=============================== TIDL import - parsing =============================== TF Model (Proto) File : E:\TIDL_import_tool_v1.2.2\REL.TIDLSRC.01.01.04.00\modules\ti_dl\test\testvecs\config\tidl_models\optimized.pb TIDL Network File : E:\TIDL_import_tool_v1.2.2\REL.TIDLSRC.01.01.04.00\modules\ti_dl\test\testvecs\config\tidl_models\net.bin TIDL Params File : E:\TIDL_import_tool_v1.2.2\REL.TIDLSRC.01.01.04.00\modules\ti_dl\test\testvecs\config\tidl_models\param.bin === net === 0 [input]: [output]: 1 [input]: [output]: 2 [input]: [output]: 3 [input]: [output]: 4 [input]: [output]: 5 [input]: [output]: 6 [input]: [output]: 7 [input]: [output]: 8 [input]: [output]: 9 [input]: [output]: 10 [input]: [output]: 11 [input]: [output]: 12 [input]: [output]: 13 [input]: [output]: 14 [input]: [output]: 15 [input]: [output]: 16 [input]: [output]: 17 [input]: [output]: 18 [input]: [output]: 19 [input]: [output]: 20 [input]: [output]: 21 [input]: [output]: 22 [input]: [output]: 23 [input]: [output]: 24 [input]: [output]: 25 [input]: [output]: 26 [input]: [output]: 27 [input]: [output]: 28 [input]: [output]: 29 [input]: [output]: 30 [input]: [output]: 31 [input]: [output]: 32 [input]: [output]: 33 [input]: [output]: 34 [input]: [output]: 35 [input]: [output]: 36 [input]: [output]: 37 [input]: [output]: 38 [input]: [output]: 39 [input]: [output]: 40 [input]: [output]: 41 [input]: [output]: 42 [input]: [output]: 43 [input]: [output]: 44 [input]: [output]: 45 [input]: [output]: 46 [input]: [output]: 47 [input]: [output]: 48 [input]: [output]: 49 [input]: [output]: 50 [input]: [output]: 51 [input]: [output]: 52 [input]: [output]: 53 [input]: [output]: 54 [input]: [output]: 55 [input]: [output]: 56 [input]: [output]: 57 [input]: [output]: 58 [input]: [output]: 59 [input]: [output]: 60 [input]: [output]: 61 [input]: [output]: 62 [input]: [output]: 63 [input]: [output]: 64 [input]: [output]: 65 [input]: [output]: 66 [input]: [output]: 67 [input]: [output]: 68 [input]: [output]: 69 [input]: [output]: 70 [input]: [output]: 71 [input]: [output]: 72 [input]: [output]: 73 [input]: [output]: 74 [input]: [output]: 75 [input]: [output]: 76 [input]: [output]: 77 [input]: [output]: 78 [input]: [output]: 79 [input]: [output]: 80 [input]: [output]: 81 [input]: [output]: 82 [input]: [output]: 83 [input]: [output]: 84 [input]: [output]: 85 [input]: [output]: 86 [input]: [output]: 87 [input]: [output]: 88 [input]: [output]: 89 [input]: [output]: 90 [input]: [output]: 91 [input]: [output]: 92 [input]: [output]: 93 [input]: [output]: 94 [input]: [output]: 95 [input]: [output]: 96 [input]: [output]: 97 [input]: [output]: 98 [input]: [output]: 99 [input]: [output]: 100 [input]: [output]: 101 [input]: [output]: 102 [input]: [output]: 103 [input]: [output]: 104 [input]: [output]: 105 [input]: [output]: 106 [input]: [output]: 107 [input]: [output]: 108 [input]: [output]: 109 [input]: [output]: 110 [input]: [output]: 111 [input]: [output]: 112 [input]: [output]: 113 [input]: [output]: 114 [input]: [output]: 115 [input]: [output]: 116 [input]: [output]: 117 [input]: [output]: 118 [input]: [output]: 119 [input]: [output]: 120 [input]: [output]: 121 [input]: [output]: 122 [input]: [output]: 123 [input]: [output]: 124 [input]: [output]: 125 [input]: [output]: 126 [input]: [output]: 127 [input]: [output]: 128 [input]: [output]: 129 [input]: [output]: 130 [input]: [output]: 131 [input]: [output]: 132 [input]: [output]: 133 [input]: [output]: 134 [input]: [output]: 135 [input]: [output]: 136 [input]: [output]: 137 [input]: [output]: 138 [input]: [output]: 139 [input]: [output]: 140 [input]: [output]: 141 [input]: [output]: 142 [input]: [output]: 143 [input]: [output]: 144 [input]: [output]: 145 [input]: [output]: 146 [input]: [output]: 147 [input]: [output]: 148 [input]: [output]: 149 [input]: [output]: 150 [input]: [output]: 151 [input]: [output]: 152 [input]: [output]: 153 [input]: [output]: 154 [input]: [output]: 155 [input]: [output]: 156 [input]: [output]: 157 [input]: [output]: 158 [input]: [output]: 159 [input]: [output]: 160 [input]: [output]: 161 [input]: [output]: 162 [input]: [output]: 163 [input]: [output]: 164 [input]: [output]: 165 [input]: [output]: 166 [input]: [output]: 167 [input]: [output]: 168 [input]: [output]: 169 [input]: [output]: 170 [input]: [output]: 171 [input]: [output]: 172 [input]: [output]: 173 [input]: [output]: 174 [input]: [output]: 175 [input]: [output]: 176 [input]: [output]: 177 [input]: [output]: 178 [input]: [output]: 179 [input]: [output]: 180 [input]: [output]: 181 [input]: [output]: 182 [input]: [output]: 183 [input]: [output]: 184 [input]: [output]: 185 [input]: [output]: 186 [input]: [output]: 187 [input]: [output]: 188 [input]: [output]: 189 [input]: [output]: 190 [input]: [output]: 191 [input]: [output]: 192 [input]: [output]: 193 [input]: [output]: 194 [input]: [output]: 195 [input]: [output]: 196 [input]: [output]: 197 [input]: [output]: 198 [input]: [output]: 199 [input]: [output]: 200 [input]: [output]: 201 [input]: [output]: 202 [input]: [output]: 203 [input]: [output]: 204 [input]: [output]: 205 [input]: [output]: 206 [input]: [output]: 207 [input]: [output]: 208 [input]: [output]: 209 [input]: [output]: 210 [input]: [output]: 211 [input]: [output]: 212 [input]: [output]: 213 [input]: [output]: 214 [input]: [output]: 215 [input]: [output]: 216 [input]: [output]: 217 [input]: [output]: 218 [input]: [output]: 219 [input]: [output]: 220 [input]: [output]: 221 [input]: [output]: 222 [input]: [output]: 223 [input]: [output]: 224 [input]: [output]: 225 [input]: [output]: 226 [input]: [output]: 227 [input]: [output]: 228 [input]: [output]: 229 [input]: [output]: 230 [input]: [output]: 231 [input]: [output]: 232 [input]: [output]: 233 [input]: [output]: 234 [input]: [output]: 235 [input]: [output]: 236 [input]: [output]: 237 [input]: [output]: 238 [input]: [output]: 239 [input]: [output]: 240 [input]: [output]: 241 [input]: [output]: 242 [input]: [output]: 243 [input]: [output]: 244 [input]: [output]: 245 [input]: [output]: 246 [input]: [output]: 247 [input]: [output]: 248 [input]: [output]: 249 [input]: [output]: 250 [input]: [output]: 251 [input]: [output]: 252 [input]: [output]: 253 [input]: [output]: 254 [input]: [output]: 255 [input]: [output]: 256 [input]: [output]: 257 [input]: [output]: 258 [input]: [output]: i 1, 0 i 2, 0 i 3, 0 i 4, 0 i 5, 0 i 6, 0 i 7, 0 i 8, 0 i 9, 0 i 10, 0 i 11, 0 i 12, 0 i 13, 0 i 14, 0 i 15, 0 i 16, 0 i 17, 0 i 18, 0 i 19, 0 i 20, 0 i 21, 0 i 22, 0 i 23, 0 i 24, 0 i 25, 0 i 26, 0 i 27, 0 i 28, 0 i 29, 0 i 30, 0 i 31, 0 i 32, 0 i 33, 0 i 34, 0 i 35, 0 i 36, 0 i 37, 0 i 38, 0 i 39, 0 i 40, 0 i 41, 0 i 42, 0 i 43, 0 i 44, 0 i 45, 0 i 46, 0 i 47, 0 i 48, 0 i 49, 0 i 50, 0 i 51, 0 i 52, 0 i 53, 0 i 54, 0 i 55, 0 i 56, 0 i 57, 0 i 58, 0 i 59, 0 i 60, 0 i 61, 0 i 62, 0 i 63, 0 i 64, 0 i 65, 0 i 66, 0 i 67, 0 i 68, 0 i 69, 0 i 70, 0 i 71, 0 i 72, 0 i 73, 0 i 74, 0 i 75, 0 i 76, 0 i 77, 0 i 78, 0 i 79, 0 i 80, 0 i 81, 0 i 82, 0 i 83, 0 i 84, 0 i 85, 0 i 86, 0 i 87, 0 i 88, 0 i 89, 0 i 90, 0 i 91, 0 i 92, 0 i 93, 0 i 94, 0 i 95, 0 i 96, 0 i 97, 0 i 98, 0 i 99, 0 i 100, 0 i 101, 0 i 102, 0 i 103, 0 i 104, 0 i 105, 0 i 106, 0 i 107, 0 i 108, 0 i 109, 0 i 110, 0 i 111, 0 i 112, 0 i 113, 0 i 114, 0 i 115, 0 i 116, 0 i 117, 0 i 118, 0 i 119, 0 i 120, 0 i 121, 0 i 122, 0 i 123, 0 i 124, 0 i 125, 0 i 126, 0 i 127, 0 i 128, 0 i 129, 0 i 130, 0 i 131, 0 i 132, 0 i 133, 0 i 134, 0 i 135, 0 i 136, 0 i 137, 0 i 138, 0 i 139, 0 i 140, 0 i 141, 0 i 142, 0 i 143, 0 i 144, 0 i 145, 0 i 146, 0 i 147, 0 i 148, 0 i 149, 0 i 150, 0 i 151, 0 i 152, 0 i 153, 0 i 154, 0 i 155, 0 i 156, 0 i 157, 0 i 158, 0 i 159, 0 i 160, 0 i 161, 0 i 162, 0 i 163, 0 i 164, 0 i 165, 0 i 166, 0 i 167, 0 i 168, 0 i 169, 0 i 170, 