Video Drivers Porting Guide Application Report
EXAS
INSTRUMENTS Draft v0.1 — March 2016

Video Driver Porting Guide for TDA2xx, TDA2Ex and TDA3xX

Sivaraj R ADAS Software, Processor BU

ABSTRACT

This application note describes the detailed steps in configuring VIP and DSS video
drivers to custom board. This includes board level pinmux changes, VIP data capture from
sensors with different parameters and configuring DSS timing to support custom LCD.

Table of Contents

R @ Y =T Y 1 P 4
FZ = 1 1 @ 1]) Y/ 5
I VA = OTo] o) Te |81 =1 [0 o F PP 5
B0 700 R [11 = L o = o o PR 5

3.2 External/Embedded SYNC SIgNal......cc.cooiiiiiiiiiiii i 6

I TRC T [o101 A B = = TR VYA o | 1 [S SRR 7

3.4 INPUE D@ FOMMAL ..o et e s e e e e e e e en et e e e e e e e e e nnnnn s 7

3.5 OULPUL DAta FOIMAL......ccuuiieiii et o s et it s et e as e e et e e e et e e et s e e et e e et s e e an e e et e eeanaaes 8

3.6 Pixel Clock Polarity and SYNC Signal Polarity oo i 9

3.7 INPUL VIAEO TIMING i€ it i a0 e aaeeaens 9

RS I O o] o] o] g To [V o [T o T TP PP PPUPRPTPPPPT 9

3.9 Interlaced/ProgreSSIVE INPUL........ i i e e e e e e s e e e e e e e e e et a e e e e e e e eesarta e e eeaaeeenenes 10
3.10 TDA2Ex Additional SOC Level MUX SETNGccoooieeeeeeeeeeeeee e 10

N b R S N 0] o) 1o [0 1= 11 o o PSP 11
4.1 LCD/DPI INSEANCEii i iasas e et a e e e e e e e e s e e e e e e e e e e e s e s s e aaaaaaaaaaaaaaaaaaans 11

N 1 (= g 7= LTl o 1 - RS RTRRRT 12

4.3 Pixel Clock Polarity and SYNC Signal PoIarityccoooeoeoiiiiiieeeeee e 12

S O I R I o 1 o o SRR 13

4.5 LCD PiXel ClOCK — VIidE0 PLL ... 14

I O N I @1o] ¢ {To [U] =11 To] o IUU ST PTPTPPR 15
5.1 LBNE POSITION ...ttt 15

I I 1o 1o N oTo] £ 1142 16

5.3 Frames not received / NO VIdE0O CAPIUIEMuuuuuuuiiiiiiiiiiiiiiiiiiiitiitieiibibeieeeeeeeeeeeeeeeeeneeeeeenene 16
5.3.1 SENSOr SIAVE AQUIESS ...uuuuiiieeeiieeeiee et e e et r e e e e e e e e e et a s e e e e e e eaeannnns 16

5.3.2 CSI2 Clock recoganized DY CAL........coiiiiiiiiiiieee et 16

6 12C anNd UART CONTIQUIATIONuutiiiiiiiiiiiiiiiiiiiiiiiieiieiiiib b 17
G A 12 O O 4 = g To [T N 17

L A 0 7Y o g B O T= g o =T RN 17

7 Chip and CPU LeVel CONTIQUIATIONuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiii e neseeennnnes 17
7.1 PRCM MOAUIE ENADIEeeeeii e e e e et e e e e e e e e aat e e e eaaees 17

