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Implementation of an EVE App 
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Software components 
EVE software has three key components 

Starterware – This component contains the APIs to program different control modules of EVE 

subsystem 

Acclerated Functions – It is set of accelerated functions utilizing EVE Vector Co-processor 

(VCOP) for different applications (vision and imaging). These functions expect input and outout in 

EVE subsystem memory. 

Apps – These are high-level applications working on the data in external memory and underneath 

utilizing starterware and accelerated functions. Example of such applications are resizing of an 

image, Harris corner detection etc. 
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Two different ways of developing an EVE 
APP 

There are two ways of developing an EVE APP: 

• Low-level Starterware based development 

• High level graph based development 
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Two different ways of developing an EVE 
APP 

There are two ways of developing an EVE APP: 

• Low-level Starterware based development: 

– Rely on starterware to program the EDMA. 

• Doc: Starterware\docs\eve_starterware_userguide.pdf 

• Example code: apps\apps_nonbam 

– Little hardware abstraction, higher visibility into the basic components 

of EVE: EDMA, buffer switching, ping-pong buffering, memory layout. 

– Faster ramp-up time for training but less flexibility in term of code 

upgrade: once an algorithm is written for a specific use case, some 

work is required to adapt it to other use case. 
 

4 



TI Confidential – NDA Restrictions 

Two different ways of developing an EVE 
APP 

There are two ways of developing an EVE APP: 

• High level graph based development: 

– Rely on BAM (Block acceleration manager) framework 

• Doc: algframework\docs\bam_userguide.pdf 

• Training: 

https://cdds.ext.ti.com/ematrix/common/emxNavigator.jsp?objectId=28670.42872.52654.60377 

• Example code: apps\ 

– High hardware abstraction, little visibility into the basic components of EVE: EDMA, 

buffer switching, ping-pong buffering, memory layout. 

– Ramp-up time for training is ~ 2 week + wrapper functions need to be implemented. 

However high flexibility, easier to maintain/customize complex algorithm because of 

plug and play approach to create an algorithm. 
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Low-level starterware based development 

 

 

• Driver file for testing 2-D FIR filter example: 
apps\apps_nonbam\test\evelib_fir_filter_2d_test.c 

 

• Linker command file: 
apps\apps_nonbam\test\common\linker.cmd 

 

• Implementation of 2-D FIR filter APP: 
apps\apps_nonbam\src\evelib_fir_filter_2d.c 

 

• Block-based auto-increment function: 
apps\apps_nonbam\common\eve_algo_dma_auto_incr.c 

 

• Starterware library: 
Starterware\libs\vayu\eve\release\libevestarterware_eve.lib 
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Linker cmd file – memory map 

 

In apps/apps_nonbam/test/common 

 
MEMORY 

{ 

    PAGE 0: 

      VECMEM  :    origin      = 0x80000000, length = 0x0100 

      CMDMEM  :    origin      = 0x80000100, length = 0x1000 

      EXTMEM  :    origin      = 0x80001100, length = 0x20000 

 

    PAGE 1: 

      DATMEM  :    origin = 0x40020000 length = 0x8000 

      WMEM    :    origin = 0x40040000 length = 0x7FE0 

      IMEMLA  :    origin = 0x40050000 length = 0x4000 

      IMEMHA  :    origin = 0x40054000 length = 0x4000 

      IMEMLB  :    origin = 0x40070000 length = 0x4000 

      IMEMHB  :    origin = 0x40074000 length = 0x4000 

      GEM0_L2_MEM: origin = 0x40800000 length = 0x8000 

      EXTDMEM :    origin = 0x80030000 length = 0x2000000 

      L3MEM   :    origin = 0x40300000, length = 0x100000 

} 
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Block based processing 

Due to size of image buffer, VCOP can only operate on 32 kb of data at a time. The original image is 

divided in blocks. To process the entire image by VCOP, every block of the image is transferred  from 

DDR to image buffer, processed by the VCOP and then transferred back to DDR. 
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Block based processing 

Block size can be various, not necessarily square. Only restriction is that they must fit within the 32kb 

of the image buffer. 
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Block based processing 

Offset to next block and block width are two independent parameters. 