0 i 171, 0 i 172, 0 i 173, 0 i 174, 0 i 175, 0 i 176, 0 i 177, 0 i 178, 0 i 179, 0 i 180, 0 i 181, 0 i 182, 0 i 183, 0 i 184, 0 i 185, 0 i 186, 0 i 187, 0 i 188, 0 i 189, 0 i 190, 0 i 191, 0 i 192, 0 i 193, 0 i 194, 0 i 195, 0 i 196, 0 i 197, 0 i 198, 0 i 199, 0 i 200, 0 i 201, 0 i 202, 0 i 203, 0 i 204, 0 i 205, 0 i 206, 0 i 207, 0 i 208, 0 i 209, 0 i 210, 0 i 211, 0 i 212, 0 i 213, 0 i 214, 0 i 215, 0 i 216, 0 i 217, 0 i 218, 0 i 219, 0 i 220, 0 i 221, 0 i 222, 0 i 223, 0 i 224, 0 i 225, 0 i 226, 0 i 227, 0 i 228, 0 i 229, 0 i 230, 0 i 231, 0 i 232, 0 i 233, 0 i 234, 0 i 235, 0 i 236, 0 i 237, 0 i 238, 0 i 239, 0 i 240, 0 i 241, 0 i 242, 0 i 243, 0 i 244, 0 i 245, 0 i 246, 0 i 247, 0 i 248, 0 i 249, 0 i 250, 0 i 251, 0 i 252, 0 i 253, 0 i 254, 0 i 255, 0 i 256, 0 i 257, 0 i 258, 0 i 259, 0 Num of Layer Detected : 133 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Num|TIDL Layer Name |Out Data Name |Group |#Ins |#Outs |Inbuf Ids |Outbuf Id |In NCHW |Out NCHW |MACS | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 0|TIDL_DataLayer |input_image | 0| -1| 1| x x x x x x x x | 0 | 0 0 0 0 | 1 3 608 608 | 0 | 1|TIDL_ConvolutionLayer |e_conv/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1| 0 x x x x x x x | 1 | 1 3 608 608 | 1 3 602 602 | 53273388 | 2|TIDL_ConvolutionLayer |DASNet/depthwise_conv/Relu | 1| 1| 1| 1 x x x x x x x | 2 | 1 3 602 602 | 1 16 602 602 | 34790784 | 3|TIDL_PoolingLayer |/advanced_downsampling_layer/max_pooling2d/MaxPool| 1| 1| 1| 2 x x x x x x x | 3 | 1 16 602 602 | 1 16 301 301 | 13046544 | 4|TIDL_ConvolutionLayer |_layer/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1| 2 x x x x x x x | 4 | 1 16 602 602 | 1 16 301 301 | 13046544 | 5|TIDL_ConvolutionLayer |vanced_downsampling_layer/separable_conv2d/BiasAdd| 1| 1| 1| 4 x x x x x x x | 5 | 1 16 301 301 | 1 16 301 301 | 24643472 | 6|TIDL_ConcatLayer |DASNet/advanced_downsampling_layer/concat | 1| 2| 1| 3 5 x x x x x x | 6 | 1 16 301 301 | 1 32 301 301 | 2899232 | 7|TIDL_BatchNormLayer |DASNet/advanced_downsampling_layer/Relu | 1| 1| 1| 6 x x x x x x x | 7 | 1 32 301 301 | 1 32 301 301 | 5798464 | 8|TIDL_ConvolutionLayer |ayer/separable_conv2d_1/separable_conv2d/depthwise| 1| 1| 1| 7 x x x x x x x | 8 | 1 32 301 301 | 1 32 301 301 | 26093088 | 9|TIDL_ConvolutionLayer |DASNet/advanced_downsampling_layer/Relu_1 | 1| 1| 1| 8 x x x x x x x | 9 | 1 32 301 301 | 1 32 301 301 | 101473120 | 10|TIDL_ConvolutionLayer |conv_1/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1| 9 x x x x x x x | 10 | 1 32 301 301 | 1 32 301 301 | 72480800 | 11|TIDL_ConvolutionLayer |DASNet/depthwise_conv_1/Relu | 1| 1| 1| 10 x x x x x x x | 11 | 1 32 301 301 | 1 64 301 301 | 202946240 | 12|TIDL_PoolingLayer |dvanced_downsampling_layer_1/max_pooling2d/MaxPool| 1| 1| 1| 11 x x x x x x x | 12 | 1 64 301 301 | 1 64 151 151 | 13133376 | 13|TIDL_ConvolutionLayer |ayer_1/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1| 11 x x x x x x x | 13 | 1 64 301 301 | 1 64 151 151 | 13133376 | 14|TIDL_ConvolutionLayer |nced_downsampling_layer_1/separable_conv2d/BiasAdd| 1| 1| 1| 13 x x x x x x x | 14 | 1 64 151 151 | 1 64 151 151 | 94852160 | 15|TIDL_ConcatLayer |DASNet/advanced_downsampling_layer_1/concat | 1| 2| 1| 12 14 x x x x x x | 15 | 1 64 151 151 | 1 128 151 151 | 2918528 | 16|TIDL_BatchNormLayer |DASNet/advanced_downsampling_layer_1/Relu | 1| 1| 1| 15 x x x x x x x | 16 | 1 128 151 151 | 1 128 151 151 | 5837056 | 17|TIDL_ConvolutionLayer |er_1/separable_conv2d_1/separable_conv2d/depthwise| 1| 1| 1| 16 x x x x x x x | 17 | 1 128 151 151 | 1 128 151 151 | 26266752 | 18|TIDL_ConvolutionLayer |DASNet/advanced_downsampling_layer_1/Relu_1 | 1| 1| 1| 17 x x x x x x x | 18 | 1 128 151 151 | 1 128 151 151 | 382327168 | 19|TIDL_ConvolutionLayer |conv_2/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1| 18 x x x x x x x | 19 | 1 128 151 151 | 1 128 151 151 | 2918528 | 20|TIDL_ConvolutionLayer |DASNet/depthwise_conv_2/Relu | 1| 1| 1| 19 x x x x x x x | 20 | 1 128 151 151 | 1 256 151 151 | 764654336 | 21|TIDL_ConvolutionLayer |e_conv/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1| 18 x x x x x x x | 21 | 1 128 151 151 | 1 128 151 151 | 2918528 | 22|TIDL_ConvolutionLayer |DASNet/advanced_residual_layer/depthwise_conv/Relu| 1| 1| 1| 21 x x x x x x x | 22 | 1 128 151 151 | 1 256 151 151 | 764654336 | 23|TIDL_EltWiseLayer |DASNet/advanced_residual_layer/Add | 1| 2| 1| 22 20 x x x x x x | 23 | 1 256 151 151 | 1 256 151 151 | 5837056 | 24|TIDL_ConvolutionLayer |conv_3/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1| 23 x x x x x x x | 24 | 1 256 151 151 | 1 256 151 151 | 5837056 | 25|TIDL_ConvolutionLayer |DASNet/depthwise_conv_3/Relu | 1| 1| 1| 24 x x x x x x x | 25 | 1 256 151 151 | 1 128 151 151 | 755898752 | 26|TIDL_PoolingLayer |dvanced_downsampling_layer_2/max_pooling2d/MaxPool| 1| 1| 1| 25 x x x x x x x | 26 | 1 128 151 151 | 1 128 76 76 | 6653952 | 27|TIDL_ConvolutionLayer |ayer_2/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1| 25 x x x x x x x | 27 | 1 128 151 151 | 1 128 76 76 | 6653952 | 28|TIDL_ConvolutionLayer |nced_downsampling_layer_2/separable_conv2d/BiasAdd| 1| 1| 1| 27 x x x x x x x | 28 | 1 128 76 76 | 1 128 76 76 | 95373312 | 29|TIDL_ConcatLayer |DASNet/advanced_downsampling_layer_2/concat | 1| 2| 1| 26 28 x x x x x x | 29 | 1 128 76 76 | 1 256 76 76 | 1478656 | 30|TIDL_BatchNormLayer |DASNet/advanced_downsampling_layer_2/Relu | 1| 1| 1| 29 x x x x x x x | 30 | 1 256 76 76 | 1 256 76 76 | 2957312 | 31|TIDL_ConvolutionLayer |er_2/separable_conv2d_1/separable_conv2d/depthwise| 1| 1| 1| 30 x x x x x x x | 31 | 1 256 76 76 | 1 256 76 76 | 13307904 | 32|TIDL_ConvolutionLayer |DASNet/advanced_downsampling_layer_2/Relu_1 | 1| 1| 1| 31 x x x x x x x | 32 | 1 256 76 76 | 1 256 76 76 | 382971904 | 33|TIDL_ConvolutionLayer |conv_4/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1| 32 x x x x x x x | 33 | 1 256 76 76 | 1 256 76 76 | 1478656 | 34|TIDL_ConvolutionLayer |DASNet/depthwise_conv_4/Relu | 1| 1| 1| 33 x x x x x x x | 34 | 1 256 76 76 | 1 128 76 76 | 191485952 | 35|TIDL_PoolingLayer |dvanced_downsampling_layer_3/max_pooling2d/MaxPool| 1| 1| 1| 34 x x x x x x x | 35 | 1 128 76 76 | 1 128 38 38 | 1663488 | 36|TIDL_ConvolutionLayer |ayer_3/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1| 34 x x x x x x x | 36 | 1 128 76 76 | 1 128 38 38 | 1663488 | 37|TIDL_ConvolutionLayer |nced_downsampling_layer_3/separable_conv2d/BiasAdd| 1| 1| 1| 36 x x x x x x x | 37 | 1 128 38 38 | 1 128 38 38 | 23843328 | 38|TIDL_ConcatLayer |DASNet/advanced_downsampling_layer_3/concat | 1| 2| 1| 35 37 x x x x x x | 38 | 1 128 38 38 | 1 256 38 38 | 369664 | 39|TIDL_BatchNormLayer |DASNet/advanced_downsampling_layer_3/Relu | 1| 1| 1| 38 x x x x x x x | 39 | 1 256 38 38 | 1 256 38 38 | 739328 | 40|TIDL_ConvolutionLayer |er_3/separable_conv2d_1/separable_conv2d/depthwise| 1| 1| 1| 39 x x x x x x x | 40 | 1 256 38 38 | 1 256 38 38 | 3326976 | 41|TIDL_ConvolutionLayer |DASNet/advanced_downsampling_layer_3/Relu_1 | 1| 1| 1| 40 x x x x x x x | 41 | 1 256 38 38 | 1 256 38 38 | 95742976 | 42|TIDL_ConvolutionLayer |conv_5/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1| 41 x x x x x x x | 42 | 1 256 38 38 | 1 256 38 38 | 369664 | 43|TIDL_ConvolutionLayer |DASNet/depthwise_conv_5/Relu | 1| 1| 1| 42 x x x x x x x | 43 | 1 256 38 38 | 1 256 38 38 | 95742976 | 44|TIDL_ConvolutionLayer |conv_6/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1| 43 x x x x x x x | 44 | 1 256 38 38 | 1 256 38 38 | 369664 | 45|TIDL_ConvolutionLayer |DASNet/depthwise_conv_6/Relu | 1| 1| 1| 44 x x x x x x x | 45 | 1 256 38 38 | 1 128 38 38 | 47871488 | 46|TIDL_ConvolutionLayer |reduce/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1| 45 x x x x x x x | 46 | 