C6678 SPI Boot Example

Purpose
The purpose of this lab is to demonstrate all the steps that are needed to boot an allocation from SPI
flash memory.

Dependencies:
e Code composer Studio v5 or v6
e MCSDK or Processor SDK RTOS software for C6678

Note: Files under mesdk_2_01_XX_YY\tools\boot_loader have been moved to
pdk_c66xx_2_0_O\packages\ti\boot

Task 1: Observe the source file and build the application. Verify that it works
correctly

The example application included in the package can be built using gmake or CCS in the Windows
environment.

GMAKE based built Procedure:
1. Browse to makefile in the led_play folder under src folder
2. Inthe Makefile set the path to C6000_FOLDER and PDK_PACKAGES. Note that the
PDK_PACKAGES must contain path until the packages folder inside the PDK component.
3. Inthe windows command prompt, add the gmake path to the PATH variable using
Set PATH=%PATH%;<CCS_INSTALL PATH>\utils\bin
4. From command line you can now build the example using

gmake clean
gmake all

CCS based build Procedure
1. Open CCS Editor and import the led_play project from the src folder.
2. Right click on the project and Open Project properties. Under Build or C/C++ Build (may vary
based on version of CCS), set the PDK_INSTALL_DIR variable in the Environment.

File Edit View MNavigate Project Run Scripts

Window Help

FviE ey

B % CCSDebug]

i <2 /R~ B~

P Project Explorer i3 | [2] Target Configurations

[SRIOSingleSRIO.map 2
00371400 ©EEE200

=g @ *led_play.c
SRIOMulticore_fft_1 pe66.oe66 (.vecs)

s
» = consumerl
b ‘:;"5 hypink_sxampleProject

> 15 led_play [Active - Debug] type filter text Build

> é; optimization » Resource

> f‘; Producerl General

+ 1% SRIOSingleSRIO W Configuration: |Debug [Active] = | [Manage Configurations..|

A& o 1437

—
v« Properties for led_play

4 000 Cormpiler
Processor Options

Optimization | 5 Builder | @ Behaviour | 35 Steps | [Veriables | P8 Environment | < Link Order | o3 Dependencies
Debug Options
Include Options
Performance Advisor €5 JAVA HOME

» Advanced Options CCS UTILS DIR
> C6000 Linker CW[; -
Debug PDK_INSTALL_DIR
PWD C\Users\a0270985\Wor...

Origin

BUILD SYSTEM
BUILD SYSTEM
BUILD SYSTEM Edit...
USER: CONFIG
BUILD SYSTEM

Value

CMMNCCS 5 SheesvBhecl.,
CAMNCCS_5_S\cosvBhutils
C\Users\a0270985\Wor...
CAtNMCSDK 2 01 6\pd...

Variable
Select...

Delete

IIII b
o
e

Undefine

@ Append variables to native environment

(7 Replace native environment with specified one

[Restora DEfauIts] [Apply] i

See 'General for changing tool versions and device settings

[o [cancel]

~
@) Show advanced settings

3. Rightclick on the project in the Editor view and Rebuild the project in your CCS environment.
4. Load and run the led_play.out file on core 0 of the EVMC6678 to ensure that the rebuilt example

runs on your EVM. Observe the LED blinks.

Task 2: Building the btbl file - boot table format

1. Copy the led_play.out file to the build folder
In spiboot.bat, modify the path to IBL_UTIL to point to the boot utilities provided in the SDK.
From windows command prompt, execute the spiboot.bat file to generate the boot image in the

boot table format

4. The details of each step involved in createing the boot image is described in the sections below.

NOTE: Since EVM is designed to have FPGA firmware redirect the DSP core to run IBL, for direct SPI
boot don’t forget to change the boot address to 0x00 from 0x51 inserted by the romparse utility as
described in Section 4

Section 1: Create boot table from application binary using Hex6x Utility
The RBL expects the image flashed on the SPI flash to be in Boot Table Format. The led_play example
application Code has to be first converted into a Boot Table Format, using the hex6x utility present in
CCS installation folder. (...\ccsv5\tools\compiler\c6000_7.4.2\bin) (Or a different version of the
compiler). The hex6x utility expects an rmd file in which you provide path to the application binary and a
format in which the boot table is expected. The documentation for hex6éx utility is provided in the
TMS320C6000 Assembly Language Tools documentation that is part of the compiler documentation. The
hex6x utility reads the sections in the application binary and creates a flat binary in boot Table format
that allows the ROM to interpret and load the sections of the application binary. The RMD file contains,
few of the following information:-

