Implementation of an EVE App

Software components

EVE software has three key components

Starterware — This component contains the APIs to program different control modules of EVE
subsystem

Acclerated Functions — It is set of accelerated functions utilizing EVE Vector Co-processor

(VCOP) for different applications (vision and imaging). These functions expect input and outout in
EVE subsystem memory.

Apps — These are high-level applications working on the data in external memory and underneath
utilizing starterware and accelerated functions. Example of such applications are resizing of an
image, Harris corner detection etc.

| Algorithm Applet (s) |

Apps

| Starterware Accelerated Function/Kernels

Image and signal
processing Lib

Vision Lib

Compute and
control Library

E SUBSY?
SCTM

Mail Box
MMU

HARDWARE LAYER

Interrupt Controller

Tl Confidential — NDA Restrictions

Processor Control hardware /2 TEXAS

INSTRUMENTS

Two different ways of developing an EVE
APP

There are two ways of developing an EVE APP:
* Low-level Starterware based development
* High level graph based development

Tl Confidential — NDA Restrictions

13 TEXAS
INSTRUMENTS

Two different ways of developing an EVE
APP

There are two ways of developing an EVE APP:
« Low-level Starterware based development:
— Rely on starterware to program the EDMA.
* Doc: Starterware\docs\eve_starterware userguide.pdf
« Example code: apps\apps_nonbam

— Little hardware abstraction, higher visibility into the basic components
of EVE: EDMA, buffer switching, ping-pong buffering, memory layout.

— Faster ramp-up time for training but less flexibility in term of code
upgrade: once an algorithm is written for a specific use case, some
work is required to adapt it to other use case.

Tl Confidential — NDA Restrictions

13 TEXAS
INSTRUMENTS

Two different ways of developing an EVE
APP

There are two ways of developing an EVE APP:
* High level graph based development:

— Rely on BAM (Block acceleration manager) framework
* Doc: algframework\docs\bam_userguide.pdf

* Training:
https://cdds.ext.ti.com/ematrix/common/emxNavigator.jsp?objectld=28670.42872.52654.60377

« Example code: apps\

— High hardware abstraction, little visibility into the basic components of EVE: EDMA,
buffer switching, ping-pong buffering, memory layout.

— Ramp-up time for training is ~ 2 week + wrapper functions need to be implemented.
However high flexibility, easier to maintain/customize complex algorithm because of
plug and play approach to create an algorithm.

TI Confidential — NDA Restrictions 5

13 TEXAS
INSTRUMENTS

https://cdds.ext.ti.com/ematrix/common/emxNavigator.jsp?objectId=28670.42872.52654.60377
https://cdds.ext.ti.com/ematrix/common/emxNavigator.jsp?objectId=28670.42872.52654.60377

Low-level starterware based development

 Driver file for testing 2-D FIR filter example:
apps\apps_ nonbam\test\evelib fir filter 2d test.c

* Linker command file:
apps\apps nonbam\test\common\linker.cmd

* Implementation of 2-D FIR filter APP:
apps\apps nonbam\src\evelib fir filter 2d.c

* Block-based auto-increment function:
apps\apps nonbam\common\eve algo dma auto incr.c

« Starterware library:
Starterware\libs\vayu\eve\release\libevestarterware eve.lib

Tl Confidential — NDA Restrictions

13 TEXAS
INSTRUMENTS

Linker cmd file — memory map

In apps/apps nonbam/test/common

MEMORY
{
PAGE O:
VECMEM origin = 0x80000000, length = 0x0100
CMDMEM origin = 0x80000100, length = 0x1000
EXTMEM origin = 0x80001100, length = 0x20000
PAGE 1:
DATMEM origin = 0x40020000 length = 0x8000
WMEM origin = 0x40040000 length = Ox7FEO
IMEMLA origin = 0x40050000 length = 0x4000
IMEMHA origin = 0x40054000 length = 0x4000
IMEMLB origin = 0x40070000 length = 0x4000
IMEMHB : origin = 0x40074000 length = 0x4000
GEMO L2 MEM: origin = 0x40800000 length = 0x8000
EXTDMEM : origin = 0x80030000 length = 0x2000000
L3MEM origin = 0x40300000, length 0x100000
}
TI Confidential — NDA Restrictions
i3 TExas