1 128 38 38 | 1 128 38 38 | 184832 | 47|TIDL_ConvolutionLayer |le/block/reduce/batch_normalization/FusedBatchNorm| 1| 1| 1| 46 x x x x x x x | 47 | 1 128 38 38 | 1 64 38 38 | 12014080 | 48|TIDL_ConvolutionLayer |nsform/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1| 47 x x x x x x x | 48 | 1 64 38 38 | 1 64 38 38 | 831744 | 49|TIDL_ConvolutionLayer |block/split_and_transform/separable_conv2d/BiasAdd| 1| 1| 1| 48 x x x x x x x | 49 | 1 64 38 38 | 1 64 38 38 | 6007040 | 50|TIDL_ConvolutionLayer |form/separable_conv2d_1/separable_conv2d/depthwise| 1| 1| 1| 49 x x x x x x x | 50 | 1 64 38 38 | 1 64 38 38 | 831744 | 51|TIDL_ConvolutionLayer |DASNet/RF_module/block/split_and_transform/Relu | 1| 1| 1| 50 x x x x x x x | 51 | 1 64 38 38 | 1 64 38 38 | 6191872 | 52|TIDL_ConvolutionLayer |form/separable_conv2d_2/separable_conv2d/depthwise| 1| 1| 1| 47 x x x x x x x | 52 | 1 64 38 38 | 1 64 38 38 | 2310400 | 53|TIDL_ConvolutionLayer |ock/split_and_transform/separable_conv2d_2/BiasAdd| 1| 1| 1| 52 x x x x x x x | 53 | 1 64 38 38 | 1 64 38 38 | 6007040 | 54|TIDL_ConvolutionLayer |form/separable_conv2d_3/separable_conv2d/depthwise| 1| 1| 1| 53 x x x x x x x | 54 | 1 64 38 38 | 1 64 38 38 | 2310400 | 55|TIDL_ConvolutionLayer |DASNet/RF_module/block/split_and_transform/Relu_1 | 1| 1| 1| 54 x x x x x x x | 55 | 1 64 38 38 | 1 64 38 38 | 6191872 | 56|TIDL_EltWiseLayer |DASNet/RF_module/block/HFF/Add | 1| 2| 1| 51 55 x x x x x x | 56 | 1 64 38 38 | 1 64 38 38 | 92416 | 57|TIDL_ConcatLayer |DASNet/RF_module/block/HFF/concat | 1| 2| 1| 51 56 x x x x x x | 57 | 1 64 38 38 | 1 128 38 38 | 184832 | 58|TIDL_EltWiseLayer |DASNet/RF_module/block/HFF/Add_1 | 1| 2| 1| 57 45 x x x x x x | 58 | 1 128 38 38 | 1 128 38 38 | 184832 | 59|TIDL_ConcatLayer |DASNet/RF_module/feature_pooling/concat | 1| 2| 1| 45 58 x x x x x x | 59 | 1 128 38 38 | 1 256 38 38 | 369664 | 60|TIDL_ConvolutionLayer |conv_7/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1| 59 x x x x x x x | 60 | 1 256 38 38 | 1 256 38 38 | 369664 | 61|TIDL_ConvolutionLayer |DASNet/depthwise_conv_7/Relu | 1| 1| 1| 60 x x x x x x x | 61 | 1 256 38 38 | 1 256 38 38 | 95742976 | 62|TIDL_ConvolutionLayer |e_conv/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1| 41 x x x x x x x | 62 | 1 256 38 38 | 1 256 38 38 | 369664 | 63|TIDL_ConvolutionLayer |SNet/advanced_residual_layer_1/depthwise_conv/Relu| 1| 1| 1| 62 x x x x x x x | 63 | 1 256 38 38 | 1 256 38 38 | 95742976 | 64|TIDL_EltWiseLayer |DASNet/advanced_residual_layer_1/Add | 1| 2| 1| 63 61 x x x x x x | 64 | 1 256 38 38 | 1 256 38 38 | 369664 | 65|TIDL_ConvolutionLayer |conv_8/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1| 64 x x x x x x x | 65 | 1 256 38 38 | 1 256 38 38 | 369664 | 66|TIDL_ConvolutionLayer |DASNet/depthwise_conv_8/Relu | 1| 1| 1| 65 x x x x x x x | 66 | 1 256 38 38 | 1 128 38 38 | 47871488 | 67|TIDL_PoolingLayer |dvanced_downsampling_layer_4/max_pooling2d/MaxPool| 1| 1| 1| 66 x x x x x x x | 67 | 1 128 38 38 | 1 128 19 19 | 415872 | 68|TIDL_ConvolutionLayer |ayer_4/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1| 66 x x x x x x x | 68 | 1 128 38 38 | 1 128 19 19 | 415872 | 69|TIDL_ConvolutionLayer |nced_downsampling_layer_4/separable_conv2d/BiasAdd| 1| 1| 1| 68 x x x x x x x | 69 | 1 128 19 19 | 1 128 19 19 | 5960832 | 70|TIDL_ConcatLayer |DASNet/advanced_downsampling_layer_4/concat | 1| 2| 1| 67 69 x x x x x x | 70 | 1 128 19 19 | 1 256 19 19 | 92416 | 71|TIDL_BatchNormLayer |DASNet/advanced_downsampling_layer_4/Relu | 1| 1| 1| 70 x x x x x x x | 71 | 1 256 19 19 | 1 256 19 19 | 184832 | 72|TIDL_ConvolutionLayer |er_4/separable_conv2d_1/separable_conv2d/depthwise| 1| 1| 1| 71 x x x x x x x | 72 | 1 256 19 19 | 1 256 19 19 | 831744 | 73|TIDL_ConvolutionLayer |DASNet/advanced_downsampling_layer_4/Relu_1 | 1| 1| 1| 72 x x x x x x x | 73 | 1 256 19 19 | 1 256 19 19 | 23935744 | 74|TIDL_ConvolutionLayer |conv_9/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1| 73 x x x x x x x | 74 | 1 256 19 19 | 1 256 19 19 | 92416 | 75|TIDL_ConvolutionLayer |DASNet/depthwise_conv_9/Relu | 1| 1| 1| 74 x x x x x x x | 75 | 1 256 19 19 | 1 128 19 19 | 11967872 | 76|TIDL_ConvolutionLayer |reduce/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1| 75 x x x x x x x | 76 | 1 128 19 19 | 1 128 19 19 | 46208 | 77|TIDL_ConvolutionLayer |_1/block/reduce/batch_normalization/FusedBatchNorm| 1| 1| 1| 76 x x x x x x x | 77 | 1 128 19 19 | 1 32 19 19 | 1501760 | 78|TIDL_ConvolutionLayer |nsform/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1| 77 x x x x x x x | 78 | 1 32 19 19 | 1 32 19 19 | 11552 | 79|TIDL_ConvolutionLayer |block/split_and_transform/separable_conv2d/BiasAdd| 1| 1| 1| 78 x x x x x x x | 79 | 1 32 19 19 | 1 32 19 19 | 381216 | 80|TIDL_ConvolutionLayer |form/separable_conv2d_1/separable_conv2d/depthwise| 1| 1| 1| 79 x x x x x x x | 80 | 1 32 19 19 | 1 32 19 19 | 11552 | 81|TIDL_ConvolutionLayer |DASNet/RF_module_1/block/split_and_transform/Relu | 1| 1| 1| 80 x x x x x x x | 81 | 1 32 19 19 | 1 32 19 19 | 404320 | 82|TIDL_ConvolutionLayer |form/separable_conv2d_2/separable_conv2d/depthwise| 1| 1| 1| 77 x x x x x x x | 82 | 1 32 19 19 | 1 32 18 18 | 41472 | 83|TIDL_ConvolutionLayer |ock/split_and_transform/separable_conv2d_2/BiasAdd| 1| 1| 1| 82 x x x x x x x | 83 | 1 32 18 18 | 1 32 18 18 | 342144 | 84|TIDL_ConvolutionLayer |form/separable_conv2d_3/separable_conv2d/depthwise| 1| 1| 1| 83 x x x x x x x | 84 | 1 32 18 18 | 1 32 17 17 | 36992 | 85|TIDL_ConvolutionLayer |ASNet/RF_module_1/block/split_and_transform/Relu_1| 1| 1| 1| 84 x x x x x x x | 85 | 1 32 17 17 | 1 32 17 17 | 323680 | 86|TIDL_ConvolutionLayer |form/separable_conv2d_4/separable_conv2d/depthwise| 1| 1| 1| 77 x x x x x x x | 86 | 1 32 19 19 | 1 32 19 19 | 103968 | 87|TIDL_ConvolutionLayer |ock/split_and_transform/separable_conv2d_4/BiasAdd| 1| 1| 1| 86 x x x x x x x | 87 | 1 32 19 19 | 1 32 19 19 | 381216 | 88|TIDL_ConvolutionLayer |form/separable_conv2d_5/separable_conv2d/depthwise| 1| 1| 1| 87 x x x x x x x | 88 | 1 32 19 19 | 1 32 19 19 | 103968 | 89|TIDL_ConvolutionLayer |ASNet/RF_module_1/block/split_and_transform/Relu_2| 1| 1| 1| 88 x x x x x x x | 89 | 1 32 19 19 | 1 32 19 19 | 404320 | 90|TIDL_ConvolutionLayer |form/separable_conv2d_6/separable_conv2d/depthwise| 1| 1| 1| 77 x x x x x x x | 90 | 1 32 19 19 | 1 32 19 19 | 288800 | 91|TIDL_ConvolutionLayer |ock/split_and_transform/separable_conv2d_6/BiasAdd| 1| 1| 1| 90 x x x x x x x | 91 | 1 32 19 19 | 1 32 19 19 | 381216 | 92|TIDL_ConvolutionLayer |form/separable_conv2d_7/separable_conv2d/depthwise| 1| 1| 1| 91 x x x x x x x | 92 | 1 32 19 19 | 1 32 19 19 | 288800 | 93|TIDL_ConvolutionLayer |ASNet/RF_module_1/block/split_and_transform/Relu_3| 1| 1| 1| 92 x x x x x x x | 93 | 1 32 19 19 | 1 32 19 19 | 404320 | 94|TIDL_EltWiseLayer |DASNet/RF_module_1/block/HFF/Add | 1| 2| 1| 81 85 x x x x x x | 94 | 1 32 19 19 | 1 32 19 19 | 11552 | 95|TIDL_EltWiseLayer |DASNet/RF_module_1/block/HFF/Add_1 | 1| 2| 1| 94 89 x x x x x x | 95 | 1 32 19 19 | 1 32 19 19 | 11552 | 96|TIDL_EltWiseLayer |DASNet/RF_module_1/block/HFF/Add_2 | 1| 2| 1| 95 93 x x x x x x | 96 | 1 32 19 19 | 1 32 19 19 | 11552 | 97|TIDL_ConcatLayer |DASNet/RF_module_1/block/HFF/concat | 1| 4| 1| 81 94 95 96 x x x x | 97 | 1 32 19 19 | 1 128 19 19 | 46208 | 98|TIDL_EltWiseLayer |DASNet/RF_module_1/block/HFF/Add_3 | 1| 2| 1| 97 75 x x x x x x | 98 | 1 128 19 19 | 1 128 19 19 | 46208 | 99|TIDL_ConcatLayer |DASNet/RF_module_1/feature_pooling/concat | 1| 2| 1| 75 98 x x x x x x | 99 | 1 128 19 19 | 1 256 19 19 | 92416 | 100|TIDL_ConvolutionLayer |onv_10/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1| 99 x x x x x x x |100 | 1 256 19 19 | 1 256 19 19 | 92416 | 101|TIDL_ConvolutionLayer |DASNet/depthwise_conv_10/Relu | 1| 1| 1|100 x x x x x x x |101 | 1 256 19 19 | 1 256 19 19 | 23935744 | 102|TIDL_ConvolutionLayer |e_conv/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1| 73 x x x x x x x |102 | 1 256 19 19 | 1 256 19 19 | 92416 | 103|TIDL_ConvolutionLayer |SNet/advanced_residual_layer_2/depthwise_conv/Relu| 1| 1| 1|102 x x x x x x x |103 | 1 256 19 19 | 1 256 19 19 | 23935744 | 104|TIDL_EltWiseLayer |DASNet/advanced_residual_layer_2/Add | 1| 2| 1|103 101 x x x x x x |104 | 1 256 19 19 | 1 256 19 19 | 92416 | 105|TIDL_ConvolutionLayer |e_conv/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1|104 x x x x x x x |105 | 1 256 19 19 | 1 256 19 19 | 92416 | 106|TIDL_ConvolutionLayer |DASNet/big_object_branch/depthwise_conv/Relu | 1| 1| 1|105 x x x x x x x |106 | 1 256 19 19 | 1 128 19 19 | 11967872 | 107|TIDL_ConvolutionLayer |conv_1/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1|106 x x x x x x x |107 | 1 128 19 19 | 1 128 19 19 | 46208 | 108|TIDL_ConvolutionLayer |DASNet/big_object_branch/depthwise_conv_1/Relu | 1| 1| 1|107 x x x x x x x |108 | 1 128 19 19 | 1 256 19 19 | 12106496 | 109|TIDL_ConvolutionLayer |conv_2/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1|108 x x x x x x x |109 | 1 256 19 19 | 1 256 19 19 | 92416 | 110|TIDL_ConvolutionLayer |DASNet/big_object_branch/depthwise_conv_2/Relu | 1| 1| 1|109 x x x x x x x |110 | 1 256 19 19 | 1 128 19 19 | 11967872 | 111|TIDL_ConvolutionLayer |output/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1|110 x x x x x x x |111 | 1 128 19 19 | 1 128 19 19 | 46208 | 112|TIDL_ConvolutionLayer |bject_branch/model_output/separable_conv2d/BiasAdd| 1| 1| 1|111 x x x x x x x |112 | 1 128 19 19 | 1 24 19 19 | 1117656 | 113|TIDL_Deconv2DLayer |_object_branch/upsampling/conv2d_transpose/BiasAdd| 1| 1| 1|110 x x x x x x x |113 | 1 128 19 19 | 1 128 38 38 | 1848320 | 114|TIDL_BatchNormLayer |DASNet/medium_object_branch/upsampling/Relu | 1| 1| 1|113 x x x x x x x |114 | 1 128 38 38 | 1 128 38 38 | 369664 | 115|TIDL_ConcatLayer |DASNet/medium_object_branch/feature_pooling/concat| 1| 2| 1|114 66 x x x x x x |115 | 1 128 38 38 | 1 256 38 38 | 369664 | 116|TIDL_ConvolutionLayer |e_conv/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1|115 x x x x x x x |116 | 1 256 38 38 | 1 256 38 38 | 369664 | 117|TIDL_ConvolutionLayer |DASNet/medium_object_branch/depthwise_conv/Relu | 1| 1| 1|116 x x x x x x x |117 | 1 256 38 38 | 1 128 38 38 | 47871488 | 118|TIDL_ConvolutionLayer |conv_1/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1|117 x x x x x x x |118 | 1 128 38 38 | 1 128 38 38 | 184832 | 119|TIDL_ConvolutionLayer |DASNet/medium_object_branch/depthwise_conv_1/Relu | 1| 1| 1|118 x x x x x x x |119 | 1 128 38 38 | 1 256 38 38 | 48425984 | 120|TIDL_ConvolutionLayer |conv_2/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1|119 x x x x x x x |120 | 1 256 38 38 | 1 256 38 38 | 369664 | 121|TIDL_ConvolutionLayer |DASNet/medium_object_branch/depthwise_conv_2/Relu | 1| 1| 1|120 x x x x x x x |121 | 1 256 38 38 | 1 128 38 38 | 47871488 | 122|TIDL_ConvolutionLayer |output/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1|121 x x x x x x x |122 | 1 128 38 38 | 1 128 38 38 | 184832 | 123|TIDL_ConvolutionLayer |bject_branch/model_output/separable_conv2d/BiasAdd| 1| 1| 1|122 x x x x x x x |123 | 1 128 38 38 | 1 24 38 38 | 4470624 | 124|TIDL_Deconv2DLayer |_object_branch/upsampling/conv2d_transpose/BiasAdd| 1| 1| 1|121 x x x x x x x |124 | 1 128 38 38 | 1 128 76 76 | 7393280 | 125|TIDL_BatchNormLayer |DASNet/small_object_branch/upsampling/Relu | 1| 1| 1|124 x x x x x x x |125 | 1 128 76 76 | 1 128 76 76 | 1478656 | 126|TIDL_ConcatLayer |DASNet/small_object_branch/feature_pooling/concat | 1| 2| 1|125 34 x x x x x x |126 | 1 128 7 1 file(s) copied. Processing config file .\tempDir\qunat_stats_config.txt ! Running TIDL simulation for calibration. 0, TIDL_DataLayer , 0, -1 , 1 , x , x , x , x , x , x , x , x , 0 , 0 , 0 , 0 , 0 , 1 , 3 , 608 , 608 , 1, TIDL_ConvolutionLayer , 1, 1 , 1 , 0 , x , x , x , x , x , x , x , 1 , 1 , 3 , 608 , 608 , 1 , 3 , 602 , 602 , 2, TIDL_ConvolutionLayer , 1, 1 , 1 , 1 , x , x , x , x , x , x , x , 2 , 1 , 3 , 602 , 602 , 1 , 16 , 602 , 602 , 3, TIDL_PoolingLayer , 1, 1 , 1 , 2 , x , x , x , x , x , x , x , 3 , 1 , 16 , 602 , 602 , 1 , 16 , 301 , 301 , 4, TIDL_ConvolutionLayer , 1, 1 , 1 , 2 , x , x , x , x , x , x , x , 4 , 1 , 16 , 602 , 602 , 1 , 16 , 301 , 301 , 5, TIDL_ConvolutionLayer , 1, 1 , 1 , 4 , x , x , x , x , x , x , x , 5 , 1 , 16 , 301 , 301 , 1 , 16 , 301 , 301 , 6, TIDL_ConcatLayer , 1, 2 , 1 , 3 , 5 , x , x , x , x , x , x , 6 , 1 , 16 , 301 , 301 , 1 , 32 , 301 , 301 , 7, TIDL_BatchNormLayer , 1, 1 , 1 , 6 , x , x , x , x , x , x , x , 7 , 1 , 32 , 301 , 301 , 1 , 32 , 301 , 301 , 8, TIDL_ConvolutionLayer , 1, 1 , 1 , 7 , x , x , x , x , x , x , x , 8 , 1 , 32 , 301 , 301 , 1 , 32 , 301 , 301 , 9, TIDL_ConvolutionLayer , 1, 1 , 1 , 8 , x , x , x , x , x , x , x , 9 , 1 , 32 , 301 , 301 , 1 , 32 , 301 , 301 , 10, TIDL_ConvolutionLayer , 1, 1 , 1 , 9 , x , x , x , x , x , x , x , 10 , 1 , 32 , 301 , 301 , 1 , 32 , 301 , 301 , 11, TIDL_ConvolutionLayer , 1, 1 , 1 , 10 , x , x , x , x , x , x , x , 11 , 1 , 32 , 301 , 301 , 1 , 64 , 301 , 301 , 12, TIDL_PoolingLayer , 1, 1 , 1 , 11 , x , x , x , x , x , x , x , 12 , 1 , 64 , 301 , 301 , 1 , 64 , 151 , 151 , 13, TIDL_ConvolutionLayer , 1, 1 , 1 , 11 , x , x , x , x , x , x , x , 13 , 1 , 64 , 301 , 301 , 1 , 64 , 151 , 151 , 14, TIDL_ConvolutionLayer , 1, 1 , 1 , 13 , x , x , x , x , x , x , x , 14 , 1 , 64 , 151 , 151 , 1 , 64 , 151 , 151 , 15, TIDL_ConcatLayer , 1, 2 , 1 , 12 , 14 , x , x , x , x , x , x , 15 , 1 , 64 , 151 , 151 , 1 , 128 , 151 , 151 , 16, TIDL_BatchNormLayer , 1, 1 , 1 , 15 , x , x , x , x , x , x , x , 16 , 1 , 128 , 151 , 151 , 1 , 128 , 151 , 151 , 17, TIDL_ConvolutionLayer , 1, 1 , 1 , 16 , x , x , x , x , x , x , x , 17 , 1 , 128 , 151 , 151 , 1 , 128 , 151 , 151 , 18, TIDL_ConvolutionLayer , 1, 1 , 1 , 17 , x , x , x , x , x , x , x , 18 , 1 , 128 , 151 , 151 , 1 , 128 , 151 , 151 , 19, TIDL_ConvolutionLayer , 1, 1 , 1 , 18 , x , x , x , x , x , x , x , 19 , 1 , 128 , 151 , 151 , 1 , 128 , 151 , 151 , 20, TIDL_ConvolutionLayer , 1, 1 , 1 , 19 , x , x , x , x , x , x , x , 20 , 1 , 128 , 151 , 151 , 1 , 256 , 151 , 151 , 21, TIDL_ConvolutionLayer , 1, 1 , 1 , 18 , x , x , x , x , x , x , x , 21 , 1 , 128 , 151 , 151 , 1 , 128 , 151 , 151 , 22, TIDL_ConvolutionLayer , 1, 1 , 1 , 21 , x , x , x , x , x , x , x , 22 , 1 , 128 , 151 , 151 , 1 , 256 , 151 , 151 , 23, TIDL_EltWiseLayer , 1, 2 , 1 , 22 , 20 , x , x , x , x , x , x , 23 , 1 , 256 , 151 , 151 , 1 , 256 , 151 , 151 , 24, TIDL_ConvolutionLayer , 1, 1 , 1 , 23 , x , x , x , x , x , x , x , 24 , 1 , 256 , 151 , 151 , 1 , 256 , 151 , 151 , 25, TIDL_ConvolutionLayer , 1, 1 , 1 , 24 , x , x , x , x , x , x , x , 25 , 1 , 256 , 151 , 151 , 1 , 128 , 151 , 151 , 26, TIDL_PoolingLayer , 1, 1 , 1 , 25 , x , x , x , x , x , x , x , 26 , 1 , 128 , 151 , 151 , 1 , 128 , 76 , 76 , 27, TIDL_ConvolutionLayer , 1, 1 , 1 , 25 , x , x , x , x , x , x , x , 27 , 1 , 128 , 151 , 151 , 1 , 128 , 76 , 76 , 28, TIDL_ConvolutionLayer , 1, 1 , 1 , 27 , x , x , x , x , x , x , x , 28 , 1 , 128 , 76 , 76 , 1 , 128 , 76 , 76 , 29, TIDL_ConcatLayer , 1, 2 , 1 , 26 , 28 , x , x , x , x , x , x , 29 , 1 , 128 , 76 , 76 , 1 , 256 , 76 , 76 , 30, TIDL_BatchNormLayer , 1, 1 , 1 , 29 , x , x , x , x , x , x , x , 30 , 1 , 256 , 76 , 76 , 1 , 256 , 76 , 76 , 31, TIDL_ConvolutionLayer , 1, 1 , 1 , 30 , x , x , x , x , x , x , x , 31 , 1 , 256 , 76 , 76 , 1 , 256 , 76 , 76 , 32, TIDL_ConvolutionLayer , 1, 1 , 1 , 31 , x , x , x , x , x , x , x , 32 , 1 , 256 , 76 , 76 , 1 , 256 , 76 , 76 , 33, TIDL_ConvolutionLayer , 1, 1 , 1 , 32 , x , x , x , x , x , x , x , 33 , 1 , 256 , 76 , 76 , 1 , 256 , 76 , 76 , 34, TIDL_ConvolutionLayer , 1, 1 , 1 , 33 , x , x , x , x , x , x , x , 34 , 1 , 256 , 76 , 76 , 1 , 128 , 76 , 76 , 35, TIDL_PoolingLayer , 1, 1 , 1 , 34 , x , x , x , x , x , x , x , 35 , 1 , 128 , 76 , 76 , 1 , 128 , 38 , 38 , 36, TIDL_ConvolutionLayer , 1, 1 , 1 , 34 , x , x , x , x , x , x , x , 36 , 1 , 128 , 76 , 76 , 1 , 128 , 38 , 38 , 37, TIDL_ConvolutionLayer , 1, 1 , 1 , 36 , x , x , x , x , x , x , x , 37 , 1 , 128 , 38 , 38 , 1 , 128 , 38 , 38 , 38, TIDL_ConcatLayer , 1, 2 , 1 , 35 , 37 , x , x , x , x , x , x , 38 , 1 , 128 , 38 , 38 , 1 , 256 , 38 , 38 , 39, TIDL_BatchNormLayer , 1, 1 , 1 , 38 , x , x , x , x , x , x , x , 39 , 1 , 256 , 38 , 38 , 1 , 256 , 38 , 38 , 40, TIDL_ConvolutionLayer , 1, 1 , 1 , 39 , x , x , x , x , x , x , x , 40 , 1 , 256 , 38 , 38 , 1 , 256 , 38 , 38 , 41, TIDL_ConvolutionLayer , 1, 1 , 1 , 40 , x , x , x , x , x , x , x , 41 , 1 , 256 , 38 , 38 , 1 , 256 , 38 , 38 , 42, TIDL_ConvolutionLayer , 1, 1 , 1 , 41 , x , x , x , x , x , x , x , 42 , 1 , 256 , 38 , 38 , 1 , 256 , 38 , 38 , 43, TIDL_ConvolutionLayer , 1, 1 , 1 , 42 , x , x , x , x , x , x , x , 43 , 1 , 256 , 38 , 38 , 1 , 256 , 38 , 38 , 44, TIDL_ConvolutionLayer , 1, 1 , 1 , 43 , x , x , x , x , x , x , x , 44 , 1 , 256 , 38 , 38 , 1 , 256 , 38 , 38 , 45, TIDL_ConvolutionLayer , 1, 1 , 1 , 44 , x , x , x , x , x , x , x , 45 , 1 , 256 , 38 , 38 , 1 , 128 , 38 , 38 , 46, TIDL_ConvolutionLayer , 1, 1 , 1 , 45 , x , x , x , x , x , x , x , 46 , 1 , 128 , 38 , 38 , 1 , 128 , 38 , 38 , 47, TIDL_ConvolutionLayer , 1, 1 , 1 , 46 , x , x , x , x , x , x , x , 47 , 1 , 128 , 38 , 38 , 1 , 64 , 38 , 38 , 48, TIDL_ConvolutionLayer , 1, 1 , 1 , 47 , x , x , x , x , x , x , x , 48 , 1 , 64 , 38 , 38 , 1 , 64 , 38 , 38 , 49, TIDL_ConvolutionLayer , 1, 1 , 1 , 48 , x , x , x , x , x , x , x , 49 , 1 , 64 , 38 , 38 , 1 , 64 , 38 , 38 , 50, TIDL_ConvolutionLayer , 1, 1 , 1 , 49 , x , x , x , x , x , x , x , 50 , 1 , 64 , 38 , 38 , 1 , 64 , 38 , 38 , 51, TIDL_ConvolutionLayer , 1, 1 , 1 , 50 , x , x , x , x , x , x , x , 51 , 1 , 64 , 38 , 38 , 1 , 64 , 38 , 38 , 52, TIDL_ConvolutionLayer , 1, 1 , 1 , 47 , x , x , x , x , x , x , x , 52 , 1 , 64 , 38 , 38 , 1 , 64 , 38 , 38 , 53, TIDL_ConvolutionLayer , 1, 1 , 1 , 52 , x , x , x , x , x , x , x , 53 , 1 , 64 , 38 , 38 , 1 , 64 , 38 , 38 , 54, TIDL_ConvolutionLayer , 1, 1 , 1 , 53 , x , x , x , x , x , x , x , 54 , 1 , 64 , 38 , 38 , 1 , 64 , 38 , 38 , 55, TIDL_ConvolutionLayer , 1, 1 , 1 , 54 , x , x , x , x , x , x , x , 55 , 1 , 64 , 38 , 38 , 1 , 64 , 38 , 38 , 56, TIDL_EltWiseLayer , 1, 2 , 1 , 51 , 55 , x , x , x , x , x , x , 56 , 1 , 64 , 38 , 38 , 1 , 64 , 38 , 38 , 57, TIDL_ConcatLayer , 1, 2 , 1 , 51 , 56 , x , x , x , x , x , x , 57 , 1 , 64 , 38 , 38 , 1 , 128 , 38 , 38 , 58, TIDL_EltWiseLayer , 1, 2 , 1 , 57 , 45 , x , x , x , x , x , x , 58 , 1 , 128 , 38 , 38 , 1 , 128 , 38 , 38 , 59, TIDL_ConcatLayer , 1, 2 , 1 , 45 , 58 , x , x , x , x , x , x , 59 , 1 , 128 , 38 , 38 , 1 , 256 , 38 , 38 , 60, TIDL_ConvolutionLayer , 1, 1 , 1 , 59 , x , x , x , x , x , x , x , 60 , 1 , 256 , 38 , 38 , 1 , 256 , 38 , 38 , 61, TIDL_ConvolutionLayer , 1, 1 , 1 , 60 , x , x , x , x , x , x , x , 61 , 1 , 256 , 38 , 38 , 1 , 256 , 38 , 38 , 62, TIDL_ConvolutionLayer , 1, 1 , 1 , 41 , x , x , x , x , x , x , x , 62 , 1 , 256 , 38 , 38 , 1 , 256 , 38 , 38 , 63, TIDL_ConvolutionLayer , 1, 1 , 1 , 62 , x , x , x , x , x , x , x , 63 , 1 , 256 , 38 , 38 , 1 , 256 , 38 , 38 , 64, TIDL_EltWiseLayer , 1, 2 , 1 , 63 , 61 , x , x , x , x , x , x , 64 , 1 , 256 , 38 , 38 , 1 , 256 , 38 , 38 , 65, TIDL_ConvolutionLayer , 1, 1 , 1 , 64 , x , x , x , x , x , x , x , 65 , 1 , 256 , 38 , 38 , 1 , 256 , 38 , 38 , 66, TIDL_ConvolutionLayer , 1, 1 , 1 , 65 , x , x , x , x , x , x , x , 66 , 1 , 256 , 38 , 38 , 1 , 128 , 38 , 38 , 67, TIDL_PoolingLayer , 1, 1 , 1 , 66 , x , x , x , x , x , x , x , 67 , 1 , 128 , 38 , 38 , 1 , 128 , 19 , 19 , 68, TIDL_ConvolutionLayer , 1, 1 , 1 , 66 , x , x , x , x , x , x , x , 68 , 1 , 128 , 38 , 38 , 1 , 128 , 19 , 19 , 69, TIDL_ConvolutionLayer , 1, 1 , 1 , 68 , x , x , x , x , x , x , x , 69 , 1 , 128 , 19 , 19 , 1 , 128 , 19 , 19 , 70, TIDL_ConcatLayer , 1, 2 , 1 , 67 , 69 , x , x , x , x , x , x , 70 , 1 , 128 , 19 , 19 , 1 , 256 , 19 , 19 , 71, TIDL_BatchNormLayer , 1, 1 , 1 , 70 , x , x , x , x , x , x , x , 71 , 1 , 256 , 19 , 19 , 1 , 256 , 19 , 19 , 72, TIDL_ConvolutionLayer , 1, 1 , 1 , 71 , x , x , x , x , x , x , x , 72 , 1 , 256 , 19 , 19 , 1 , 256 , 19 , 19 , 73, TIDL_ConvolutionLayer , 1, 1 , 1 , 72 , x , x , x , x , x , x , x , 73 , 1 , 256 , 19 , 19 , 1 , 256 , 19 , 19 , 74, TIDL_ConvolutionLayer , 1, 1 , 1 , 73 , x , x , x , x , x , x , x , 74 , 1 , 256 , 19 , 19 , 1 , 256 , 19 , 19 , 75, TIDL_ConvolutionLayer , 1, 1 , 1 , 74 , x , x , x , x , x , x , x , 75 , 1 , 256 , 19 , 19 , 1 , 128 , 19 , 19 , 76, TIDL_ConvolutionLayer , 1, 1 , 1 , 75 , x , x , x , x , x , x , x , 76 , 1 , 128 , 19 , 19 , 1 , 128 , 19 , 19 , 77, TIDL_ConvolutionLayer , 1, 1 , 1 , 76 , x , x , x , x , x , x , x , 77 , 1 , 128 , 19 , 19 , 1 , 32 , 19 , 19 , 78, TIDL_ConvolutionLayer , 1, 1 , 1 , 77 , x , x , x , x , x , x , x , 78 , 1 , 32 , 19 , 19 , 1 , 32 , 19 , 19 , 79, TIDL_ConvolutionLayer , 1, 1 , 1 , 78 , x , x , x , x , x , x , x , 79 , 1 , 32 , 19 , 19 , 1 , 32 , 19 , 19 , 80, TIDL_ConvolutionLayer , 1, 1 , 1 , 79 , x , x , x , x , x , x , x , 80 , 1 , 32 , 19 , 19 , 1 , 32 , 19 , 19 , 81, TIDL_ConvolutionLayer , 1, 1 , 1 , 80 , x , x , x , x , x , x , x , 81 , 1 , 32 , 19 , 19 , 1 , 32 , 19 , 19 , 82, TIDL_ConvolutionLayer , 1, 1 , 1 , 77 , x , x , x , x , x , x , x , 82 , 1 , 32 , 19 , 19 , 1 , 32 , 18 , 18 , 83, TIDL_ConvolutionLayer , 1, 1 , 1 , 82 , x , x , x , x , x , x , x , 83 , 1 , 32 , 18 , 18 , 1 , 32 , 18 , 18 , 84, TIDL_ConvolutionLayer , 1, 1 , 1 , 83 , x , x , x , x , x , x , x , 84 , 1 , 32 , 18 , 18 , 1 , 32 , 17 , 17 , 85, TIDL_ConvolutionLayer , 1, 1 , 1 , 84 , x , x , x , x , x , x , x , 85 , 1 , 32 , 17 , 17 , 1 , 32 , 17 , 17 , 86, TIDL_ConvolutionLayer , 1, 1 , 1 , 77 , x , x , x , x , x , x , x , 86 , 1 , 32 , 19 , 19 , 1 , 32 , 19 , 19 , 87, TIDL_ConvolutionLayer , 1, 1 , 1 , 86 , x , x , x , x , x , x , x , 87 , 1 , 32 , 19 , 19 , 1 , 32 , 19 , 19 , 88, TIDL_ConvolutionLayer , 1, 1 , 1 , 87 , x , x , x , x , x , x , x , 88 , 1 , 32 , 19 , 19 , 1 , 32 , 19 , 19 , 89, TIDL_ConvolutionLayer , 1, 1 , 1 , 88 , x , x , x , x , x , x , x , 89 , 1 , 32 , 19 , 19 , 1 , 32 , 19 , 19 , 90, TIDL_ConvolutionLayer , 1, 1 , 1 , 77 , x , x , x , x , x , x , x , 90 , 1 , 32 , 19 , 19 , 1 , 32 , 19 , 19 , 91, TIDL_ConvolutionLayer , 1, 1 , 1 , 90 , x , x , x , x , x , x , x , 91 , 1 , 32 , 19 , 19 , 1 , 32 , 19 , 19 , 92, TIDL_ConvolutionLayer , 1, 1 , 1 , 91 , x , x , x , x , x , x , x , 92 , 1 , 32 , 19 , 19 , 1 , 32 , 19 , 19 , 93, TIDL_ConvolutionLayer , 1, 1 , 1 , 92 , x , x , x , x , x , x , x , 93 , 1 , 32 , 19 , 19 , 1 , 32 , 19 , 19 , 94, TIDL_EltWiseLayer , 1, 2 , 1 , 81 , 85 , x , x , x , x , x , x , 94 , 1 , 32 , 19 , 19 , 1 , 32 , 19 , 19 , 95, TIDL_EltWiseLayer , 1, 2 , 1 , 94 , 89 , x , x , x , x , x , x , 95 , 1 , 32 , 19 , 19 , 1 , 32 , 19 , 19 , 96, TIDL_EltWiseLayer , 1, 2 , 1 , 95 , 93 , x , x , x , x , x , x , 96 , 1 , 32 , 19 , 19 , 1 , 32 , 19 , 19 , 97, TIDL_ConcatLayer , 1, 4 , 1 , 81 , 94 , 95 , 96 , x , x , x , x , 97 , 1 , 32 , 19 , 19 , 1 , 128 , 19 , 19 , 98, TIDL_EltWiseLayer , 1, 2 , 1 , 97 , 75 , x , x , x , x , x , x , 98 , 1 , 128 , 19 , 19 , 1 , 128 , 19 , 19 , 99, TIDL_ConcatLayer , 1, 2 , 1 , 75 , 98 , x , x , x , x , x , x , 99 , 1 , 128 , 19 , 19 , 1 , 256 , 19 , 19 , 100, TIDL_ConvolutionLayer , 1, 1 , 1 , 99 , x , x , x , x , x , x , x ,100 , 1 , 256 , 19 , 19 , 1 , 256 , 19 , 19 , 101, TIDL_ConvolutionLayer , 1, 1 , 1 ,100 , x , x , x , x , x , x , x ,101 , 1 , 256 , 19 , 19 , 1 , 256 , 19 , 19 , 102, TIDL_ConvolutionLayer , 1, 1 , 1 , 73 , x , x , x , x , x , x , x ,102 , 1 , 256 , 19 , 19 , 1 , 256 , 19 , 19 , 103, TIDL_ConvolutionLayer , 1, 1 , 1 ,102 , x , x , x , x , x , x , x ,103 , 1 , 256 , 19 , 19 , 1 , 256 , 19 , 19 , 104, TIDL_EltWiseLayer , 1, 2 , 1 ,103 ,101 , x , x , x , x , x , x ,104 , 1 , 256 , 19 , 19 , 1 , 256 , 19 , 19 , 105, TIDL_ConvolutionLayer , 1, 1 , 1 ,104 , x , x , x , x , x , x , x ,105 , 1 , 256 , 19 , 19 , 1 , 256 , 19 , 19 , 106, TIDL_ConvolutionLayer , 1, 1 , 1 ,105 , x , x , x , x , x , x , x ,106 , 1 , 256 , 19 , 19 , 1 , 128 , 19 , 19 , 107, TIDL_ConvolutionLayer , 1, 1 , 1 ,106 , x , x , x , x , x , x , x ,107 , 1 , 128 , 19 , 19 , 1 , 128 , 19 , 19 , 108, TIDL_ConvolutionLayer , 1, 1 , 1 ,107 , x , x , x , x , x , x , x ,108 , 1 , 128 , 19 , 19 , 1 , 256 , 19 , 19 , 109, TIDL_ConvolutionLayer , 1, 1 , 1 ,108 , x , x , x , x , x , x , x ,109 , 1 , 256 , 19 , 19 , 1 , 256 , 19 , 19 , 110, TIDL_ConvolutionLayer , 1, 1 , 1 ,109 , x , x , x , x , x , x , x ,110 , 1 , 256 , 19 , 19 , 1 , 128 , 19 , 19 , 111, TIDL_ConvolutionLayer , 1, 1 , 1 ,110 , x , x , x , x , x , x , x ,111 , 1 , 128 , 19 , 19 , 1 , 128 , 19 , 19 , 112, TIDL_ConvolutionLayer , 1, 1 , 1 ,111 , x , x , x , x , x , x , x ,112 , 1 , 128 , 19 , 19 , 1 , 24 , 19 , 19 , 113, TIDL_Deconv2DLayer , 1, 1 , 1 ,110 , x , x , x , x , x , x , x ,113 , 1 , 128 , 19 , 19 , 1 , 128 , 38 , 38 , 114, TIDL_BatchNormLayer , 1, 1 , 1 ,113 , x , x , x , x , x , x , x ,114 , 1 , 128 , 38 , 38 , 1 , 128 , 38 , 38 , 115, TIDL_ConcatLayer , 1, 2 , 1 ,114 , 66 , x , x , x , x , x , x ,115 , 1 , 128 , 38 , 38 , 1 , 256 , 38 , 38 , 116, TIDL_ConvolutionLayer , 1, 1 , 1 ,115 , x , x , x , x , x , x , x ,116 , 1 , 256 , 38 , 38 , 1 , 256 , 38 , 38 , 117, TIDL_ConvolutionLayer , 1, 1 , 1 ,116 , x , x , x , x , x , x , x ,117 , 1 , 256 , 38 , 38 , 1 , 128 , 38 , 38 , 118, TIDL_ConvolutionLayer , 1, 1 , 1 ,117 , x , x , x , x , x , x , x ,118 , 1 , 128 , 38 , 38 , 1 , 128 , 38 , 38 , 119, TIDL_ConvolutionLayer , 1, 1 , 1 ,118 , x , x , x , x , x , x , x ,119 , 1 , 128 , 38 , 38 , 1 , 256 , 38 , 38 , 120, TIDL_ConvolutionLayer , 1, 1 , 1 ,119 , x , x , x , x , x , x , x ,120 , 1 , 256 , 38 , 38 , 1 , 256 , 38 , 38 , 121, TIDL_ConvolutionLayer , 1, 1 , 1 ,120 , x , x , x , x , x , x , x ,121 , 1 , 256 , 38 , 38 , 1 , 128 , 38 , 38 , 122, TIDL_ConvolutionLayer , 1, 1 , 1 ,121 , x , x , x , x , x , x , x ,122 , 1 , 128 , 38 , 38 , 1 , 128 , 38 , 38 , 123, TIDL_ConvolutionLayer , 1, 1 , 1 ,122 , x , x , x , x , x , x , x ,123 , 1 , 128 , 38 , 38 , 1 , 24 , 38 , 38 , 124, TIDL_Deconv2DLayer , 1, 1 , 1 ,121 , x , x , x , x , x , x , x ,124 , 1 , 128 , 38 , 38 , 1 , 128 , 76 , 76 , 125, TIDL_BatchNormLayer , 1, 1 , 1 ,124 , x , x , x , x , x , x , x ,125 , 1 , 128 , 76 , 76 , 1 , 128 , 76 , 76 , 126, TIDL_ConcatLayer , 1, 2 , 1 ,125 , 34 , x , x , x , x , x , x ,126 , 1 , 128 , 76 , 76 , 1 , 256 , 76 , 76 , 127, TIDL_ConvolutionLayer , 1, 1 , 1 ,126 , x , x , x , x , x , x , x ,127 , 1 , 256 , 76 , 76 , 1 , 256 , 76 , 76 , 128, TIDL_ConvolutionLayer , 1, 1 , 1 ,127 , x , x , x , x , x , x , x ,128 , 1 , 256 , 76 , 76 , 1 , 64 , 76 , 76 , 129, TIDL_ConvolutionLayer , 1, 1 , 1 ,128 , x , x , x , x , x , x , x ,129 , 1 , 64 , 76 , 76 , 1 , 64 , 76 , 76 , 130, TIDL_ConvolutionLayer , 1, 1 , 1 ,129 , x , x , x , x , x , x , x ,130 , 1 , 64 , 76 , 76 , 1 , 128 , 76 , 76 , 131, TIDL_ConvolutionLayer , 1, 1 , 1 ,130 , x , x , x , x , x , x , x ,131 , 1 , 128 , 76 , 76 , 1 , 128 , 76 , 76 , 132, TIDL_ConvolutionLayer , 1, 1 , 1 ,131 , x , x , x , x , x , x , x ,132 , 1 , 128 , 76 , 76 , 1 , 24 , 76 , 76 , 133, TIDL_DataLayer , 0, 3 , -1 ,112 ,123 ,132 , x , x , x , x , x , 0 , 1 , 24 , 19 , 19 , 0 , 0 , 0 , 0 , Layer ID ,inBlkWidth ,inBlkHeight ,inBlkPitch ,outBlkWidth ,outBlkHeight,outBlkPitch ,numInChs ,numOutChs ,numProcInChs,numLclInChs ,numLclOutChs,numProcItrs ,numAccItrs ,numHorBlock ,numVerBlock ,inBlkChPitch,outBlkChPitc,alignOrNot 1 40 20 40 32 14 32 1 1 1 1 1 1 1 19 43 800 448 1 2 32 14 32 32 14 32 3 16 3 1 8 1 3 19 43 448 448 1 4 72 68 72 32 32 32 1 1 1 1 1 1 1 10 10 4896 1024 1 5 32 32 32 32 32 32 16 16 16 7 8 1 3 10 10 1024 1024 1 8 40 34 40 32 32 32 1 1 1 1 1 1 1 10 10 1360 1024 1 9 32 32 32 32 32 32 32 32 32 7 8 1 5 10 10 1024 1024 1 10 40 36 40 32 32 32 1 1 1 1 1 1 1 10 10 1440 1024 1 11 32 32 32 32 32 32 32 64 32 7 8 1 5 10 10 1024 1024 1 13 72 68 72 32 32 32 1 1 1 1 1 1 1 5 5 4896 1024 1 14 32 32 32 32 32 32 64 64 64 7 8 1 10 5 5 1024 1024 1 17 40 34 40 32 32 32 1 1 1 1 1 1 1 5 5 1360 1024 1 18 32 32 32 32 32 32 128 128 128 7 8 1 19 5 5 1024 1024 1 19 32 32 32 32 32 32 1 1 1 1 1 1 1 5 5 1024 1024 1 20 32 32 32 32 32 32 128 256 128 7 8 1 19 5 5 1024 1024 1 21 32 32 32 32 32 32 1 1 1 1 1 1 1 5 5 1024 1024 1 22 32 32 32 32 32 32 128 256 128 7 8 1 19 5 5 1024 1024 1 24 32 32 32 32 32 32 1 1 1 1 1 1 1 5 5 1024 1024 1 25 32 32 32 32 32 32 256 128 256 7 8 1 37 5 5 1024 1024 1 27 72 68 72 32 32 32 1 1 1 1 1 1 1 3 3 4896 1024 1 28 32 32 32 32 32 32 128 128 128 7 8 1 19 3 3 1024 1024 1 31 40 34 40 32 32 32 1 1 1 1 1 1 1 3 3 1360 1024 1 32 32 32 32 32 32 32 256 256 256 7 8 1 37 3 3 1024 1024 1 33 32 32 32 32 32 32 1 1 1 1 1 1 1 3 3 1024 1024 1 34 32 32 32 32 32 32 256 128 256 7 8 1 37 3 3 1024 1024 1 36 72 68 72 32 32 32 1 1 1 1 1 1 1 2 2 4896 1024 1 37 32 32 32 32 32 32 128 128 128 7 8 1 19 2 2 1024 1024 1 40 40 34 40 32 32 32 1 1 1 1 1 1 1 2 2 1360 1024 1 41 32 32 32 32 32 32 256 256 256 7 8 1 37 2 2 1024 1024 1 42 32 32 32 32 32 32 1 1 1 1 1 1 1 2 2 1024 1024 1 43 32 32 32 32 32 32 256 256 256 7 8 1 37 2 2 1024 1024 1 44 32 32 32 32 32 32 1 1 1 1 1 1 1 2 2 1024 1024 1 45 32 32 32 32 32 32 256 128 256 7 8 1 37 2 2 1024 1024 1 46 32 32 32 32 32 32 1 1 1 1 1 1 1 2 2 1024 1024 1 47 32 32 32 32 32 32 128 64 128 7 8 1 19 2 2 1024 1024 1 48 40 34 40 32 32 32 1 1 1 1 1 1 1 2 2 1360 1024 1 49 32 32 32 32 32 32 64 64 64 7 8 1 10 2 2 1024 1024 1 50 40 34 40 32 32 32 1 1 1 1 1 1 1 2 2 1360 1024 1 51 32 32 32 32 32 32 64 64 64 7 8 1 10 2 2 1024 1024 1 52 40 36 40 32 32 32 1 1 1 1 1 1 1 2 2 1440 1024 1 53 32 32 32 32 32 32 64 64 64 7 8 1 10 2 2 1024 1024 1 54 40 36 40 32 32 32 1 1 1 1 1 1 1 2 2 1440 1024 1 55 32 32 32 32 32 32 64 64 64 7 8 1 10 2 2 1024 1024 1 60 32 32 32 32 32 32 1 1 1 1 1 1 1 2 2 1024 1024 1 61 32 32 32 32 32 32 256 256 256 7 8 1 37 2 2 1024 1024 1 62 32 32 32 32 32 32 1 1 1 1 1 1 1 2 2 1024 1024 1 63 32 32 32 32 32 32 256 256 256 7 8 1 37 2 2 1024 1024 1 65 32 32 32 32 32 32 1 1 1 1 1 1 1 2 2 1024 1024 1 66 32 32 32 32 32 32 256 128 256 7 8 1 37 2 2 1024 1024 1 68 72 42 72 32 19 32 1 1 1 1 1 1 1 1 1 3024 608 1 69 32 19 32 32 19 32 128 128 128 8 8 1 16 1 1 608 608 1 72 40 21 40 32 19 32 1 1 1 1 1 1 1 1 1 840 608 1 73 32 19 32 32 19 32 256 256 256 8 8 1 32 1 1 608 608 1 74 32 19 32 32 19 32 1 1 1 1 1 1 1 1 1 608 608 1 75 32 19 32 32 19 32 256 128 256 8 8 1 32 1 1 608 608 1 76 32 19 32 32 19 32 1 1 1 1 1 1 1 1 1 608 608 1 77 32 19 32 32 19 32 128 32 128 8 8 1 16 1 1 608 608 1 78 32 19 32 32 19 32 1 1 1 1 1 1 1 1 1 608 608 1 79 32 19 32 32 19 32 32 32 32 8 8 1 4 1 1 608 608 1 80 32 19 32 32 19 32 1 1 1 1 1 1 1 1 1 608 608 1 81 32 19 32 32 19 32 32 32 32 8 8 1 4 1 1 608 608 1 82 40 19 40 32 18 32 1 1 1 1 1 1 1 1 1 760 576 1 83 32 18 32 32 18 32 32 32 32 8 8 1 4 1 1 576 576 1 84 40 18 40 32 17 32 1 1 1 1 1 1 1 1 1 720 544 1 85 32 17 32 32 17 32 32 32 32 8 8 1 4 1 1 544 544 1 86 40 21 40 32 19 32 1 1 1 1 1 1 1 1 1 840 608 1 87 32 19 32 32 19 32 32 32 32 8 8 1 4 1 1 608 608 1 88 40 21 40 32 19 32 1 1 1 1 1 1 1 1 1 840 608 1 89 32 19 32 32 19 32 32 32 32 8 8 1 4 1 1 608 