Example: Offset to next block = block width 

Block width 

Offset to next block 
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Block based processing 

Offset to next block and block width are two independent parameters. 

Example: Offset to next block = block width 

Block width 

Offset to next block 
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Block based processing 

Offset to next block is not necessarily equal to block width in order to transfer overlapping blocks. 

Overlapping blocks are used in case of filtering to account for the overlapping border pixels. For 

instance a N taps filter needs N-1 border pixels. The border width would be (N-1)/2 pixels. 
Example:  
 
Offset to next block= w 
 
block_width= w + N-1 

Block width 

Offset to next block 
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Block based processing 

Block width 

Offset to next block 

Offset to next block is not necessarily equal to block width in order to transfer overlapping blocks. 

Overlapping blocks are used in case of filtering to account for the overlapping border pixels. For 

instance a N taps filter needs N-1 border pixels. The border width would be (N-1)/2 pixels. 
Example:  
 
Offset to next block= w 
 
block_width= w + N-1 
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Block based processing 

Offset to next block is not necessarily equal to block width in order to transfer overlapping blocks. 

Overlapping blocks are used in case of filtering to account for the overlapping border pixels. For 

instance a N taps filter needs N-1 border pixels. The border width would be (N-1)/2 pixels. 

Block width 

Offset to next block 

Offset to next block is not necessarily equal to block width in order to transfer overlapping blocks. 

Overlapping blocks are used in case of filtering to account for the overlapping border pixels. For 

instance a N taps filter needs N-1 border pixels. The border width would be (N-1)/2 pixels. 
Example:  
 
Offset to next block= w 
 
block_width= w + N-1 
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Scheduling code  

In eve_algo_dma_auto_incr.c, 2 functions: 

 

• EVELIB_algoDMAAutoIncrSequential(): implement block-based 

sequential processing for debugging. 

 
• EVELIB_algoDMAAutoIncrConcurrent(): implement block-based parallel 

processing for production code. 

 

These functions follow a pre-programmed DMA access patterns that was 

defined during a setup phase. Because we have a setup phase, execution 

of the scheduling is done very quickly by the sequence of calls: 

 VCOP_BUF_SWITCH_TOGGLE() 

 EDMA_UTILS_autoIncrement_triggerOutChannel() 

 execFunc[k] 

 EDMA_UTILS_autoIncrement_waitOutChannel() 

 EDMA_UTILS_autoIncrement_waitInChannel() 
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DMA Setup code  

Setup code for DMA is done in evelib_fir_filter_2d.c by calling 
EVELIB_algoDMAAutoIncrInit() implemented in  

eve_algo_dma_auto_incr.c. 

 
int EVELIB_algoDMAAutoIncrInit( 

    unsigned char       *src, 

    unsigned int        srcImageWidth, 

    unsigned int        srcImageHeight, 

    int                 srcImagePitch, 

    unsigned char       *dst, 

    unsigned int        dstImageWidth, 

    unsigned int        dstImageHeight, 

    int                 dstImagePitch, 

    unsigned char       *srcBlk, 

    unsigned int        srcBlkWidth, 

    unsigned int        srcBlkHeight, 

    int                 srcBlkPitch, 

    unsigned char       *dstBlk, 

    unsigned int        dstBlkWidth, 

    unsigned int        dstBlkHeight, 

    int                 dstBlkPitch, 

    unsigned int        srcBlkPadX, 

    unsigned int        srcBlkPadY) 

 

  
 

In external memory 

(DDR) 

In VCOP memory 
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DMA Setup code  
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DMA Setup code  
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DMA Setup code  

dst in DDR 

dstImageWidth 

d
s
tIm

a
g

e
H

e
ig

h
tt 

dstImagePitch 

dstBlk in VCOP memory 

dstBlkPitch 

dstBlkWidth 

dstBlkHeight 



TI Confidential – NDA Restrictions 24 

DMA Setup code  
The underlying Starterware functions are EDMA_UTILS_autoIncrement_init(), 