INSTRUMENTS

Memory Sections - recap

Tl Confidential — NDA Restrictions

EVE
> OCP CFG Interconnect
¢ ¢ MMR
< reset
Ik
‘ — L‘ iCnt((s))/inti
ARP32 VCOP [ntermupts B
p» SCTM OCP Init
P D W L IH | AW SMSET [Jebug port
~lEssl | B
ltcil<dcclsrco| > P8 | % Legend
: i Custom!| 500 MHz
i il et nininint Al Memory:
R& ¢W T R¢ ¢w L switch| 250 MHz
OCP High Performance | —» 32b OCP
— Interconnect —» 128b OCP
¢ ¢ A —» Custom
—» Memory
%{MMUl‘ »{MMUO‘ * Arrow defines
command flow
OCP OCP |OCP Targ (not data)
vinitl wvinit0O Port

13 TEXAS
INSTRUMENTS

Data flow through VCOP

DDR
ontrolle

TI Con

Image Data to be processed is in
DDR but VCOP cannot access DDR

directly.

VCOP can only access data in the
image buffers and working buffer.

i3 TEXAS
INSTRUMENTS

TI Con

Data flow through VCOP

trig

DMA/Data and configuration bus

DDR
ontroller

L
——

Ping-pong buffering scheme allows to
concurrently transfer the data from/to
DDR while VCOP is processing data:

-ARP32 triggers EDMA to bring data
into the pong buffer (ex: image buffer
A)

-ARP32 executes a VLOOP to process
data in the ping buffer (ex: image
buffer B)

Ping-Pong buffering between image

buffer A & B allows VCOP to process
one set of data while the other set is

being transferred in or out.

ImBuf A & B serve as I/0O buffer
whereas the working buffer is always
connected to VCOP.

Block based processing

Due to size of image buffer, VCOP can only operate on 32 kb of data at a time. The original image is
divided in blocks. To process the entire image by VCOP, every block of the image is transferred from
DDR to image buffer, processed by the VCOP and then transferred back to DDR.

Parallelizing memory transfer and VCOP computation

Image buffer |

EDMA

DDR->IMGBUF
Image buffer B Block #1

VCOP computation EDMA EDMA
Block #1 IMGBUF-> DDR DDR->IMGBUF
Block #1 Block #3

EDMA VCOP computation EDMA EDMA VCOP computation
DDR->IMGBUF [z][eId€0) IMGBUF->DDR DDR->IMGBUF Block #2
Image buffer A Block #0 Block #0 Block #2

1 \

t=0 t= tedmam t=togman + maX(tvcop' tedmaOut) t= tegmamn *+ max(tiVCOP, tedmaOut) +max (tVCOP' tedmaln + tedmaOut) t

Concurrent processing Graph
Total execution time for one block is t= max (tycop tegmain + tedmaout)

Tl Confidential — NDA Restrictions

13 TEXAS
INSTRUMENTS

Block based processing

Block size can be various, not necessarily square. Only restriction is that they must fit within the 32kb
of the image buffer.

Block based processing

Offset to next block and block width are two independent parameters.
Example: Offset to next block = block width

Offset to next block

%

—
Block width

Tl Confidential — NDA Restrictions

13 TEXAS
INSTRUMENTS

Block based processing

Offset to next block and block width are two independent parameters.
Example: Offset to next block = block width

Offset to next block

%

>
Block width

Tl Confidential — NDA Restrictions

13 TEXAS
INSTRUMENTS

Block based processing

Offset to next block is not necessarily equal to block width in order to transfer overlapping blocks.
Overlapping blocks are used in case of filtering to account for the overlapping border pixels. For

Eg;%]&ee_a N taps filter needs N-1 border pixels. The border width would be (N-1)/2 pixels.