The Application.out file that has to be flashed.
—a for the output hex format in ASCII

Output file that contains the application.out in boottable format.
Memory sections with the MEM and ROW WIDTH
Create a new directory c:\temp

a
b
c. —ethe entry point for the address, i.e. _c_init00
d
e

Copy the out file from the project to the temp directory that you just created. Note, you can
copy the out file from the debug directory of the project

3. Copy hex6x from the bin directory (...\ccsv6\tools\compiler\c6000_7.x.xx\bin) to the temp
directory

4. Open a cmd window and cd it to the temp directory
. Create the rmd file led_play.rmd using notepad or any other editor as follows:
led_play.out
-a
-boot
-e _c_int00

ROMS

{
ROM1: org = 0x0C000000, length = 0x100000, memwidth = 32, romwidth = 32

files = {led_play.btbl}

6. Run hex6x with led_play.rmd “hex6x led play.rmd”
7. The following is a screen shot of the hex6x run:

"led_play.out™ CBOOT LOAD>
"led_play.out® ==» .cinit <BOOT LOAD>
"led_play.out™ ==» _const CBOOT LOAD>»
"led_play.out® =» .suwitch CBOOT LOAD>

Volume in drive C iz 05Disk
Uolume Serial Mumber iz 7498-8BBE?

Directory of c:xb_temp

B8.-A5%-20014 11:28 <DIR> -
A8.-A5-20814 4141:28 <DIR> --
B5.-87-20014 1@:35 8700880 hexbx.exe
B8 85%-20014 44:29 172,772 led_play.bthl
ag:-39 543,452 led_plav.out
11:26 155 led_play.rmnd
4 File<=z2 1.687.257 bhytes
2 Dirvds> 15.320.596.488 hytes free

8. Do dir and notice that the file led_play.btbl was generated

9. Note that if you look at the led_play.map map file, and find the text section, you can see

the definition of the section and the length in the btbl file. From the map file:
48 SECTION ALLOCATION MAP

58 output attributes/

51 section page origin length input sections

53 .sysmem 5] Bceoanas BRal1aaE UNINITIALIZED

54 Bceaaaen aeeepaa88 rts6688_elf.lib : memory.cbj (.sysmem)

55 eceaaaas aaed4affa --HOLE--

57 .text) |

53 Bcedlean geealfe ti.platform.evm6678l.ae66 @ platform.obj (.text)

P L e L [————

And from the file led_play.btbl:

[Jied_plybibi- ot '

File Edit Format Wiew Help

$AC000000,

0C 04 EO 20 NGNS 02 04 03 E2 92 46 OC 6E 00 8C A3 62
02 28 03 E2 92 46 OC 6E 00 8C A3 62 02 44 03 E2 E2 40 00 00 92 46 OC 6E
00 8C A3 62 DC 45 8C F7 BC 4D AC 45 02 81 €O 2a 02 81 04 EA 00 00 20 00
El A0 00 00 02 14 9 42 6C 6E 10 4D CC 3D FC 45 00 00 60 00 02 OC 02 56
DC 4D EC 3D 00 00 40 00 E4 €O 00 00 Ol 8D 7B 08 EC 3D 20 35 4C 6E DC 4D

Section 2: Convert to i2¢c/SPI format
From the generated output in previous step which is in the boot table format convert it into the i2c/spi
format by passing through the b2i2c.

The byte-aligned boot table is then divided into 0x80 byte blocks and appended with length and
checksum to adhere to the format required by the RBL, this is generated by passing through the b2i2c
utility.