7.2 INTEITUPE CTOSSIIA ... ittt 17

ARG I N\ o] 0 L @2 Tod aT=To RS- Tox 1o o [17

8 POrting BOard MOAUIE.........ccoooeeeeeeeeeee e 17
8.1 CRANGING PIN IVIUX ...ttt 17

9 SUPPOItiNG NEW SENSON/CAIMEBIAuuuuuuuuiitiiiiiiiiitaetaae i aeb bbb bbb bbbssssabesbesbessssnsnnnnes 18

I3 TEXAS
INSTRUMENTS Draft v0.1
S IR RS 0 =T ST =T 0 - To | PP TP PPUPPPPPPPPPIN 18
O9.1.1 BSP DriVEr UPUALESuuuuuuiiiiiiiiiiiiiiiiiiitiieitisiiiss e ssennesnnnnnes 18
9.1.2 ViSIONSDK UPAALES......uuuuuuiiiiiiiiiiiiiiiiiiteiiitiesieise bbb nnssennnnnes 18
0.2 RAW SISO ...ttt e ettt oo e e ettt ettt e e e e e e ettt bbb e e e e e et et arbb e e aaaeearee 18
LS I R = 1S e T 1 =T G U T oo F= L (=T PP 18
9.2.2 ViISIONSDK UPAALES......uuuuuuiiiiiiiiiiiiiiieiiiiiitit bbb nssnnssnnnnnes 18
9.3 FPD LINK Tl e 19
9.3.1 De Serializer / Aggregator 12C AdAreSS..........uuiiiiieeeiieeeice e e e 20
0.3.2 SeraliZer I2C AQUIESS ...t eee et e ettt a e e e e e e e e e eaateaa e e e e e e e e eeanranns 20
1S JRC TG T =T o LYo gl D @ Yo [0 | = PSR 20
9.3.4 Adding support for sensor + serializer & de serializer combination............................ 21
O = =T =7 g = 25

List of Figures

Figure 1 FPD Link HI: Parallel OULPULoouiiii i e ettt ee s e e e e e e ear e e e e e e e e aannes 19
Figure 2 FPD LinK HE: CSI2 OUIPUL ...ttt es s e e e e e e e e eaa e s e e e e e e s seastaaaseaeaaeeannnes 19

Video Driver Porting Guide for TDA2xx, TDA2Ex and TDA3xx

I3 TEXAS
INSTRUMENTS Draft v0.1

List of Tables
Table 1: VIP Port Mapping to Driver INSTANCE IDuuiiiiiiiiieiie et e e e eeeeees 6
Table 2: VIP Video INterface MOUE........cooiieiiiiieie et e et s e e e e e e e e e eaataa e e e e eeeeenenes 6
Table 3: VIP Video Input Data FOrMALouuiiiii it e e e e e e e e e e eenenes 7
Table 4: VIP Video Output Data FOrMALcoiiiiiiiieiii et e e e e et e e e e e e e e eannnes 8
Table 5: DSS DPI Port Mapping tO DIIVEN IDccooiiiiiiiiiii 12
Table 6: DSS LCD INterface FOMMAL.........coooiiiiiiiii e e et e e e e e e e a e eea e 12

Video Driver Porting Guide for TDA2xx, TDA2Ex and TDA3xx

I3 Texas
INSTRUMENTS Draft v0.1

1 Overview

This application note describes the various steps in porting the video drivers (VIP, DSS & CAL) to
custom board. This also explains how to port UART and I2C drivers which are typically used along
with video drivers.

Below gives an overview of the various steps involved in the board bring-up. Kindly refer respective
section for further details.

Review the board schematics for VIP, DSS, UART and 12C signals and how the board level
routing is done.

Check the pin name to which the signals are connected to the SOC. Depending on this set
the SOC level pinmux (mux mode). The pin mux can be set by using
Bsp_platformSetPinmuxRegs() platform API. The 1 parameter sets the mode, the 2™
parameter takes the register offset for the pin and the 3™ parameter sets the other mux mode
parameters like pull-up/down enable/disable, inputenable (output or bi-directional).

o Note: In case of VIP, the pin direction should be set to bi-directional as all VIP
pins acts as input.

Example Code Snippet:

/* PAD=VIN1B CLKl 0, PIN=VIN3A CLKO 6 */

Bsp platformSetPinmuxRegs (60, CIRL.CORE PAD VIN1B CLK1,

BSP_PLATFORM IOPAD CFG_INPUTENABLE BI);

Review if any board level multiplexing is required for the video signals to propagate from
external Sensor/LCD to the device pads. Review if any 12C 10 expander or GPIO is used to
select the required board level multiplexing. Depending on these, the application should do
the required settings. (12C Connectivity could be verified using utility mentioned in section 2)

Review if any board level reset or powering-up is required for the external Sensor/LCD.
Depending on these, the application should perform the required settings before
reading/writing to the external Sensor/LCD.

