
IMPORTANT NOTE: If this step is not done you will not be able to load executables on the
EVE cores

13. On the cores load the binaries as mentioned below

Page 30 of 32

On ARP32_EVE_4, load the binary, “vision_sdk_arp32_4_release.xearp32F”.
On ARP32_EVE_3, load the binary, “vision_sdk_arp32_3_release.xearp32F”.
On ARP32_EVE_2, load the binary, “vision_sdk_arp32_2_release.xearp32F”.
On ARP32_EVE_1, load the binary, “vision_sdk_arp32_1_release.xearp32F”.
On C66xx_DSP2, load the binary, “vision_sdk_c66xdsp_2_release.xe66”.
On C66xx_DSP1, load the binary, “vision_sdk_c66xdsp_1_release.xe66”.
On Cortex_M4_IPU1_C0, load the binary, “vision_sdk_ipu1_0_release.xem4”.
On Cortex_M4_IPU1_C1, load the binary, “vision_sdk_ipu1_1_release.xem4”.
On CortexA15_0, load the binary, "vision_sdk_a15_0_debug.xa15fg”

IMPORTANT NOTE: Binary for Cortex_M4_IPU1_C0 MUST be loaded before
Cortex_M4_IPU1_C1 since IPU1-0 does MMU config for the complete IPU1 system. Other
binaries can be loaded in any order.

Page 31 of 32

3.9 Run the demo

3.9.1 Single channel demos with HDMI input

IMPORTANT NOTE: To demonstrate better output all single channel usecases that require HDMI
input should use video clips mentioned in the table below. These clips are part of
PROCESSOR_SDK_VISION_03.XX.XX.XX_INPUTS.tar.gz

Usecase

No. “Runtime

Menu”

Usecase Input

clip to be

played

by HDMI

player

7 1CH VIP capture + Sparse Optical Flow (EVE1) +

Display

Clip2

B b: 1CH VIP capture (HDMI) + Lane Detect (DSP1) +

Display

Clip1

C c: 1CH VIP capture (HDMI) + SOF (EVE1) + SFM

(DSP1) + Display

Clip2

D d: 1CH VIP capture (HDMI) + Traffic Light Recognition

(TLR) (DSP1) + Display
Clip2

E e: 1CH VIP capture (HDMI) + Pedestrian, Traffic Sign,

Vehicle Detect 2 (EVE1 + DSP1) + Display

Clip2

F f: 1CH VIP capture (HDMI) + FrontCam Analytics 2

(PD+TSR+VD+LD+TLR+SFM) (DSPx, EVEx) + Display

(HDMI)

Clip3

SFM_POSE.bin - SFM (Usecase ‘c’) and EUNCAP demo (Usecase ‘f’) needs

SFM_POSE.bin on the SD card. It is part of

VISION_SDK_02.XX.XX.XX_INPUTS.tar.gz

3.9.2 Steps to run

1. Power-on the Board after loading binaries by (SD, QSPI, NOR or CCS) and follow

Uart settings to setup the console for logs and selecting demo.

2. For HDMI as input select capture source as HDMI “s: System Settings”->

“Capture Settings” -> “2: HDMI Capture 1080P60”

3. Select demo required from the menu by keying in corresponding option from uart

menu.

IMPORTANT NOTE: Make sure you select SCV (1Ch VIP capture) use-case or LVDS MCV (4CH
LVDS VIP capture) use-case depending on the hardware you run the application.

IMPORTANT NOTE: For AVB MCV Demo Ethernet port must be connected as shown in
SCV/AVB Use-case Hardware Setup

Data is streamed from Linux talker (Ref: AVB Used guide for building talker binaries)

VMware can also be used but the throughput of talker is not as desired and depends

on PC configurations.

Page 32 of 32

4 Revision History

««« § »»»

Version Date Revision History

1.0 21th August 2013 Initial Version

1.1 26
th

 September 2013 Updated for release 1

1.2 4
th

 March 2014 Updated for release 2

1.3 5
th

 Oct 2015 Updated for release 2.8

1.4 1
st
 July 2016 Updated for release 2.10

1.5 2
nd

 Nov 2016 Updated for release 2.11

1.6 8
th

 Feb 2017 Updated for release 2.12

1.7 19
th

 June 2017 Updated linux installer

1.8 27
th

 June Updated for release 3.0

1.9 12
th

 Oct 2017 Updated for release 3.1

2.0 20
th

 Dec 2017 Updated for release 3.2

2.1 2
nd

 April 2018 Updated for release 3.3

	TABLE OF CONTENTS
	1 Introduction
	1.1 References

	2 System Requirements
	2.1 Windows Installation
	2.1.1 PC Requirements
	2.1.2 Software Requirements
	2.1.2.1 A15 Compiler, Linker

	2.1.3 Code Composer Studio

	2.2 Linux Installation
	2.2.1 PC Requirements
	2.2.2 Software Requirements
	2.2.2.1 A15 Compiler, Linker

	2.2.3 Other software packages for build depending upon OS baseline

	2.3 Hardware Requirements
	2.3.1 SCV/AVB Use-case Hardware Setup
	2.3.2 LVDS MCV Use-case Hardware Setup
	2.3.2.1 DeSerializer board
	2.3.2.2 Complete LVDS Setup

	2.3.3 Capture Pin Settings
	2.3.4 EDID Programming for HDMI Capture.
	2.3.5 Surround view use-case using TIDA00455/OV490
	2.3.6 1Gig Ethernet link does not come up on some EVMs
	2.3.7 INA226 Self power measurement setup

	2.4 Software Installation
	2.4.1 Uninstall Procedure

	3 Build and Run
	3.1 Overview of application in release
	3.2 Building the application
	3.3 Uart settings
	3.4 Boot Modes
	3.5 Load using SD card
	3.5.1 Option 1: Steps to prepare a bootable SD card
	3.5.2 Option 2: Steps to prepare a bootable SD card using DISKPART
	3.5.3 Steps to generate MLO
	3.5.4 Steps to generate appImage
	3.5.5 SD Card setup
	3.5.6 Hardware Pin settings for SD Boot

	3.6 Load using QSPI
	3.6.1 Steps to generate qspi writer tools
	3.6.2 Steps to generate appImage
	3.6.3 Flashing steps
	2.5.3.1 CCS console and scripting console

	3.7 Load using NOR
	3.7.1 Steps to generate nor writer tools
	3.7.2 Steps to generate appImage
	3.7.3 Flashing steps
	4.6.3.1 CCS console and scripting console

	3.8 Load using CCS
	3.9 Run the demo
	3.9.1 Single channel demos with HDMI input
	3.9.2 Steps to run

	4 Revision History