The b2i2c utility is part of the MCSDK installation and present in the following folder.
mcsdk_2_01_XX_YY\tools\boot_loader\ibl\src\util\btoccs

Note: For Processor SDK RTOS users the utilities can be found under

pdk_c66xx_2_0 0\packages\ti\boot\ibl\src\util\btoccs

1. Copy the b2i2c.exe utility from the release (directory
..AMCSDK_2 01_XX\mcsdk_2 01_XX_YY\tools\boot_loader\ibl\src\util\btoccs into the temp
directory

2. Run b2i2c, specify the input and output file name “b2i2c led_play.btbl led_play.btbl.i2c”

3. The screen shot of the run is given below

4. Do dir and see that the i2c format file led_play.btbl.i2c was generated

sh_temp>
ssh_temp’
sh_temp>
ssh_temp>b2i2c led_play_btbl led_play.bthl.iZc

ssh_temp’

s»bh_tempirdir

Uolume in drive C is 08Di=sk
Uolume Serial Mumher is Y478-8BBEY?

Directory of c:isbh_temp

AR ~A5.-2@14 11:58 <DIR> -
A8 85726014 11:58 <DIR> - -
11192012 07:33 24, 587 b2iZc.exe
AL /8726014 16:35 898, 880 hexbx.exe
AR -A5.-2014 11:29 172,772 led_play.bthl
A8 05726014 11:58 175,933 led_play.btbhl.i2c
A8 -85 -2014 @7?:-37 543,452 led_play.out
AR 8572014 11:26 155 led_play._rmd
6 Fileds> 1.887.777 bytes
2 Diwvds>» 15_.318.6873.344 bytes free

Section 3: Convert to CCS downloaded format

Next the i2c formatted file need to be converted into CCS acceptable .dat format using b2ccs
utility present in the mscdk\tools\boot_loader\ibl\src\util\btoccs.

1. Copy the b2ccs.exe utility from the release (directory
..AMCSDK_2 01_XX\mcsdk_2 01_XX_YY\tools\boot_loader\ibl\src\util\btoccs into the temp
directory
2. Run b2ccs, specify the input and output file name “b2ccs led_play.btbl.i2c led_play.i2c.ccs”
3. The screen shot of the run is given below
4. Do dir and see that the i2c format file led_play.i2c.ccs was generated

led_play.bthl.i2c led_play.i2c.ccs

Volume in drive G iz 05Disk
Uolume Serial Mumber iz 7498-8BE?

Directory of c:isb_temp

B8./A5%-20014 @1:38 <DIR> -
B8.-A5% 20014 @A1:38 <DIR> ..
111272812 @7:33 24_008 blccs.exe
1117208012 @7:33 24,587 bZ2iZc.exe
B5./A7-208014 1@:35 890,880 hexbx.exe
B8 A% 208014 11:29 172,772 led_play.bthl
B8./A5% 20014 11:58 175,933 led_plav.bthl.iZc
B8.-A5% 20014 @A1:38 173.52% led_play.ilc.ccs
At A5 2814 @A7:39 543,452 led_plav.out
At A5-2814 11:26 155 led_play.rmd

8 File<s? 2.885.316 hytes

2 Dir<s>» 15.3807.898.688 hytes free

Section 4: Adding Boot parameter Table

An updated boot parameter table is read from the SPI before the actual boot starts. To combine
together the boot parameter table and the boot table in the ccs format romparse.exe is used. A *.map
file contains the name of the boot table and the values for the boot parameter table. The following
shows a standard boot parameter map file:

section {

boot_mode =50
param_index =0

options =1

core_freq_mhz = 1000
exe_file = "led_play.i2c.ccs"
next_dev_addr_ext = 0x0
sw_pll_prediv=5
sw_pll_mult =32

sw_pll_postdiv =2

sw_pll_flags=1
addr_width =24
n_pins=4

csel=0

mode =0
c2t_delay=0
bus_freq_mhz=0
bus_freq_khz = 500

}

1. Copy romparse.exe utility from
\MCSDK_2_ XX_YY\mcsdk 2 01 XX_YY\tools\boot_loader\ibl\src\util\romparse to the temp
directory

2. Create a map file. You can copy and paste the above file into nysh.spi.map (nysh stands for
Keystone | first two families, Nyquist and Shannon). A screen shot is given below

nysh.spi.map - N

File Edit Format View Help

section {
boot_mode = 50

param_index = 0

options = 1

core_freq_mhz = 1000

exe_Tile = "led_play.i2c.ccs”
next_dev_addr_ext = 0x0
sw_pll_prediv = 5

sw_pll_mult = 32
sw_pll_postdiv = 2
sw_pll_flags = 1

addr_width = 24

n_pins = 4
csel =0

mode = 0
c2t_delay = 0
bus_freq_mhz
bus_freq_khz

500

3. Runromparse with the map file as a parameter “romparse nysh.spi.map”

4. Note that the program romparse hardcoded the name of the output file (i2crom.ccs) and the i2c
address into the parameter table that is appended to the boot table.