Program the external sensor or LCD using 12C read/write APIs. The application could use
I12C read/write APIs Bsp_deviceRawRead8(), Bsp_deviceRawWrite8() etc... present in
include/devices/bsp_device.h file. Refer board section to check the steps involved in using a
different 12C instance. (12C Connectivity could be verified using utility mentioned in section 2)

VIP and DSS have different configuration line embedded/discrete sync, 24/16/8-bit interface
etc which could differ depending on board design and use cases. This needs to be reviewed
and accordingly the VIP and DSS drivers should be configured from the application.

Chip level Interrupt cross bar configuration needs to be performed for the VIP, DSS, UART
and 12C interrupts to reach the CPU core. The default configuration is done as part of the
“platform” module. If the customer application requires a different interrupt mapping, the cross
bar setup should be done by the application by bypassing the default configuration by setting
islrgXBarSettingReq parameter of Bsp_PlatformInitParams to FALSE.

Video Driver Porting Guide for TDA2xx, TDA2Ex and TDA3xx 4

I3 TEXAS
INSTRUMENTS Draft v0.1

¢ Once the basic changes are done, individual bring-up of the interface should be done using
below example before running the final use case or trying the capture to display loopback.

o DSS: examples/vps/display/displayDss. “gmake -s displayDss”
o VIP: examples/vps/capture/captureVip. “gmake -s captureVip”

o VIP to DSS Loopback: examples/vps/loopback. “‘gmake -s loopback”

2 BSP I2C Utility

Most the video systems either receive data from an external sensor and / or send data to an external
peripheral (such as sensor, encoders, decoders etc... or associated peripherals such as muxes, 10
expanders, etc...) These peripheral are typically controlled / programmed by an 12C.

Before attempting to bring up any video drivers, its recommended that connectivity to peripherals are
established and slave addresses are verified.

Requirement: Please ensure to follow details in section 6.to port I12C driver.

This utility is simple CCS console based, command line based application that could be used to write
/ read from salves connected to TDAXxx class of devices. Once the utility is executed a simple menu
is displayed on CCS console and command are received from CCS console and executed.

3 VIP Configuration

This section describes the various VIP parameters that could possibly change when migrating to new
sensor or board.

3.1Instance/Port

The VIP port parameter can be changed by passing instanceld parameter of Fvid2_create. This
instance ID can be generated based on the VIP instance, slice and port using
VPS_CAPT_VIP_MAKE_INST_ID macro.

Example Code Snippet:
Uint32 instId = VPS_CAPT_VIP_MAKE_INST_ID(VPS_VIPl, VPS_VIP_ SO, VPS_VIP_ PORTA);
drvHandle = Fvid2 create (FVID2_VPS_CAPT VID DRV, instId,

&createPrms, &createStatus, &cbPrms);

This instance ID along with driver ID (FVID2_VPS_CAPT_VID_DRV) and create parameters can be
used to get a handle of the VIP driver for further operation. Below table shows the VIP port mapping
to the driver instance ID.

VIP Port Driver Instance ID
VIN1A VPS CAPT VIP MAKE INST ID(VPS VIPl, VPS VIP S0, VPS VIP PORTA)
VIN1B VPS CAPT VIP MAKE INST ID(VPS VIP1, VPS VIP SO, VPS VIP PORTB)

Video Driver Porting Guide for TDA2xx, TDA2Ex and TDA3xx 5

I3 TEXAS

INSTRUMENTS Draft v0.1

VIN2A VPS CAPT VIP MAKE INST ID(VPS VIP1, VPS VIP S1, VPS VIP PORTA)
VIN2B VPS CAPT VIP MAKE INST ID(VPS VIP1, VPS VIP S1, VPS VIP PORTB)
VIN3A VPS CAPT VIP MAKE INST ID(VPS VIP2, VPS VIP SO, VPS VIP PORTA)
VIN3B VPS CAPT VIP MAKE INST ID(VPS VIP2, VPS VIP SO, VPS VIP PORTB)
VIN4A VPS CAPT VIP MAKE INST ID(VPS VIP2, VPS VIP S1, VPS VIP PORTA)
VIN4B VPS CAPT VIP MAKE INST ID(VPS VIP2, VPS VIP S1, VPS VIP PORTB)
VINSA VPS CAPT VIP MAKE INST ID(VPS VIP3, VPS VIP SO, VPS VIP PORTA)
VINSB VPS CAPT VIP MAKE INST ID(VPS VIP3, VPS VIP SO, VPS VIP PORTB)
VINGA VPS CAPT VIP MAKE INST ID(VPS VIP3, VPS VIP S1, VPS VIP PORTA)
VINGB VPS CAPT VIP MAKE INST ID(VPS VIP3, VPS VIP S1, VPS VIP PORTB)

