
TI Confidential – NDA Restrictions

Implementation of an EVE App

TI Confidential – NDA Restrictions

Software components
EVE software has three key components

Starterware – This component contains the APIs to program different control modules of EVE

subsystem

Acclerated Functions – It is set of accelerated functions utilizing EVE Vector Co-processor

(VCOP) for different applications (vision and imaging). These functions expect input and outout in

EVE subsystem memory.

Apps – These are high-level applications working on the data in external memory and underneath

utilizing starterware and accelerated functions. Example of such applications are resizing of an

image, Harris corner detection etc.

2

Processor Control hardware

VCOP

ARP32

Mail Box

MMU

EDMA

P$

SCTM

Interrupt Controller

S
M

S
E

T

Starterware Accelerated Function/Kernels
Vision

Lib

Image and Signal

Processing Lib

Basic

Lib

Algorithm Applet (s)

EVE SUBSYSTEM

H
A

R
D

W
A

R
E

 L
A

Y
E

R
C

om
pu

te
 a

nd

co
nt

ro
l L

ib
ra

ry
A

pp
s

Vision Lib
Image and signal

processing Lib

TI Confidential – NDA Restrictions

Two different ways of developing an EVE
APP

There are two ways of developing an EVE APP:

• Low-level Starterware based development

• High level graph based development

3

TI Confidential – NDA Restrictions

Two different ways of developing an EVE
APP

There are two ways of developing an EVE APP:

• Low-level Starterware based development:

– Rely on starterware to program the EDMA.

• Doc: Starterware\docs\eve_starterware_userguide.pdf

• Example code: apps\apps_nonbam

– Little hardware abstraction, higher visibility into the basic components

of EVE: EDMA, buffer switching, ping-pong buffering, memory layout.

– Faster ramp-up time for training but less flexibility in term of code

upgrade: once an algorithm is written for a specific use case, some

work is required to adapt it to other use case.

4

TI Confidential – NDA Restrictions

Two different ways of developing an EVE
APP

There are two ways of developing an EVE APP:

• High level graph based development:

– Rely on BAM (Block acceleration manager) framework

• Doc: algframework\docs\bam_userguide.pdf

• Training:

https://cdds.ext.ti.com/ematrix/common/emxNavigator.jsp?objectId=28670.42872.52654.60377

• Example code: apps\

– High hardware abstraction, little visibility into the basic components of EVE: EDMA,

buffer switching, ping-pong buffering, memory layout.

– Ramp-up time for training is ~ 2 week + wrapper functions need to be implemented.

However high flexibility, easier to maintain/customize complex algorithm because of

plug and play approach to create an algorithm.

5

https://cdds.ext.ti.com/ematrix/common/emxNavigator.jsp?objectId=28670.42872.52654.60377
https://cdds.ext.ti.com/ematrix/common/emxNavigator.jsp?objectId=28670.42872.52654.60377

TI Confidential – NDA Restrictions

Low-level starterware based development

• Driver file for testing 2-D FIR filter example:
apps\apps_nonbam\test\evelib_fir_filter_2d_test.c

• Linker command file:
apps\apps_nonbam\test\common\linker.cmd

• Implementation of 2-D FIR filter APP:
apps\apps_nonbam\src\evelib_fir_filter_2d.c

• Block-based auto-increment function:
apps\apps_nonbam\common\eve_algo_dma_auto_incr.c

• Starterware library:
Starterware\libs\vayu\eve\release\libevestarterware_eve.lib

6

TI Confidential – NDA Restrictions

Linker cmd file – memory map

In apps/apps_nonbam/test/common

MEMORY

{

 PAGE 0:

 VECMEM : origin = 0x80000000, length = 0x0100

 CMDMEM : origin = 0x80000100, length = 0x1000

 EXTMEM : origin = 0x80001100, length = 0x20000

 PAGE 1:

 DATMEM : origin = 0x40020000 length = 0x8000

 WMEM : origin = 0x40040000 length = 0x7FE0

 IMEMLA : origin = 0x40050000 length = 0x4000

 IMEMHA : origin = 0x40054000 length = 0x4000

 IMEMLB : origin = 0x40070000 length = 0x4000

 IMEMHB : origin = 0x40074000 length = 0x4000

 GEM0_L2_MEM: origin = 0x40800000 length = 0x8000

 EXTDMEM : origin = 0x80030000 length = 0x2000000

 L3MEM : origin = 0x40300000, length = 0x100000

}

7

TI Confidential – NDA Restrictions

ARP32 VCOP

WBuf
IBuf

LA

IBuf

HB

IBuf

LB

IBuf

HA

OCP Target

Port

Reset/Clk

Interrupts

reset

clk(s)

int_o/int_i

OCP High Performance

Interconnect

OCP CFG Interconnect

500 MHz

250 MHz

32b OCP
128b OCP
Custom

Memory
* Arrow defines

command flow

(not data)

SM SM SM SM SM

MMR

Dmem

Custom

Memory

switch

Legend

EVE

P$

SCTM

P D W IL IH SMSET
2

OCP Init

Debug port

MMU0MMU1

R W R W

OCP

Init0

OCP

Init1

EDMA3

TC0TC1 CC

Memory Sections - recap

TI Confidential – NDA Restrictions

DMA/Data and configuration bus

EDMA

16 channels

DDR3 DDR

controller
32 bit

sIMCOP (460MHz)

ARP32

ImgBuf A

32 KB
Img Buf B

32 KB
Working buffer

32 KB

Image Data to be processed is in

DDR but VCOP cannot access DDR

directly.

VCOP can only access data in the

image buffers and working buffer.

Data flow through VCOP

VCOP

TI Confidential – NDA Restrictions

DMA/Data and configuration bus

EDMA

16 channels

DDR3 DDR

controller
32 bit

sIMCOP (460MHz)

Ping-pong buffering scheme allows to

concurrently transfer the data from/to

DDR while VCOP is processing data:

-ARP32 triggers EDMA to bring data

into the pong buffer (ex: image buffer

A)

-ARP32 executes a VLOOP to process

data in the ping buffer (ex: image

buffer B)

Ping-Pong buffering between image

buffer A & B allows VCOP to process

one set of data while the other set is

being transferred in or out.

ImBuf A & B serve as I/O buffer

whereas the working buffer is always

connected to VCOP.

ARP32

VCOP

ImgBuf A

32 KB
Img Buf B

32 KB
Working buffer

32 KB

trigger

Data flow through VCOP

trigger

TI Confidential – NDA Restrictions

Block based processing

Due to size of image buffer, VCOP can only operate on 32 kb of data at a time. The original image is

divided in blocks. To process the entire image by VCOP, every block of the image is transferred from

DDR to image buffer, processed by the VCOP and then transferred back to DDR.

TI Confidential – NDA Restrictions

Image buffer B

EDMA

DDR->IMGBUF

Block #1

VCOP computation

Block #1

EDMA

IMGBUF-> DDR

Block #1

EDMA

DDR->IMGBUF

Block #3

…

Image buffer A

EDMA

DDR->IMGBUF

Block #0

VCOP computation

Block #0

EDMA

IMGBUF-> DDR

Block #0

EDMA

DDR->IMGBUF

Block #2

VCOP computation

Block #2

…

t=0 t= tedmaIn t= tedmaIn + max(tVCOP, tedmaOut)

Concurrent processing Graph

Total execution time for one block is t= max (tVCOP, tedmaIn + tedmaOut)

t

Image buffer

t= tedmaIn + max(tiVCOP, tedmaOut) + max (tVCOP, tedmaIn + tedmaOut)

Parallelizing memory transfer and VCOP computation

TI Confidential – NDA Restrictions

Block based processing

Block size can be various, not necessarily square. Only restriction is that they must fit within the 32kb

of the image buffer.

TI Confidential – NDA Restrictions

Block based processing

Offset to next block and block width are two independent parameters.

Example: Offset to next block = block width

Block width

Offset to next block

TI Confidential – NDA Restrictions

Block based processing

Offset to next block and block width are two independent parameters.