5. The screen shot of the run is given below

6. Do dir and see that the i2c format file i2crom.ccs was generated

c:\h:temp}rumparse nysh.zpi.map

Uolume in drive C iz 085Di=zk
Uolume Serial Humber is 7478-8BE%?

Directory of c:-“b_temp
A8 -85 2814 32:21 PH <DIR> -

A8.-A%- 2014 ©2:21 PH <DIR> --
11-19-2012 @87:33 PH 24_.888 bZccz.exe
11192012 @7:33 PH 24 587 b2iZc_exe
A5 -87-2014 18:35 AH 890,880 hexbx.exe
A8.-A% - 2014 B2:22 PH 176.601 iZcrom.cces
A8 -85 2014 11:29 AH 172,772 led_play.bthl
A8.-A%-2014 11:5%8 AH 175,233 led_play.bthl.iZc
A8 -85%-2014 ©B1:38 PH 173.5%2% led_play.iZc.ccs
A8.-A% 2014 @9:3? AH 543,452 led_play.out
A8 -85 -2014 11:26 AH 155 led_play.rmd
At A5-28014 B2:21 PH 332 nyzh_=zpi_map
11-12-.26812 87Y:-33 PH 66,842 romparse.exe

11 File<{s> 2.24% 891 bhytes

2 Dir<s>» 15.3096.825.728 bytes free

7. The program romparse was developed to work with EEPROM connected via i2c. SPI boot
protocol is the same as i2c, except that EEPROM is connected to page 0x51 of the i2c while SPI
boot starts from 0. The 0x51 is hard-written into the output file i2crom.ccs. The user must
change this value into 00. This is done by the following:

a. Open the file i2crom.ccs with an editor (I use notepad in the screen shots below)

ﬁ i2crom.ces - Notepad

File Edit Format View Help

1651 1 10000 1 397b
0x00500000
0x00320000
0x40200002
0x00010018
0x00040000
0x00000000
0x03e80000
0x01F400E
0x04000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000

b. Change the 51 to 0. The same file will be looked like the following:

File Edit Format View Help

1651 1 10000 1 297b
0x00500000
0x00320000
Ox40200002
0x0001001E
0x00040000
0x00000000
0x02eB80000
0x01F40000|
0x04000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000

c. Save the modified file

Section 5: Big Endian format

The program led_play was built as little endian. The EVM is running as little endian as well, but the RBL
always works as big endian. The program byteswapccs swaps the bytes for big endian RBL. The source
for byteswapccs.c is given in the Appendix. An executable was built and will be given to the students.

Create an EXE from byteswapccs.c (This is already done)
Run byteswapccs.exe with the input file as the i2crom.ccs generated at previous step and
output as the app.dat that will be flashed to the NOR

3. The screen shot of the run is given below

4. Do dir and see that the big endian file app.dat was generated

b _temp>
ssh_temp
:sbh_temprhyteswapces iZcrom.ccs app.dat

b _temp

sh_temprdir

Uolume in drive C is 05Dizk
Uolume Serial Humber is 7498-8BE?