Table 1: VIP Port Mapping to Driver Instance ID

3.2 External/lEmbedded Sync Signal

The VIP video interface mode parameter to select embedded sync (BT.656/BT.1120) or external
sync (HSYNC/VSYNC/AVID modes) can be performed by changing videolfMode parameter of
capture driver Vps_CaptCreateParams create parameter. The various interface modes supported
and the corresponding macro to be used are given below

Video Interface Mode VIP Video Interface Mode Macro
Embedded Sync (BT656, BT1120)° FVID2 VIFM_SCH_ES
External Sync (HSYNC/VSYNC)™ FVID2 VIFM_SCH DS HSYNC VSYNC
External Sync (AVID/VSYNC)™ FVID2 VIFM_SCH DS AVID VSYNC
Embedded Sync (Line Muxed) FVID2_VIFM_MCH_LINE_MUX_ES
Embedded Sync (Pixel Muxed) FVID2_VIFM_MCH_PIXEL MUX_ES

Table 2: VIP Video Interface Mode

"BT.656 and BT.1120 can be selected by setting the interface with as 8-bit or 16-bit as described in
next section.

” Most of the video sensors provide HSYNC and VSYNC signals. This is the typically used interface
mode for sensors. In this mode, the VIP captures the entire video frame including horizontal and
vertical blanking. The VIP parser crop parameters should be set in addition to this to get only the
active video in memory. This is discussed in subsequent section.

" When the AVID signal of the sensor is connected to the VIN AVID pad of VIP, this mode can be
used. In this case, the VIP will capture only the active video.

Video Driver Porting Guide for TDA2xx, TDA2Ex and TDA3xx 6

TEXAS

INSTRUMENTS Draft v0.1

Example Code Snippet:
Vps_CaptCreateParams createPrms;

createPrms.videoIfMode = FVID2 VIFM SCH DS HSYNC VSYNC;

3.3Input Data Width

The VIP video interface width can be changed by setting videolfWidth parameter of capture driver
Vps_CaptCreateParams create parameter. The supported values are FVID2 VIFW_8BIT,
FVID2_VIFW_16BIT and FVID2_VIFW_24BIT.

If the video sensor is providing 10, 12, 14 bit data, then this parameter should be set to
FVID2_VIFW_16BIT and the VIP writes the data as 16-bit with zero padded to the MSB.

Note: 16-bit and 24-bit can be selected for only PORT A; PORT B doesn’t support 16-bit and 24-bit
operation (only 8-bit is supported). Also when PORT A is selected for 16-bit and 24-bit, PORT B
can’'t be used, even for 8-bit operation.

Example Code Snippet:
Vps_ CaptCreateParams createPrms;

createPrms.videoIfWidth = FVID2 VIFW-16BIT;

3.4 Input Data Format

The VIP input data format can be changed by setting inFmt.dataFormat parameter of VIP capture
driver Vps_CaptVipParams parameter passed to IOCTL_VPS_CAPT_SET_VIP_PARAMS IOCTL.
The various input data format supported and the corresponding macro to be used are given below.

Video Input Data Format VIP Video Input Data Format Macro

YUV (8-bit or 16-bit)"

FVID2_DF_YUV422P

YUV 24-bit

FVID2_DF_YUV444P

RGB 24-bit

FVID2_ DF RGB24 888

8-bit RAW/Bayer

FVID2_DF_RAWOS8

16-bit RAW/Bayer

FVID2_DF _RAW16

24-bit RAW ™

FVID2 DF_RAW24

Table 3: VIP Video Input Data Format

“In case of 8-bit YUV input, the VIP always expects input in UYVY format. Other formats are not
natively supported by VIP. If the sensor inputs data in any other format (say YUYV), one could use
the RAW 8-bit format and write the same data as 8-bit data at the VIP output. In this case no internal
processing like CSC, SC or CHR-DS of VIP can be used.