Example: Offset to next block = block width

Block width

Offset to next block

TI Confidential – NDA Restrictions

Block based processing

Offset to next block is not necessarily equal to block width in order to transfer overlapping blocks.

Overlapping blocks are used in case of filtering to account for the overlapping border pixels. For

instance a N taps filter needs N-1 border pixels. The border width would be (N-1)/2 pixels.
Example:

Offset to next block= w

block_width= w + N-1

Block width

Offset to next block

TI Confidential – NDA Restrictions

Block based processing

Block width

Offset to next block

Offset to next block is not necessarily equal to block width in order to transfer overlapping blocks.

Overlapping blocks are used in case of filtering to account for the overlapping border pixels. For

instance a N taps filter needs N-1 border pixels. The border width would be (N-1)/2 pixels.
Example:

Offset to next block= w

block_width= w + N-1

TI Confidential – NDA Restrictions

Block based processing

Offset to next block is not necessarily equal to block width in order to transfer overlapping blocks.

Overlapping blocks are used in case of filtering to account for the overlapping border pixels. For

instance a N taps filter needs N-1 border pixels. The border width would be (N-1)/2 pixels.

Block width

Offset to next block

Offset to next block is not necessarily equal to block width in order to transfer overlapping blocks.

Overlapping blocks are used in case of filtering to account for the overlapping border pixels. For

instance a N taps filter needs N-1 border pixels. The border width would be (N-1)/2 pixels.
Example:

Offset to next block= w

block_width= w + N-1

TI Confidential – NDA Restrictions 19

Scheduling code

In eve_algo_dma_auto_incr.c, 2 functions:

• EVELIB_algoDMAAutoIncrSequential(): implement block-based

sequential processing for debugging.

• EVELIB_algoDMAAutoIncrConcurrent(): implement block-based parallel

processing for production code.

These functions follow a pre-programmed DMA access patterns that was

defined during a setup phase. Because we have a setup phase, execution

of the scheduling is done very quickly by the sequence of calls:

 VCOP_BUF_SWITCH_TOGGLE()

 EDMA_UTILS_autoIncrement_triggerOutChannel()

 execFunc[k]

 EDMA_UTILS_autoIncrement_waitOutChannel()

 EDMA_UTILS_autoIncrement_waitInChannel()

TI Confidential – NDA Restrictions 20

DMA Setup code

Setup code for DMA is done in evelib_fir_filter_2d.c by calling
EVELIB_algoDMAAutoIncrInit() implemented in

eve_algo_dma_auto_incr.c.

int EVELIB_algoDMAAutoIncrInit(

 unsigned char *src,

 unsigned int srcImageWidth,

 unsigned int srcImageHeight,

 int srcImagePitch,

 unsigned char *dst,

 unsigned int dstImageWidth,

 unsigned int dstImageHeight,

 int dstImagePitch,

 unsigned char *srcBlk,

 unsigned int srcBlkWidth,

 unsigned int srcBlkHeight,

 int srcBlkPitch,

 unsigned char *dstBlk,

 unsigned int dstBlkWidth,

 unsigned int dstBlkHeight,

 int dstBlkPitch,

 unsigned int srcBlkPadX,

 unsigned int srcBlkPadY)

In external memory

(DDR)

In VCOP memory

TI Confidential – NDA Restrictions 21

DMA Setup code

src in DDR

srcImageWidth

s
rc

Im
a

g
e
H

e
ig

h
tt

srcImagePitch

srcBlk in VCOP memory srcBlkPadX/2

srcBlkPadY/2

srcBlkPitch

srcBlkWidth + srcBlkPadX

srcBlkHeight

+ srcBlkPadY

TI Confidential – NDA Restrictions 22

DMA Setup code

src in DDR

srcImageWidth

s
rc

Im
a

g
e
H

e
ig

h
tt

srcImagePitch

srcBlk in VCOP memory srcBlkPadX/2

srcBlkPadY/2

srcBlkPitch

srcBlkWidth + srcBlkPadX

srcBlkHeight

+ srcBlkPadY

srcBlkWidth

TI Confidential – NDA Restrictions 23

DMA Setup code

dst in DDR

dstImageWidth

d
s
tIm

a
g

e
H

e
ig

h
tt

dstImagePitch

dstBlk in VCOP memory

dstBlkPitch

dstBlkWidth

dstBlkHeight

TI Confidential – NDA Restrictions 24

DMA Setup code
The underlying Starterware functions are EDMA_UTILS_autoIncrement_init(),