Directory of c:vbh_temp

B-06-2014 BA8:24 AM <DIR> -
B/06.-2014 BA8:24 AM <DIR> --
B/06-2014 BA8:24 AM 176,681 app.dat
11922812 @7:33 PH 24 _BB8 b2ccs.exe
1192812 @7:33 PH 24 587 b2iZc.exe
/28028013 11:54 AM LA,.816 buteswapccs.exe
LsA7/.2814 18:35 AM 870,888 hexbx.exe
8852814 B4:14 PH 176,681 iZ2crom.ccs
B/A5-2014 11:29 AM 172,772 led_play.hthl
8852814 11:5%8 AM 17%,.933 led _play.bthl.iZc
a1:38 PH 173.52% led_play.iZc.ccs
@?:37 AN 543,452 led_play.out
11:26 AM 155 led_play.rmd
a2:21 PH 332 nyush.spi.map
1-.12-.2812 @7:33 PH 66, 842 romparze.exe
13 File<s> 2.475.788 hytes
2 Divdsd» 15.636.2992.776 bytes free

Task3: Flash the EVM SPI flash
1. Configuring the EVM for CCS NOR flashing

Flashing the EVM SPI flash is done using CCS connected to the EVM. The EVM is in no-boot (or sleep)
mode. The EVM mode is determined by the setting of four switches on the board, Sw3, SW4, SW5
and SW6. The switches control the following:

e SW3 DSP Boot mode, DSP Configuration

e SW4 DSP boot Configuration

e SWS5 DSP boot Configuration

e SW6 DSP boot Configuration, PLL setting, PCle mode Selection

The following table is taken from
http://processors.wiki.ti.com/index.php/TMDXEVM6678L EVM Hardware Setup describes the various
mode setting of the EVM:

Boot Mode Dip Switch Settings

The EVM supports booting image from various devices (EEPROM, NAND or NOR) via IBL (at I12C address 0x51), 12C EEPROM (at 12C address 0x30), a
modes (such as Ethernet, SRIO, PCle, SPI etc) which address the boot source directly from the ROM code. Below is the table showing the boot mode «
settings for different boot mode that the EVM supports:

Boot Mode ‘ DIP SW3 DIP SW4 DIP SW5 DIP SW8

(Pin1, 2, 3, 4) (Pin1, 2, 3, 4) (Pin1, 2, 3, 4) (Pin1, 2, 3, 4)
|IBL MOR boot on image 0 (default) |(off, off, on, 0ﬂ}1'2 |{on‘ on, on, on}3 |(0n‘ on, on, m’n4 |(0n, on, on, on}
|IBL MNOR boot on image 1 |{0ff. off, on, off) |(c-ff. on, on, on} |{0n. on, on, off} |{0n. on, on, on}
[IBL NAND boot on image 0 |(off. off. on, off) |(on. off on, on) |(on, on, on, off) ((on. on. on, on)
|IBL NAMND boot on image 1 |(0ff, off, on, off) |{0ff‘ off, on, on) |(0n‘ on, on, off) |(0n, on, on, on)
|IBL TFTP boot |{0ff. off, on, off) |(c-r1. on, off, on} |{0n. on, on, off} |{0n. on, on, on}
|I2C POST boot |(0ff, off. on, off) |{r.:-n, on, on, on} |(0n, on, on, on} |(0n, on, on, on}
‘ROM SPI Boot® ‘{off. on, off, off} |(c-r1. on, on, on} ‘{on. on, off, on) ‘{on. on, on, on}
[ROM SRIO Boot® |(off. off. on.on) |(on, on, on, off) [(on, off, on, off) |(off. on, on, on)
‘ROM Ethernet Boot® ‘(off, on, off, on) |{0n‘ on, on, off) ‘(on‘ on, off, off) ‘(off, on, on, on}
‘ROM PCIE Boot’ ‘{off. on, on, off) |(c-r1. on, on, on} ‘{on. on, on, off} ‘{off. on, on, on)
|N0 boot |(0ff, on, on, on) |{0n‘ on, on, on) |(0n‘ on, on, on) |(0n, on, on, on)

The location of the switched on the EVM for the non-boot case is given by the following pictures.

http://processors.wiki.ti.com/index.php/TMDXEVM6678L_EVM_Hardware_Setup

And a close-up of the switches

s ¥55 A223 &

2. The CCS NOR writer is part of the release at location
MCSDK_2_XX_YY\mcsdk_2 01 XX_YY\tools\writer\nor\evmc6678| . The README.txt file (in
the \nor\docs directory) gives instructions how to flash the NOR memory. The way the flash

data was developed, some minor modifications to the README.txt file are needed. The
following is the updated instructions:

Steps to program the NOR:

1. Be sure to set the boot mode dip switch to no boot/EMIF16 boot mode on the EVM.
2. Copy app.dat file to writer\nor\evmc66xxI\bin directory

3. Change the file_name to app.dat and start_addr to 0 in
writer\nor\evmc66xxI\bin\norwriter_input.txt if necessary. See the screen shot below for the
norwrite_input.txt file

4. Open CCSv5 and launch the evmc66xx emulator target configuration and connect to core 0.

5. Load the program writer\nor\evmc66xx/\bin\norwriter_evme66xxl.out to CCS, be sure
evmc66xxl.gel is used in CCS and DDR is initialized. Ignore the red comment that says that it does
not find the main() C source.

6. Open the Memory view (in CCSv5, view->Memory Browser), and view the memory address
0x80000000.

7. Load app.dat to 0x80000000:
* In CCSv5, right click mouse in memory window, select "load memory".

* Browse and select writer\nor\evmc66xxI\bin\app.dat (Tl data format), click "next" . See the
following screen shot

v+ Load Memory

Load Memory

Select a file containing the memory data to be loaded

Mote that the default format is Raw Data Format.
For TI Data Format, specify ".dat" as the file extension.
For COFF Format, specify ".out” as the file extension,

File: CA\MCSDK_2_01_6\mesdk_2_01_02_06\tools\writer\nor\evmc66781\bir\app.dat

Loading COFF files using this tool is not recommended. Use Program Load instead.
ELF files are not supperted by this toel. Use Program Load instead.

[] Use the file header information to set the start address and size of the memory block to be loaded.

d

Type

pser e

HE LApICISTE | v e

Disassembly

Cyrsiers

Value

.
v« Open

W —

7 n\:/\:‘/: | & writer » nor b evmcdB78l » bin

- |&’ | | Search bin

Organize * Mew folder

SowecpTTy T T GrTTwer =

: PA PLL programmable multiplier = 21
: PA PLL programmable divider = 1

FrRCu T CpET

L

L

H : configSGMIISerdes Setup... Begin
L Output:

5 has been configured.

L Qutput: DDR begin (1866 auto)

L OQutput: XMC Setup ... Done

ZL Output:

alization is complete.

:L Qutput: DDR done

: the output freguency should be 18 times the

i N
. ame
- Favorites

Bl Desktop
4 Downloads

L | app.dat

15| Recent Places

4 Libraries

m

4 Libraries
3 Documents
,J“. Music
[e=| Pictures
_|] Subversion

E Videos

1M Computer
£, 0SDisk (C)

-

ul]
Date modified Type

§/6/2014 8:25 AM

- 4

I

[@]

DAT File

File name:

- [TI Data Format (*.dat)

r

* Set the Start Address to "0x80000000", enter the size of the file. If you check the line “use the
file header information to set the start address and size of memory block to be loaded, it will load

the file size automatically, see the picture below. Click "finish"

Use the file header information to set the start address and size of the memaory block to be loaded.

8. After the app.dat file is loaded into the memory, run the program (in CCSv5, press F8), it will start

to program the NOR.

9. When programming is completed, the console will print "NOR programming completed

successfully", if there is any error, the console will show the error message.

2. The following screen shots shows the nor_writer_input.txt file

File Edit Format WView Help

file_name = app.dat
start_addr =0

3. The following screen shoots shows the CCS after loading the memory and the norwriter program
[ces pebug 1 Bimeso de Com tudio X
File Edit View Project Tools Run Scripts Window Help