Video Driver Porting Guide for TDA2xx, TDA2Ex and TDA3xx 7

I3 TEXAS

INSTRUMENTS Draft v0.1

“VIP doesn’t natively support RAW input format or Bayer pattern input. The VIP driver uses YUV
VIP parser setting and VPDMA data format to write back the data as is to the memory without doing
any processing. Hence these formats are used for Bayer or any RAW input formats which doesn’t
require any processing.

Example Code Snippet:
Vps CaptVipParams vipPrms;

vipPrms.inFmt.dataFormat = FVID2 DF YUV422P;

3.50utput Data Format

The VIP output data format can be changed by setting outStreamInfo[0].outFmt.dataFormat
parameter of VIP capture driver Vps_CaptVipParams parameter passed to
IOCTL_VPS_CAPT_SET_VIP_PARAMS IOCTL. The various output data format supported for the
corresponding input format and the macro to be used are given below.

Supported Input Data

Output Data Format

Format

VIP Output Data Format Macro

YUV422 Interleaved - UYVY

FVID2_DF_YUV422P (8 or
16-bit interface)

FVID2_DF_YUV422|_UYVY

YUV422 Interleaved - YUYV

FVID2_.DF_YUV422P (8 or
16-bit interface)

FVID2_DF_YUV422]_YUYV

YUV422 SP

FVID2_DF_YUV422P (8 or
16-bit interface)

FVID2_DF_YUV422SP_UV

YUV420 SP

FVID2_DF_YUV422P (8 or
16-bit interface)

FVID2_DF_YUV420SP_UV

YUV444 Interleaved

FVID2_DF_YUV422P (8 or
16-bit interface)

FVID2_DF_YUV444P

FVID2_DF_YUV444P

FVID2_DF_YUV422P (8 or

RGB24 16-bit interface FVID2_DF_RGB24_888
FVID2 DF _RGB24 888

8-bit RAW FVID2_DF_RAWO8 FVID2_DF_RAWO8

16-bit RAW FVID2 DF_RAW16 FVID2 DF_RAW16

24-bit RAW FVID2_DF_RAW24 FVID2_ DF_RAW24

Table 4: VIP Video Output Data Format

Example Code Snippet:

Vps_CaptVipParams

vipPrms;

vipPrms.outStreamInfo[0] .outFmt.dataFormat = FVIDZ DF YUV422I YUYV;

Video Driver Porting Guide for TDA2xx, TDA2Ex and TDA3xx

I3 TEXAS
INSTRUMENTS Draft v0.1

3.6 Pixel Clock Polarity and SYNC Signal Polarity

The VIP pixel clock polarity can be changed by setting vipPortCfg.comCfg.pixClkEdgePol parameter
of VIP capture driver Vps_CaptVipParams parameter passed to
IOCTL_VPS_CAPT_SET_VIP_PARAMS IOCTL.

Along with setting the VIP parser clock polarity, it is important to set the clock inversion at the SOC
level using Bsp_platformSetVipClkinversion() function.

Note: In case of embedded SYNC capture failure or is seeing data artifacts around images edges,
then this is the most likely change needed as the pixel clock polarity decides the data sampling. If
data is not sampled at the right edge, it could lead to data corruption and hence the no data gets
detected for embedded sync inputs or results in artifacts.

The VIP HSYNC, VSYNC and AVID signal polarity can be changed by setting
vipPortCfg.disCfg.<hsync//vsync/actvid>Pol parameter of VIP capture driver Vps_CaptVipParams
parameter passed to IOCTL_VPS CAPT_SET_VIP_PARAMS IOCTL.

