
C6678 SPI Boot Example

Purpose
The purpose of this lab is to demonstrate all the steps that are needed to boot an allocation from SPI

flash memory.

Dependencies:
 Code composer Studio v5 or v6

 MCSDK or Processor SDK RTOS software for C6678

Note: Files under mcsdk_2_01_XX_YY\tools\boot_loader have been moved to

pdk_c66xx_2_0_0\packages\ti\boot

Task 1: Observe the source file and build the application. Verify that it works

correctly

The example application included in the package can be built using gmake or CCS in the Windows

environment.

GMAKE based built Procedure:
1. Browse to makefile in the led_play folder under src folder

2. In the Makefile set the path to C6000_FOLDER and PDK_PACKAGES. Note that the

PDK_PACKAGES must contain path until the packages folder inside the PDK component.

3. In the windows command prompt, add the gmake path to the PATH variable using

Set PATH=%PATH%;<CCS_INSTALL_PATH>\utils\bin

4. From command line you can now build the example using

gmake clean

gmake all

CCS based build Procedure
1. Open CCS Editor and import the led_play project from the src folder.

2. Right click on the project and Open Project properties. Under Build or C/C++ Build (may vary

based on version of CCS), set the PDK_INSTALL_DIR variable in the Environment.

3. Right click on the project in the Editor view and Rebuild the project in your CCS environment.

4. Load and run the led_play.out file on core 0 of the EVMC6678 to ensure that the rebuilt example

runs on your EVM. Observe the LED blinks.

Task 2: Building the btbl file – boot table format

1. Copy the led_play.out file to the build folder

2. In spiboot.bat, modify the path to IBL_UTIL to point to the boot utilities provided in the SDK.

3. From windows command prompt, execute the spiboot.bat file to generate the boot image in the

boot table format

4. The details of each step involved in createing the boot image is described in the sections below.

NOTE: Since EVM is designed to have FPGA firmware redirect the DSP core to run IBL, for direct SPI

boot don`t forget to change the boot address to 0x00 from 0x51 inserted by the romparse utility as

described in Section 4

Section 1: Create boot table from application binary using Hex6x Utility
The RBL expects the image flashed on the SPI flash to be in Boot Table Format. The led_play example

application Code has to be first converted into a Boot Table Format, using the hex6x utility present in

CCS installation folder. (…\ccsv5\tools\compiler\c6000_7.4.2\bin) (Or a different version of the

compiler). The hex6x utility expects an rmd file in which you provide path to the application binary and a

format in which the boot table is expected. The documentation for hex6x utility is provided in the

TMS320C6000 Assembly Language Tools documentation that is part of the compiler documentation. The

hex6x utility reads the sections in the application binary and creates a flat binary in boot Table format

that allows the ROM to interpret and load the sections of the application binary. The RMD file contains,

few of the following information:-

a. The Application.out file that has to be flashed.

b. –a for the output hex format in ASCII

c. –e the entry point for the address, i.e. _c_init00

d. Output file that contains the application.out in boottable format.

e. Memory sections with the MEM and ROW WIDTH

1. Create a new directory c:\temp

2. Copy the out file from the project to the temp directory that you just created. Note, you can
copy the out file from the debug directory of the project

3. Copy hex6x from the bin directory (…\ccsv6\tools\compiler\c6000_7.x.xx\bin) to the temp
directory

4. Open a cmd window and cd it to the temp directory

5. Create the rmd file led_play.rmd using notepad or any other editor as follows:

led_play.out

-a

-boot

-e _c_int00

ROMS

{

 ROM1: org = 0x0C000000, length = 0x100000, memwidth = 32, romwidth = 32

 files = {led_play.btbl}

}

6. Run hex6x with led_play.rmd “hex6x led_play.rmd”

7. The following is a screen shot of the hex6x run:

8. Do dir and notice that the file led_play.btbl was generated

9. Note that if you look at the led_play.map map file, and find the text section, you can see
the definition of the section and the length in the btbl file. From the map file:

And from the file led_play.btbl:

Section 2: Convert to i2c/SPI format
From the generated output in previous step which is in the boot table format convert it into the i2c/spi

format by passing through the b2i2c.

The byte-aligned boot table is then divided into 0x80 byte blocks and appended with length and

checksum to adhere to the format required by the RBL, this is generated by passing through the b2i2c

utility.

The b2i2c utility is part of the MCSDK installation and present in the following folder.

mcsdk_2_01_XX_YY\tools\boot_loader\ibl\src\util\btoccs

Note: For Processor SDK RTOS users the utilities can be found under

pdk_c66xx_2_0_0\packages\ti\boot\ibl\src\util\btoccs

1. Copy the b2i2c.exe utility from the release (directory

…\MCSDK_2_01_XX\mcsdk_2_01_XX_YY\tools\boot_loader\ibl\src\util\btoccs into the temp

directory

2. Run b2i2c, specify the input and output file name “b2i2c led_play.btbl led_play.btbl.i2c”

3. The screen shot of the run is given below

4. Do dir and see that the i2c format file led_play.btbl.i2c was generated

Section 3: Convert to CCS downloaded format
Next the i2c formatted file need to be converted into CCS acceptable .dat format using b2ccs
utility present in the mscdk\tools\boot_loader\ibl\src\util\btoccs.