608 1 90 40 23 40 32 19 32 1 1 1 1 1 1 1 1 1 920 608 1 91 32 19 32 32 19 32 32 32 32 8 8 1 4 1 1 608 608 1 92 40 23 40 32 19 32 1 1 1 1 1 1 1 1 1 920 608 1 93 32 19 32 32 19 32 32 32 32 8 8 1 4 1 1 608 608 1 100 32 19 32 32 19 32 1 1 1 1 1 1 1 1 1 608 608 1 101 32 19 32 32 19 32 256 256 256 8 8 1 32 1 1 608 608 1 102 32 19 32 32 19 32 1 1 1 1 1 1 1 1 1 608 608 1 103 32 19 32 32 19 32 256 256 256 8 8 1 32 1 1 608 608 1 105 32 19 32 32 19 32 1 1 1 1 1 1 1 1 1 608 608 1 106 32 19 32 32 19 32 256 128 256 8 8 1 32 1 1 608 608 1 107 32 19 32 32 19 32 1 1 1 1 1 1 1 1 1 608 608 1 108 32 19 32 32 19 32 128 256 128 8 8 1 16 1 1 608 608 1 109 32 19 32 32 19 32 1 1 1 1 1 1 1 1 1 608 608 1 110 32 19 32 32 19 32 256 128 256 8 8 1 32 1 1 608 608 1 111 32 19 32 32 19 32 1 1 1 1 1 1 1 1 1 608 608 1 112 32 19 32 32 19 32 128 24 128 8 8 1 16 1 1 608 608 1 116 32 32 32 32 32 32 1 1 1 1 1 1 1 2 2 1024 1024 1 117 32 32 32 32 32 32 256 128 256 7 8 1 37 2 2 1024 1024 1 118 32 32 32 32 32 32 1 1 1 1 1 1 1 2 2 1024 1024 1 119 32 32 32 32 32 32 128 256 128 7 8 1 19 2 2 1024 1024 1 120 32 32 32 32 32 32 1 1 1 1 1 1 1 2 2 1024 1024 1 121 32 32 32 32 32 32 256 128 256 7 8 1 37 2 2 1024 1024 1 122 32 32 32 32 32 32 1 1 1 1 1 1 1 2 2 1024 1024 1 123 32 32 32 32 32 32 128 24 128 7 8 1 19 2 2 1024 1024 1 127 32 32 32 32 32 32 1 1 1 1 1 1 1 3 3 1024 1024 1 128 32 32 32 32 32 32 256 64 256 7 8 1 37 3 3 1024 1024 1 129 32 32 32 32 32 32 1 1 1 1 1 1 1 3 3 1024 1024 1 130 32 32 32 32 32 32 64 128 64 7 8 1 10 3 3 1024 1024 1 131 32 32 32 32 32 32 1 1 1 1 1 1 1 3 3 1024 1024 1 132 32 32 32 32 32 32 128 24 128 7 8 1 19 3 3 1024 1024 1 Processing Frame Number : 0 Layer 1 : Out Q : 28 , TIDL_ConvolutionLayer, PASSED #MMACs = 53.27, 53.27, Sparsity : 0.00 Layer 2 : Out Q : 21 , TIDL_ConvolutionLayer, PASSED #MMACs = 17.40, 69.58, Sparsity : -300.00 Layer 3 :TIDL_PoolingLayer, PASSED #MMACs = 1.45, 1.45, Sparsity : 0.00 Layer 4 : Out Q : 7 , TIDL_ConvolutionLayer, PASSED #MMACs = 13.05, 13.05, Sparsity : 0.00 Layer 5 : Out Q : 2 , TIDL_ConvolutionLayer, PASSED #MMACs = 23.19, 28.99, Sparsity : -25.00 Layer 6 : Out Q : 1 , TIDL_ConcatLayer, PASSED #MMACs = 0.00, 0.00, Sparsity : -1.#J Layer 7 : Out Q : 4 , TIDL_BatchNormLayer , PASSED #MMACs = 2.90, 2.90, Sparsity : 0.00 Layer 8 : Out Q : 1 , TIDL_ConvolutionLayer, PASSED #MMACs = 26.09, 26.09, Sparsity : 0.00 Layer 9 : Out Q : 4 , TIDL_ConvolutionLayer, PASSED #MMACs = 92.78, 104.37, Sparsity : -12.50 Layer 10 : Out Q : 1 , TIDL_ConvolutionLayer, PASSED #MMACs = 72.48, 72.48, Sparsity : 0.00 Layer 11 : Out Q : 12 , TIDL_ConvolutionLayer, PASSED #MMACs = 185.55, 208.74, Sparsity : -12.50 Layer 12 :TIDL_PoolingLayer, PASSED #MMACs = 1.46, 1.46, Sparsity : 0.00 Layer 13 : Out Q : 3 , TIDL_ConvolutionLayer, PASSED #MMACs = 13.13, 13.13, Sparsity : 0.00 Layer 14 : Out Q : 1 , TIDL_ConvolutionLayer, PASSED #MMACs = 93.39, 110.90, Sparsity : -18.75 Layer 15 : Out Q : 1 , TIDL_ConcatLayer, PASSED #MMACs = 0.00, 0.00, Sparsity : -1.#J Layer 16 : Out Q : 1 , TIDL_BatchNormLayer , PASSED #MMACs = 2.92, 2.92, Sparsity : 0.00 Layer 17 : Out Q : 342 , TIDL_ConvolutionLayer, PASSED #MMACs = 26.27, 26.27, Sparsity : 0.00 Layer 18 : Out Q : 16818 , TIDL_ConvolutionLayer, PASSED #MMACs = 373.57, 431.94, Sparsity : -15.63 Layer 19 : Out Q : 15113 , TIDL_ConvolutionLayer, PASSED #MMACs = 2.92, 2.92, Sparsity : 0.00 Layer 20 : Out Q : 19236 , TIDL_ConvolutionLayer, PASSED #MMACs = 747.14, 863.88, Sparsity : -15.63 Layer 21 : Out Q : 13863 , TIDL_ConvolutionLayer, PASSED #MMACs = 2.92, 2.92, Sparsity : 0.00 Layer 22 : Out Q : 13251 , TIDL_ConvolutionLayer, PASSED #MMACs = 747.14, 863.88, Sparsity : -15.63 Layer 23 : Out Q : 6611 , TIDL_EltWiseLayer, PASSED #MMACs = 11.67, 11.67, Sparsity : 0.00 Layer 24 : Out Q : 8480 , TIDL_ConvolutionLayer, PASSED #MMACs = 5.84, 5.84, Sparsity : 0.00 Layer 25 : Out Q : 13228 , TIDL_ConvolutionLayer, PASSED #MMACs = 747.14, 852.21, Sparsity : -14.06 Layer 26 :TIDL_PoolingLayer, PASSED #MMACs = 0.74, 0.74, Sparsity : 0.00 Layer 27 : Out Q : 1579 , TIDL_ConvolutionLayer, PASSED #MMACs = 6.65, 6.65, Sparsity : 0.00 Layer 28 : Out Q : 614 , TIDL_ConvolutionLayer, PASSED #MMACs = 94.63, 109.42, Sparsity : -15.63 Layer 29 : Out Q : 614 , TIDL_ConcatLayer, PASSED #MMACs = 0.00, 0.00, Sparsity : -1.#J Layer 30 : Out Q : 12174 , TIDL_BatchNormLayer , PASSED #MMACs = 1.48, 1.48, Sparsity : 0.00 Layer 31 : Out Q : 2808 , TIDL_ConvolutionLayer, PASSED #MMACs = 13.31, 13.31, Sparsity : 0.00 Layer 32 : Out Q : 18630 , TIDL_ConvolutionLayer, PASSED #MMACs = 378.54, 431.77, Sparsity : -14.06 Layer 33 : Out Q : 7349 , TIDL_ConvolutionLayer, PASSED #MMACs = 1.48, 1.48, Sparsity : 0.00 Layer 34 : Out Q : 19175 , TIDL_ConvolutionLayer, PASSED #MMACs = 189.27, 215.88, Sparsity : -14.06 Layer 35 :TIDL_PoolingLayer, PASSED #MMACs = 0.18, 0.18, Sparsity : 0.00 Layer 36 : Out Q : 4521 , TIDL_ConvolutionLayer, PASSED #MMACs = 1.66, 1.66, Sparsity : 0.00 Layer 37 : Out Q : 818 , TIDL_ConvolutionLayer, PASSED #MMACs = 23.66, 27.36, Sparsity : -15.63 Layer 38 : Out Q : 818 , TIDL_ConcatLayer, PASSED #MMACs = 0.00, 0.00, Sparsity : -1.#J Layer 39 : Out Q : 13249 , TIDL_BatchNormLayer , PASSED #MMACs = 0.37, 0.37, Sparsity : 0.00 Layer 40 : Out Q : 3109 , TIDL_ConvolutionLayer, PASSED #MMACs = 3.33, 3.33, Sparsity : 0.00 Layer 41 : Out Q : 15417 , TIDL_ConvolutionLayer, PASSED #MMACs = 94.63, 107.80, Sparsity : -13.91 Layer 42 : Out Q : 12084 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.37, 0.37, Sparsity : 0.00 Layer 43 : Out Q : 19248 , TIDL_ConvolutionLayer, PASSED #MMACs = 94.63, 107.94, Sparsity : -14.06 Layer 44 : Out Q : 16734 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.37, 0.37, Sparsity : 0.00 Layer 45 : Out Q : 27615 , TIDL_ConvolutionLayer, PASSED #MMACs = 47.32, 53.97, Sparsity : -14.06 Layer 46 : Out Q : 21010 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.18, 0.18, Sparsity : 0.00 Layer 47 : Out Q : 10687 , TIDL_ConvolutionLayer, PASSED #MMACs = 11.83, 13.68, Sparsity : -15.63 Layer 48 : Out Q : 4589 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.83, 0.83, Sparsity : 0.00 Layer 49 : Out Q : 1462 , TIDL_ConvolutionLayer, PASSED #MMACs = 5.91, 7.02, Sparsity : -18.75 Layer 50 : Out Q : 564 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.83, 0.83, Sparsity : 0.00 Layer 51 : Out Q : 23136 , TIDL_ConvolutionLayer, PASSED #MMACs = 5.91, 7.02, Sparsity : -18.75 Layer 52 : Out Q : 2167 , TIDL_ConvolutionLayer, PASSED #MMACs = 2.31, 2.31, Sparsity : 0.00 Layer 53 : Out Q : 526 , TIDL_ConvolutionLayer, PASSED #MMACs = 5.91, 7.02, Sparsity : -18.75 Layer 54 : Out Q : 116 , TIDL_ConvolutionLayer, PASSED #MMACs = 2.31, 2.31, Sparsity : 0.00 Layer 55 : Out Q : 10872 , TIDL_ConvolutionLayer, PASSED #MMACs = 5.91, 7.02, Sparsity : -18.75 Layer 56 : Out Q : 4715 , TIDL_EltWiseLayer, PASSED #MMACs = 0.18, 0.18, Sparsity : 0.00 Layer 57 : Out Q : 4734 , TIDL_ConcatLayer, PASSED #MMACs = 0.00, 0.00, Sparsity : -1.#J Layer 58 : Out Q : 4735 , TIDL_EltWiseLayer, PASSED #MMACs = 0.37, 0.37, Sparsity : 0.00 Layer 59 : Out Q : 4754 , TIDL_ConcatLayer, PASSED #MMACs = 0.00, 0.00, Sparsity : -1.#J Layer 60 : Out Q : 9546 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.37, 0.37, Sparsity : 0.00 Layer 61 : Out Q : 16585 , TIDL_ConvolutionLayer, PASSED #MMACs = 94.63, 107.94, Sparsity : -14.06 Layer 62 : Out Q : 12255 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.37, 0.37, Sparsity : 0.00 Layer 63 : Out Q : 18440 , TIDL_ConvolutionLayer, PASSED #MMACs = 94.63, 107.94, Sparsity : -14.06 Layer 64 : Out Q : 7119 , TIDL_EltWiseLayer, PASSED #MMACs = 0.74, 0.74, Sparsity : 0.00 Layer 65 : Out Q : 12427 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.37, 0.37, Sparsity : 0.00 Layer 66 : Out Q : 17463 , TIDL_ConvolutionLayer, PASSED #MMACs = 47.32, 53.97, Sparsity : -14.06 Layer 67 :TIDL_PoolingLayer, PASSED #MMACs = 0.05, 0.05, Sparsity : 0.00 Layer 68 : Out Q : 4519 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.42, 0.42, Sparsity : 0.00 Layer 69 : Out Q : 1030 , TIDL_ConvolutionLayer, PASSED #MMACs = 5.91, 5.91, Sparsity : 0.00 Layer 70 : Out Q : 1034 , TIDL_ConcatLayer, PASSED #MMACs = 0.00, 0.00, Sparsity : -1.