Example Code Snippet:

Vps CaptVipParams *vipPrms;

Vps VipPortConfig vipPortCfg;
VpsVipPortConfig init (&vipPortCfg)s

vipPrms->vipPortCfg = &vipPortCfg;

vipPrms->vipPortCfg->disCfg.actvidPol = FVID2 POL HIGH;
vipPrms->vipPortCfg->disCfg.vsyncPol = FVID2 POL LOW;
vipPrms->vipPortCfg->disCfg.hsyncPol = FVID2 POL LOW;

vipPrms->vipPortCfg->comCfg.pixClkEdgePol = FVID2 EDGE POL FALLING;
Bsp platformSetVipClkInversion (instId, TRUE) ;

/* Or */

vipPrms->vipPortCfg->comCfg.pixClkEdgePol = FVID2 EDGE POL RISING;

Bsp platformSetVipClkInversion (instId, FALSE);

3.7 Input Video Timing

VIP is agnostics to change in video timing. There are no parameters to set the input HSYNC and
VSYNC timing. As long as the pixel clock is within 165 MHz and VSYNC interval is within reasonable
FPS (say < 100), VIP is capable of capturing the data to memory.

3.8Cropping Video

In HSYNC/VSYNC discrete sync capture mode, the VIP captures the entire video frame including
horizontal and vertical blanking. The VIP parser crop parameters should be set to get only the active
video in memory.

Video Driver Porting Guide for TDA2xx, TDA2Ex and TDA3xx 9

I3 Texas
INSTRUMENTS Draft v0.1

The VIP parser crop feature can be changed by setting vipPortCfg.actCropEnable and
vipPortCfg.actCropCfg parameter of VIP capture driver Vps_CaptVipParams parameter passed to
IOCTL_VPS_CAPT_SET_VIP_PARAMS IOCTL.

Example Code Snippet:
Vps_ CaptVipParams vipPrms;
Vps VipPortConfig vipPortCfg;

VpsVipPortConfig init (&vipPortCfg);

vipPrms->vipPortCfg = &vipPortCfg;
vipPrms—->vipPortCfg->actCropEnable = TRUE;
vipPrms->vipPortCfg->actCropCfg.srcNum = 0U;/* Not used for single channel */
vipPrms->vipPortCfg->cropCfg.cropStartX = 0U;
vipPrms->vipPortCfg->cropCfg.cropStartY = 0U;
vipPrms->vipPortCfg->cropCfg.cropWidth =_12800U;

vipPrms->vipPortCfg->cropCfg.cropHeight = (7200;

3.9Interlaced/Progressive Input

VIP and VIP driver is agnostics to interlaced or progressive input. In case of interlaced input, the VIP
and the VIP driver always captures one field at a time similar to progressive frame. The driver returns
the captured field ID as part of Fvid2_ Frame.fid parameter when the frame is dequeued from the
driver.

If merging of field is required (so as to give to display driver which takes frame instead of fields), then
this should be done by the application by making use of buffer pitch (by setting pitch == line * 2) and
also by taking corrective action when fields are swapped. This is illustrated in video loopback
application in file < INSTALL_DIR>/examples/vps/loopback/src/Loopback_test.c TVP5158 loopback
option.

3.10 TDA2Ex Additional SOC Level Mux Setting

In case of TDAZ2EX, the VIP signals from the various pads going to the single VIP1 are multiplexed at
SOC level. These are controlled by CTRL_CORE_VIP_MUX_SELECT register at the control module
level. Refer “Pad Configuration” section of TDA2Ex TRM for more details.

Video Driver Porting Guide for TDA2xx, TDA2Ex and TDA3xx 10

I3 TEXAS
INSTRUMENTS Draft v0.1

4 DSS Configuration

This section describes the various DSS parameters that could possibly change when migrating to
new LCD or board.

Note: IOCTL_VPS_DCTRL_SET_CONFIG, IOCTL_VPS DCTRL_SET_VENC_OUTPUT and
IOCTL_VPS_DCTRL_SET_VENC_PCLK_DIVISORS IOCTLs discussed in below sections are used
for setting many parameters. Each of the sections discuss about a particular set of parameters with
respective to that section. The IOCTL should be called only after setting all the parameters. This is
not illustrated in the code snippet for simplicity.

4.1 LCD/DPI Instance

The DSS display controller (DCTRL) driver uses graph (nodes/edges) to represent the DSS
hardware. With this respect, how the video pipelines, the overlays and the DSS DPI output are
connected is set by using numEdges and edgelnfo[] parameters of Vps_DctrlConfig structure.