EDMA_UTILS_autoIncrement_configure(), which are used to implement
EVELIB_algoDMAAutoIncrInit():
 initParam.numInTransfers = 1;
 initParam.numOutTransfers = 1;

 initParam.transferType = EDMA_UTILS_TRANSFER_INOUT;

 initParam.transferProp[0].roiWidth = srcImageWidth+srcBlkPadX;

 initParam.transferProp[0].roiHeight = srcImageHeight+srcBlkPadY;

 initParam.transferProp[0].roiOffset = 0;

 initParam.transferProp[0].blkWidth = srcBlkWidth+srcBlkPadX;

 initParam.transferProp[0].blkHeight = srcBlkHeight+srcBlkPadY;

 initParam.transferProp[0].extBlkIncrementX = srcBlkWidth;

 initParam.transferProp[0].extBlkIncrementY = srcBlkHeight;

 initParam.transferProp[0].intBlkIncrementX = 0;

 initParam.transferProp[0].intBlkIncrementY = 0;

 initParam.transferProp[0].extMemPtrStride = srcImagePitch;

 initParam.transferProp[0].interMemPtrStride = srcBlkPitch;

 initParam.transferProp[0].extMemPtr = src;

 initParam.transferProp[0].interMemPtr = srcBlk;

 initParam.transferProp[0].dmaQueNo = 0;

 initParam.transferProp[1].roiWidth = dstImageWidth;

 initParam.transferProp[1].roiHeight = dstImageHeight;

 initParam.transferProp[1].roiOffset = 0;

 initParam.transferProp[1].blkWidth = dstBlkWidth;

 initParam.transferProp[1].blkHeight = dstBlkHeight;

 initParam.transferProp[1].extBlkIncrementX = dstBlkWidth;

 initParam.transferProp[1].extBlkIncrementY = dstBlkHeight;

 initParam.transferProp[1].intBlkIncrementX = 0;

 initParam.transferProp[1].intBlkIncrementY = 0;

 initParam.transferProp[1].extMemPtrStride = dstImagePitch;

 initParam.transferProp[1].interMemPtrStride = dstBlkPitch;

 initParam.transferProp[1].extMemPtr = dst;

 initParam.transferProp[1].interMemPtr = dstBlk;

 initParam.transferProp[1].dmaQueNo = 0;

 status = EDMA_UTILS_autoIncrement_init(autoIncrementContext,&initParam);

TI Confidential – NDA Restrictions 25

EVE Setup code

In evelib_fir_filter_2d.c, EVE kernels are initialized and memories are allocated:

EVELIB_KernelFuncType execFunc[] =

{(EVELIB_KernelFuncType)vcop_filter_uchar_char_uchar_vloops};

 EVELIB_KernelContextType context[] =

{(EVELIB_KernelContextType)__pblock_vcop_filter_uchar_char_uchar};

 unsigned int numKernels = 1;

VCOP_BUF_SWITCH_SET (WBUF_SYST, IBUFHB_SYST, IBUFLB_SYST, IBUFHA_SYST, IBUFLA_SYST);

srcBlk = (unsigned char *)vcop_malloc(VCOP_IBUFLA, srcBlkPitch * srcBlkHeightTot);

dstBlk = (unsigned char *)vcop_malloc(VCOP_IBUFHA, dstBlkPitch * dstBlkHeight);

coeffBlk = (char *)vcop_malloc(VCOP_WMEM, coeffH * coeffW);

memcpy(coeffBlk, coeff, coeffH * coeffW);

vcop_filter_uchar_char_uchar_init(srcBlk, coeffBlk, dstBlk, srcBlkPitch, coeffW,

coeffH, srcBlkWidth, srcBlkHeight, dnsmplVert, dnsmplHorz, rndShift,

__pblock_vcop_filter_uchar_char_uchar);