ik gip-i@eva-PRe- F- 5 (¥ CC5 Debug | B CCS Edit

%5 Debug sz] e 0 B3 3 k| v & 8 T T O 6d Variables 32 | & Expressions| MM Registers L D|ee s X%k T 0
4 5 Shannon_6678.ccxml [Code Composer Studio - Device Debugging] Name Type Value lspicatiog
4 Blackhawk XDS560v2-USB System Trace Emulater_0/C66xc 0 (Suspended - SW Breakpoint) L pdevice struct <unnameds 000000000 D008TT42C
imamatollalnoppiter,c106 567D, b fp struct <unnamed * 0400000000 0:0087740C
= _c_int00() at boot.c:87 0x0086EAZE (the entry point was reached) b (® init_flags struct <unnameds Ll 000877410
& Blackhawk XDS360v2-USB System Trace Emulator_0/C66x L (Disconnected : Unknown) » (& init_config struct <unnameds o 000877413
& Blackhawk XDS560v2-USB System Trace Emulator_0/C66:¢ 2 (Disconnected : Unknown) - ret unsigned int o 000877430
& Blackhawk XDS360v2-USB System Trace Emulator_0/C66x 3 (Disconnected : Unknown)
& Blackhawk XDS560v2-USB System Trace Emulator_0/C66x 4 (Disconnected : Unknown)
Xe Blackhawk XD5360v2-USE System Trace Emulator_0/C66x_5 (Disconnected : Unknown)
& Blackhawk XDS560v2-USB System Trace Emulator_0/C66x¢ 6 (Disconnected : Unknown)
2 Blackhawk XDS560v2-USB System Trace Emulator_0/C66xx_7 (Disconnected : Unknown)
%) norwriter.c z@}l‘flummunun = 8| @ Memory Browser 33]_ D\sas;emb\y‘ i e Y o0
481 = 0:80000000 -
482
483 * Function: main OTATFi28 - 0xd8) <Memery Rendering 1> 3
28 void main 0 [32BitHec- Tistle | [V]11D Cache | (111 Coche | 9112 Cache]
» 406§ Ox7FFFFF28 -
407 FILE “Fp; BxTFEFFFAC
408 platform_init_flags init_flags; BxTFFFFF78
489 platform_init_config init_config; Ox7FFFFFO4
410 PLATFORM DEVICE infe *p_device; Ox7FFFFFES
411 Bool ret; Ox7FFFFFDC 80000000
412 [[eece3200 02002040 18000100 E803 000OF40L H
413 printf("NOR Writer Utility Version %s\n\n", version); | 4
414

415 fp = fopen(input_file, "r");

i v 2

BRall#E-5--0

— prae -
C66xx_@: GEL Output: DSP Reset CPU... Done.

CB6xx_B: GEL Output: Disable all EDMA3 interrupts and events.
CB6xx_B: GEL Output: Disable all EDMA3 interrupts and events.
CB6xx_B: GEL Output: Disable all EDMA3 interrupts and events.
C66xx_@: GEL Output: Disable all EDMA3 interrupts and events.
C66xx_B: GEL Output: Disable all EDMA3 interrupts and events.
C66xx_B: GEL Output: Disable all EDMA3 interrupts and events.
C66xx_B: GEL Output: Disable all EDMA3 interrupts and events.
CB6xx_B: GEL Output: Disable all EDMA3 interrupts and events.
CB6xx_B: GEL Output: Disable all EDMA3 interrupts and events.
CB6xx_B: GEL Output: Disable all EDMA3 interrupts and events.
C66xx_@: GEL Output: Invalidate ALl Cache...

C66xx_@: GEL Output: Invalidate All Cache... Done.

C66xx_0: GEL Output: DSP Reset CPU...

C66xx_B: GEL Output: DSP Reset CPU... Done.

CB6xx_B: GEL Output: Disable all EDMA3 interrupts and events.

0* @ Licensed LE [2n) ‘Writab\e Smart Insert 406:1

4. The next screen shoot shows the console after running the norwriter program

El Console 2

Shannon_6678, commb CIO
NOR Writer Utility Version 81.88.80.83

Flashing sector @ (@ bytes of 53860)
Reading and wverifying sector @ (@ bytes of 58868)
NOR programming completed successfully

Task 6: Boot from NOR SPI
1. Power off the EVM, change the EVM switched according to the Boot Mode Dip Switch Setting

from above - ROM SPI BOOT off, on, off, off on,on,on,on on,on,off,on on,on,on,on . A screen

shot of the dip switch is given below

C T T8 T] R R R R
. . e sTe & s & ' o !
®N ECE O®N ECE ®N ECE ®N ECE on

g fe i Illl --;! By op»
pp -

N——

e Ct“nfm "
y ooy f&.: . umm'

Aes :
N |

2. Power up the EVM. The LED will blink. The last screen shot shows the blinking LED