Offset to next block=w
block_width=w + N-1

Offset to next block

 E—
Block width

Tl Confidential — NDA Restrictions

13 TEXAS
INSTRUMENTS

Block based processing

Offset to next block is not necessarily equal to block width in order to transfer overlapping blocks.
Overlapping blocks are used in case of filtering to account for the overlapping border pixels. For

Eg;%]&ee_a N taps filter needs N-1 border pixels. The border width would be (N-1)/2 pixels.

Offset to next block=w
block_width=w + N-1

Offset to next block

 E—
Block width

Tl Confidential — NDA Restrictions

13 TEXAS
INSTRUMENTS

Block based processing

Offset to next block is not necessarily equal to block width in order to transfer overlapping blocks.
Overlapping blocks are used in case of filtering to account for the overlapping border pixels. For

Eg;%]&ee_a N taps filter needs N-1 border pixels. The border width would be (N-1)/2 pixels.

Offset to next block=w
block_width=w + N-1

Offset to next block

—>
Block width

Tl Confidential — NDA Restrictions

13 TEXAS
INSTRUMENTS

Scheduling code

In eve_algo _dma_auto_incr.c, 2 functions:

 EVELIB algoDMAAutoIncrSequential (). implement block-based

sequential processing for debugging.

 EVELIB algoDMAAutoIncrConcurrent ():implement block-based parallel

processing for production code.

These functions follow a pre-programmed DMA access patterns that was

defined during a setup phase. Because we have a setup phase, execution
of the scheduling is done very quickly by the sequence of calls:

VCOP_BUF SWITCH TOGGLE ()

EDMA UTILS autoIncrement triggerOutChannel ()
execFunc k]

EDMA UTILS autoIncrement waitOutChannel ()
EDMA UTILS autoIncrement waitInChannel ()

Tl Confidential — NDA Restrictions

19

I

TEXAS
INSTRUMENTS

DMA Setup code

Setup code for DMA is done in evelib_fir_filter_2d.c by calling
EVELIB algoDMAAutoIncrInit () implemented in

eve_algo_dma_auto _incr.c.

int EVELIB algoDMAAutoIncrInit (

unsigned char *src, R
unsigned int srcImageWidth, In external memory
unsigned int srcImageHeight, / (DDR)
int srcImagePitch, -
unsigned char *dst,
unsigned int dstImageWidth,
unsigned int dstImageHeight,
int dstImagePitch,__J
unsigned char *srcBlk, =
unsigned int srcBlkWidth, In VCOP memory
unsigned int srcBlkHeight,
int srcBlkPitch, -
unsigned char *dstBlk,
unsigned int dstBlkWidth,
unsigned int dstBlkHeight,
int dstBlkPitch, —
unsigned int srcBlkPadX,
unsigned int srcBlkPady)
Tl Confidential — NDA Restrictions 20

13 TEXAS
INSTRUMENTS

DMA Setup code

srcBlIkPadX/2

src in DDR h

srcimageWidth

—

srcimagePitch

Tl Confidential — NDA Restrictions

srcBlk in VCOP memory

_____ i srcBlkHeight
\ : + srcBlkPadY
w . E—
a T~ l
§ srcl?.IIkWidth'+ srcI'BIkPadX
g 1 d
> o) srcBIkPitch
I
®,
Q
>
=

________ > srcBlkPadY/2

21

13 TEXAS
INSTRUMENTS

DMA Setup code

srcBIkWidth

srcBlIkPadX/2

src in DPR h

\

srcBlk in VCOP memory

VI
=

srcimageWidth

_____ i srcBlkHeight
\ : + srcBlkPadY
w . E—
a T~ l
§ srcl?.IIkWidth'+ srcI'BIkPadX
g 1 d
> o) srcBIkPitch
I
®,
Q
>
=

________ > srcBlkPadY/2

—

srcimagePitch

Tl Confidential — NDA Restrictions

22

13 TEXAS
INSTRUMENTS

DMA Setup code

dstin DDR dstBlk in VCOP memory

\

N -y } dstBlkHeight
2 ~—
= dstBlkWidth :
3 : !
& | |
> o) dstBIkPitch

I
)
«Q
=

dstimageWidth

! dstimagePitch :