1. Copy the b2ccs.exe utility from the release (directory

…\MCSDK_2_01_XX\mcsdk_2_01_XX_YY\tools\boot_loader\ibl\src\util\btoccs into the temp

directory

2. Run b2ccs, specify the input and output file name “b2ccs led_play.btbl.i2c led_play.i2c.ccs”

3. The screen shot of the run is given below

4. Do dir and see that the i2c format file led_play.i2c.ccs was generated

Section 4: Adding Boot parameter Table
An updated boot parameter table is read from the SPI before the actual boot starts. To combine

together the boot parameter table and the boot table in the ccs format romparse.exe is used. A *.map

file contains the name of the boot table and the values for the boot parameter table. The following

shows a standard boot parameter map file:

section {

 boot_mode = 50

 param_index = 0

 options = 1

 core_freq_mhz = 1000

 exe_file = "led_play.i2c.ccs"

 next_dev_addr_ext = 0x0

 sw_pll_prediv = 5

 sw_pll_mult = 32

 sw_pll_postdiv = 2

 sw_pll_flags = 1

 addr_width = 24

 n_pins = 4

 csel = 0

 mode = 0

 c2t_delay = 0

 bus_freq_mhz = 0

 bus_freq_khz = 500

}

1. Copy romparse.exe utility from

\MCSDK_2_XX_YY\mcsdk_2_01_XX_YY\tools\boot_loader\ibl\src\util\romparse to the temp

directory

2. Create a map file. You can copy and paste the above file into nysh.spi.map (nysh stands for

Keystone I first two families, Nyquist and Shannon). A screen shot is given below

3. Run romparse with the map file as a parameter “romparse nysh.spi.map”

4. Note that the program romparse hardcoded the name of the output file (i2crom.ccs) and the i2c

address into the parameter table that is appended to the boot table.

5. The screen shot of the run is given below

6. Do dir and see that the i2c format file i2crom.ccs was generated

7. The program romparse was developed to work with EEPROM connected via i2c. SPI boot

protocol is the same as i2c, except that EEPROM is connected to page 0x51 of the i2c while SPI

boot starts from 0. The 0x51 is hard-written into the output file i2crom.ccs. The user must

change this value into 00. This is done by the following:

a. Open the file i2crom.ccs with an editor (I use notepad in the screen shots below)

b. Change the 51 to 0. The same file will be looked like the following:

c. Save the modified file

Section 5: Big Endian format
The program led_play was built as little endian. The EVM is running as little endian as well, but the RBL

always works as big endian. The program byteswapccs swaps the bytes for big endian RBL. The source

for byteswapccs.c is given in the Appendix. An executable was built and will be given to the students.

1. Create an EXE from byteswapccs.c (This is already done)

2. Run byteswapccs.exe with the input file as the i2crom.ccs generated at previous step and

output as the app.dat that will be flashed to the NOR

3. The screen shot of the run is given below

4. Do dir and see that the big endian file app.dat was generated

Task3: Flash the EVM SPI flash
1. Configuring the EVM for CCS NOR flashing

Flashing the EVM SPI flash is done using CCS connected to the EVM. The EVM is in no-boot (or sleep)

mode. The EVM mode is determined by the setting of four switches on the board, Sw3, SW4, SW5

and SW6. The switches control the following:

 SW3 DSP Boot mode, DSP Configuration

 SW4 DSP boot Configuration

 SW5 DSP boot Configuration

 SW6 DSP boot Configuration, PLL setting, PCIe mode Selection

The following table is taken from

http://processors.wiki.ti.com/index.php/TMDXEVM6678L_EVM_Hardware_Setup describes the various

mode setting of the EVM:

The location of the switched on the EVM for the non-boot case is given by the following pictures.

http://processors.wiki.ti.com/index.php/TMDXEVM6678L_EVM_Hardware_Setup

And a close-up of the switches

2. The CCS NOR writer is part of the release at location

MCSDK_2_XX_YY\mcsdk_2_01_XX_YY\tools\writer\nor\evmc6678l . The README.txt file (in

the \nor\docs directory) gives instructions how to flash the NOR memory. The way the flash

data was developed, some minor modifications to the README.txt file are needed. The

following is the updated instructions:

Steps to program the NOR:

1. Be sure to set the boot mode dip switch to no boot/EMIF16 boot mode on the EVM.

2. Copy app.dat file to writer\nor\evmc66xxl\bin directory

3. Change the file_name to app.dat and start_addr to 0 in

writer\nor\evmc66xxl\bin\norwriter_input.txt if necessary. See the screen shot below for the

norwrite_input.txt file

4. Open CCSv5 and launch the evmc66xx emulator target configuration and connect to core 0.

5. Load the program writer\nor\evmc66xxl\bin\norwriter_evm66xxl.out to CCS, be sure

evmc66xxl.gel is used in CCS and DDR is initialized. Ignore the red comment that says that it does

not find the main() C source.

6. Open the Memory view (in CCSv5, view->Memory Browser), and view the memory address

0x80000000.

7. Load app.dat to 0x80000000:

 * In CCSv5, right click mouse in memory window, select "load memory".

 * Browse and select writer\nor\evmc66xxl\bin\app.dat (TI data format), click "next" . See the

following screen shot

 * Set the Start Address to "0x80000000", enter the size of the file. If you check the line “use the

file header information to set the start address and size of memory block to be loaded, it will load

the file size automatically, see the picture below. Click "finish"

8. After the app.dat file is loaded into the memory, run the program (in CCSv5, press F8), it will start

to program the NOR.

9. When programming is completed, the console will print "NOR programming completed

successfully", if there is any error, the console will show the error message.

2. The following screen shots shows the nor_writer_input.txt file

3. The following screen shoots shows the CCS after loading the memory and the norwriter program

4. The next screen shoot shows the console after running the norwriter program

Task 6: Boot from NOR SPI
1. Power off the EVM, change the EVM switched according to the Boot Mode Dip Switch Setting

from above - ROM SPI BOOT off, on, off, off on,on,on,on on,on,off,on on,on,on,on . A screen

shot of the dip switch is given below

2. Power up the EVM. The LED will blink. The last screen shot shows the blinking LED