EDMA_UTILS_autoIncrement_configure(), which are used to implement 
EVELIB_algoDMAAutoIncrInit():  
    initParam.numInTransfers    = 1; 
    initParam.numOutTransfers   = 1; 

    initParam.transferType      = EDMA_UTILS_TRANSFER_INOUT; 

 

    initParam.transferProp[0].roiWidth             = srcImageWidth+srcBlkPadX; 

    initParam.transferProp[0].roiHeight            = srcImageHeight+srcBlkPadY; 

    initParam.transferProp[0].roiOffset            = 0; 

    initParam.transferProp[0].blkWidth             = srcBlkWidth+srcBlkPadX; 

    initParam.transferProp[0].blkHeight            = srcBlkHeight+srcBlkPadY; 

    initParam.transferProp[0].extBlkIncrementX     = srcBlkWidth; 

    initParam.transferProp[0].extBlkIncrementY     = srcBlkHeight; 

    initParam.transferProp[0].intBlkIncrementX     = 0; 

    initParam.transferProp[0].intBlkIncrementY     = 0; 

    initParam.transferProp[0].extMemPtrStride      = srcImagePitch; 

    initParam.transferProp[0].interMemPtrStride    = srcBlkPitch; 

    initParam.transferProp[0].extMemPtr            = src; 

    initParam.transferProp[0].interMemPtr          = srcBlk; 

    initParam.transferProp[0].dmaQueNo             = 0; 

 

    initParam.transferProp[1].roiWidth             = dstImageWidth; 

    initParam.transferProp[1].roiHeight            = dstImageHeight; 

    initParam.transferProp[1].roiOffset            = 0; 

    initParam.transferProp[1].blkWidth             = dstBlkWidth; 

    initParam.transferProp[1].blkHeight            = dstBlkHeight; 

    initParam.transferProp[1].extBlkIncrementX     = dstBlkWidth; 

    initParam.transferProp[1].extBlkIncrementY     = dstBlkHeight; 

    initParam.transferProp[1].intBlkIncrementX     = 0; 

    initParam.transferProp[1].intBlkIncrementY     = 0; 

    initParam.transferProp[1].extMemPtrStride      = dstImagePitch; 

    initParam.transferProp[1].interMemPtrStride    = dstBlkPitch; 

    initParam.transferProp[1].extMemPtr            = dst; 

    initParam.transferProp[1].interMemPtr          = dstBlk; 

    initParam.transferProp[1].dmaQueNo             = 0; 

 

    status = EDMA_UTILS_autoIncrement_init(autoIncrementContext,&initParam); 
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EVE Setup code  

In evelib_fir_filter_2d.c, EVE kernels are initialized and memories are allocated: 
 

EVELIB_KernelFuncType execFunc[] = 

{(EVELIB_KernelFuncType)vcop_filter_uchar_char_uchar_vloops}; 

    EVELIB_KernelContextType context[] = 

{(EVELIB_KernelContextType)__pblock_vcop_filter_uchar_char_uchar}; 

    unsigned int numKernels = 1; 

 

VCOP_BUF_SWITCH_SET (WBUF_SYST, IBUFHB_SYST, IBUFLB_SYST, IBUFHA_SYST, IBUFLA_SYST); 

 

srcBlk = (unsigned char *)vcop_malloc(VCOP_IBUFLA, srcBlkPitch * srcBlkHeightTot); 

dstBlk = (unsigned char *)vcop_malloc(VCOP_IBUFHA, dstBlkPitch * dstBlkHeight); 

coeffBlk = (char *)vcop_malloc(VCOP_WMEM, coeffH * coeffW); 

 

memcpy(coeffBlk, coeff, coeffH * coeffW); 

 

vcop_filter_uchar_char_uchar_init(srcBlk, coeffBlk, dstBlk, srcBlkPitch, coeffW, 

coeffH, srcBlkWidth, srcBlkHeight, dnsmplVert, dnsmplHorz, rndShift, 

__pblock_vcop_filter_uchar_char_uchar); 

 