TI Confidential - NDA Restrictions 23
i3 TExas

INSTRUMENTS

DMA Setup code

The underlying Starterware functions are EDMA UTILS autoIncrement init (),

EDMA UTILS autolIncrement configure (), Which are used to implement
EVELIB algoDMAAutoIncrInit():

initParam.numInTransfers = 1;
initParam.numOutTransfers =1;
initParam.transferType = EDMA UTILS_ TRANSFER_INOUT;
initParam.transferProp[0].roiWidth srcImageWidth+srcBlkPadX;
initParam.transferProp[0].roiHeight = srcImageHeight+srcBlkPadY;
initParam.transferProp[0] .roiOffset = 0;
initParam.transferProp[0] .blkWidth = srcBlkWidth+srcBlkPadX;
initParam.transferProp[0] .blkHeight = srcBlkHeight+srcBlkPadY;
initParam.transferProp[0] .extBlkIncrementX = srcBlkWidth;
initParam.transferProp[0] .extBlkIncrementY = srcBlkHeight;
initParam.transferProp[0].intBlkIncrementX = 0;
initParam.transferProp[0].intBlkIncrementY = 0;
initParam.transferProp[0] .extMemPtrStride = srcImagePitch;
initParam.transferProp[0].interMemPtrStride = srcBlkPitch;
initParam.transferProp[0] .extMemPtr src;
initParam.transferProp[0].interMemPtr = srcBlk;
initParam.transferProp[0] .dmaQueNo 0;
initParam.transferProp[l].roiWidth dstImageWidth;
initParam.transferProp[l].roiHeight = dstImageHeight;
initParam.transferProp[l].roiOffset 0;
initParam.transferProp[l].blkWidth = dstBlkWidth;
initParam.transferProp[l].blkHeight = dstBlkHeight;
initParam.transferProp[l].extBlkIncrementX dstBlkWidth;
initParam.transferProp[l].extBlkIncrementY = dstBlkHeight;
initParam.transferProp[l].intBlkIncrementX = 0;
initParam.transferProp[l].intBlkIncrementY 0;
initParam.transferProp[l] .extMemPtrStride = dstImagePitch;
initParam.transferProp[l].interMemPtrStride = dstBlkPitch;
initParam.transferProp[l] .extMemPtr dst;
initParam.transferProp[l].interMemPtr = dstBlk;
initParam.transferProp[l] .dmaQueNo 0;
status = EDMA UTILS autoIncrement init (autoIncrementContext,&initParam);

Tl Confidential — NDA Restrictions

24

13 TEXAS

INSTRUMENTS

EVE Setup code

In evelib_fir_filter_2d.c, EVE kernels are initialized and memories are allocated:

EVELIB KernelFuncType execFunc[] =

{ (EVELIB KernelFuncType)vcop filter uchar char uchar vloops};
EVELIB KernelContextType context[] =

{ (EVELIB KernelContextType) pblock vcop filter uchar char uchar};
unsigned int numKernels = 1;

VCOP BUF SWITCH SET (WBUF SYST, IBUFHB SYST, IBUFLB SYST, IBUFHA SYST, IBUFLA SYST);

srcBlk = (unsigned char *)vcop malloc (VCOP IBUFLA, srcBlkPitch * srcBlkHeightTot);
dstBlk = (unsigned char *)vcop malloc (VCOP IBUFHA, dstBlkPitch * dstBlkHeight);
coeffBlk = (char *)vcop malloc (VCOP _WMEM, coeffH * coeffW);

memcpy (coeffBlk, coeff, coeffH * coeffW);

vcop filter uchar char uchar init (srcBlk, coeffBlk, dstBlk, srcBlkPitch, coeffW,
coeffH, srcBlkWidth, srcBlkHeight, dnsmplVert, dnsmplHorz, rndShift,
__pblock vcop filter uchar char uchar);

TI Confidential — NDA Restrictions 25

13 TEXAS
INSTRUMENTS