#J Layer 71 : Out Q : 15878 , TIDL_BatchNormLayer , PASSED #MMACs = 0.09, 0.09, Sparsity : 0.00 Layer 72 : Out Q : 3774 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.83, 0.83, Sparsity : 0.00 Layer 73 : Out Q : 24423 , TIDL_ConvolutionLayer, PASSED #MMACs = 23.66, 23.66, Sparsity : 0.00 Layer 74 : Out Q : 19830 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.09, 0.09, Sparsity : 0.00 Layer 75 : Out Q : 26828 , TIDL_ConvolutionLayer, PASSED #MMACs = 11.83, 11.83, Sparsity : 0.00 Layer 76 : Out Q : 22690 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.05, 0.05, Sparsity : 0.00 Layer 77 : Out Q : 3692 , TIDL_ConvolutionLayer, PASSED #MMACs = 1.48, 1.48, Sparsity : 0.00 Layer 78 : Out Q : 3493 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.01, 0.01, Sparsity : 0.00 Layer 79 : Out Q : 3915 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.37, 0.37, Sparsity : 0.00 Layer 80 : Out Q : 2571 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.01, 0.01, Sparsity : 0.00 Layer 81 : Out Q : 126577 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.37, 0.37, Sparsity : 0.00 Layer 82 : Out Q : 763 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.04, 0.04, Sparsity : 0.00 Layer 83 : Out Q : 169 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.33, 0.33, Sparsity : 0.00 Layer 84 : Out Q : 134 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.04, 0.04, Sparsity : 0.00 Layer 85 : Out Q : 25111 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.30, 0.29, Sparsity : 0.39 Layer 86 : Out Q : 2533 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.10, 0.10, Sparsity : 0.00 Layer 87 : Out Q : 986 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.37, 0.37, Sparsity : 0.00 Layer 88 : Out Q : 336 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.10, 0.10, Sparsity : 0.00 Layer 89 : Out Q : 14625 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.37, 0.37, Sparsity : 0.00 Layer 90 : Out Q : 3058 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.29, 0.29, Sparsity : 0.00 Layer 91 : Out Q : 968 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.37, 0.37, Sparsity : 0.00 Layer 92 : Out Q : 193 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.29, 0.29, Sparsity : 0.00 Layer 93 : Out Q : 15540 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.37, 0.37, Sparsity : 0.00 Layer 94 : Out Q : 12510 , TIDL_EltWiseLayer, PASSED #MMACs = 0.02, 0.02, Sparsity : 0.00 Layer 95 : Out Q : 6991 , TIDL_EltWiseLayer, PASSED #MMACs = 0.02, 0.02, Sparsity : 0.00 Layer 96 : Out Q : 4548 , TIDL_EltWiseLayer, PASSED #MMACs = 0.02, 0.02, Sparsity : 0.00 Layer 97 : Out Q : 4566 , TIDL_ConcatLayer, PASSED #MMACs = 0.00, 0.00, Sparsity : -1.#J Layer 98 : Out Q : 4566 , TIDL_EltWiseLayer, PASSED #MMACs = 0.09, 0.09, Sparsity : 0.00 Layer 99 : Out Q : 4584 , TIDL_ConcatLayer, PASSED #MMACs = 0.00, 0.00, Sparsity : -1.#J Layer 100 : Out Q : 6850 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.09, 0.09, Sparsity : 0.00 Layer 101 : Out Q : 17425 , TIDL_ConvolutionLayer, PASSED #MMACs = 23.66, 23.66, Sparsity : 0.00 Layer 102 : Out Q : 17101 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.09, 0.09, Sparsity : 0.00 Layer 103 : Out Q : 21831 , TIDL_ConvolutionLayer, PASSED #MMACs = 23.66, 23.66, Sparsity : 0.00 Layer 104 : Out Q : 8307 , TIDL_EltWiseLayer, PASSED #MMACs = 0.18, 0.18, Sparsity : 0.00 Layer 105 : Out Q : 12018 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.09, 0.09, Sparsity : 0.00 Layer 106 : Out Q : 17906 , TIDL_ConvolutionLayer, PASSED #MMACs = 11.83, 11.83, Sparsity : 0.00 Layer 107 : Out Q : 12874 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.05, 0.05, Sparsity : 0.00 Layer 108 : Out Q : 28043 , TIDL_ConvolutionLayer, PASSED #MMACs = 11.83, 11.83, Sparsity : 0.00 Layer 109 : Out Q : 12607 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.09, 0.09, Sparsity : 0.00 Layer 110 : Out Q : 32700 , TIDL_ConvolutionLayer, PASSED #MMACs = 11.83, 11.80, Sparsity : 0.27 Layer 111 : Out Q : 28918 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.05, 0.05, Sparsity : 0.00 Layer 112 : Out Q : 2231 , TIDL_ConvolutionLayer, PASSED #MMACs = 1.11, 1.11, Sparsity : 0.00 Layer 113 : Out Q : 6088 , TIDL_Deconv2DLayer, PASSED #MMACs = 0.18, 0.18, Sparsity : 0.00 Layer 114 : Out Q : 134392 , TIDL_BatchNormLayer , PASSED #MMACs = 0.18, 0.18, Sparsity : 0.00 Layer 115 : Out Q : 17532 , TIDL_ConcatLayer, PASSED #MMACs = 0.00, 0.00, Sparsity : -1.#J Layer 116 : Out Q : 22996 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.37, 0.37, Sparsity : 0.00 Layer 117 : Out Q : 7368 , TIDL_ConvolutionLayer, PASSED #MMACs = 47.32, 53.97, Sparsity : -14.06 Layer 118 : Out Q : 6016 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.18, 0.18, Sparsity : 0.00 Layer 119 : Out Q : 599 , TIDL_ConvolutionLayer, PASSED #MMACs = 47.32, 54.71, Sparsity : -15.63 Layer 120 : Out Q : 257 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.37, 0.37, Sparsity : 0.00 Layer 121 : Out Q : 28 , TIDL_ConvolutionLayer, PASSED #MMACs = 47.32, 53.97, Sparsity : -14.06 Layer 122 : Out Q : 7 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.18, 0.18, Sparsity : 0.00 Layer 123 : Out Q : 1 , TIDL_ConvolutionLayer, PASSED #MMACs = 4.44, 5.13, Sparsity : -15.63 Layer 124 : Out Q : 3 , TIDL_Deconv2DLayer, PASSED #MMACs = 0.74, 0.74, Sparsity : 0.00 Layer 125 : Out Q : 208 , TIDL_BatchNormLayer , PASSED #MMACs = 0.74, 0.74, Sparsity : 0.00 Layer 126 : Out Q : 208 , TIDL_ConcatLayer, PASSED #MMACs = 0.00, 0.00, Sparsity : -1.#J Layer 127 : Out Q : 214 , TIDL_ConvolutionLayer, PASSED #MMACs = 1.48, 1.48, Sparsity : 0.00 Layer 128 : Out Q : 656 , TIDL_ConvolutionLayer, PASSED #MMACs = 94.63, 107.94, Sparsity : -14.06 Layer 129 : Out Q : 583 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.37, 0.37, Sparsity : 0.00 Layer 130 : Out Q : 49 , TIDL_ConvolutionLayer, PASSED #MMACs = 47.32, 56.19, Sparsity : -18.75 Layer 131 : Out Q : 78 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.74, 0.74, Sparsity : 0.00 Layer 132 : Out Q : 1 , TIDL_ConvolutionLayer, PASSED #MMACs = 17.74, 20.52, Sparsity : -15.63 End of config list found ! 6 76 | 1 256 76 76 | 1478656 | 127|TIDL_ConvolutionLayer |e_conv/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1|126 x x x x x x x |127 | 1 256 76 76 | 1 256 76 76 | 1478656 | 128|TIDL_ConvolutionLayer |DASNet/small_object_branch/depthwise_conv/Relu | 1| 1| 1|127 x x x x x x x |128 | 1 256 76 76 | 1 64 76 76 | 95742976 | 129|TIDL_ConvolutionLayer |conv_1/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1|128 x x x x x x x |129 | 1 64 76 76 | 1 64 76 76 | 369664 | 130|TIDL_ConvolutionLayer |DASNet/small_object_branch/depthwise_conv_1/Relu | 1| 1| 1|129 x x x x x x x |130 | 1 64 76 76 | 1 128 76 76 | 49534976 | 131|TIDL_ConvolutionLayer |output/separable_conv2d/separable_conv2d/depthwise| 1| 1| 1|130 x x x x x x x |131 | 1 128 76 76 | 1 128 76 76 | 739328 | 132|TIDL_ConvolutionLayer |bject_branch/model_output/separable_conv2d/BiasAdd| 1| 1| 1|131 x x x x x x x |132 | 1 128 76 76 | 1 24 76 76 | 17882496 | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Total Giga Macs : 5.1139 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- =============================== TIDL import - calibration ===============================