Each connection is represented by start node and end node which is defined by

VPS DCTRL_DSS * macros defined in

<STARTERWARE_INSTALL_DIR>/include/vps/vps_ displayCtriIDataTypes.h header file. In order to
change the LCD/DPI instance the end node should be set to VPS DCTRL_DSS DPI1_OUTPUT,
VPS_DCTRL_DSS_DPI2_OUTPUT or VPS_DCTRL_DSS DPI3_OUTPUT. This is illustrated in
below code snippet.

Example Code Snippet:
Vps DctrlConfig dctrlCfg;
dctrlCfg.useCase = VPS DCTRL_ USERSETTINGS;
dctrlCfg.edgeInfo[0].startNode = VPS DCTRL DSS VIDl INPUT PATH;

dctrlCfg.edgeInfo[0].endNode = VPS DCTRL DSS LCD1 BLENDER;

dctrlCfg.edgeInfo[l].startNode VPS DCTRL DSS GFX1 INPUT PATH;

dctrlCfg.edgeInfo[l].endNode VPS DCTRL DSS LCD1 BLENDER;

dctrlCfg.edgelInfo[2].startNode = VPS DCTRL DSS LCDl1 BLENDER;

dctrlCfg.edgeInfo[2] .endNode = VPS_DCTRL _DSS_DPI1 OUTPUT;

dctrlCfg->numkdges = 3;

retVal = Fvid2 control (dctrlHandle, IOCTL VPS DCTRL SET CONFIG,
&dctrlCfg, NULL);

Below table shows the DSS port mapping to the driver instance ID.

DSS Port Driver Node ID

VOUT1 VPS DCTRL DSS DPI1 OUTPUT

Video Driver Porting Guide for TDA2xx, TDA2Ex and TDA3xx 11

I3 TEXAS

INSTRUMENTS Draft v0.1
VOUT2 VPS DCTRL DSS DPI2 OUTPUT
VOUT2 VPS DCTRL DSS DPI3 OUTPUT
HDMI VPS DCTRL DSS HDMI OUTPUT

4.2 Interface Format

Table 5: DSS DPI Port Mapping to Driver 1D

The DSS interface type can be changed by setting dvoFormat, dataFormat and videolfWidth
parameter of Vps_DctrlOutputinfo passed to IOCTL_VPS DCTRL_SET VENC_OUTPUT IOCTL.
The various output configuration possible and the corresponding settings is provided in below table.

Interface Format

DVO Format

Data Format

Interface Width

8-bit BT.656 (YUV422)'

VPS_DCTRL_DVOFMT_BT
656_EMBSYNC

FVID2_DF_YUV422]_Y
N

FVID2_VIFW_08BIT

16-bit BT.1120 (YUV422)'

VPS_DCTRL_DVOFMT BT
1120 EMBSYNC

FVID2_DF_YUV422| Y
uYVv

FVID2_VIFW_16BIT

RGB888 24-bit Discrete Sync

VPS_DCTRL ‘DVOFMT G
ENERIC_DISCSYNC

FVID2_DF_RGB24 888

FVID2_VIFW_24BIT

RGB565 16-bit Discrete Sync

VPS. DCTRL_DVOFMT_G
ENERIC_DISCSYNC

FVID2_DF_RGB16_565

FVID2_VIFW_16BIT

Table 6: DSS LCD Interface Format

" Standard BT.656 and BT:1120 modes are not supported in TDA2xx and TDA2EXx platforms.

Example Code Snippet:

Vps DctrlOutputInfo vencOutput;

vencOutput.vencId

vencOutput.dvoFormat =
vencOutput.dataFormat =

vencOutput.videoIfWidth

retvVal =

Fvid2 control (dctrlHandle,

&vencOutput,

4.3 Pixel Clock Polarity and SYNC Signal Polarity

FVID2 VIFW 24BIT;

NULL) ;

VPS_DCTRL_DSS_VENC_LCD1;
VPS_DCTRL_DVOFMT GENERIC DISCSYNC;

FVID2 DF RGB24 888;

IOCTL_VPS DCTRL_SET VENC OUTPUT,

The DSS LCD pixel clock and SYNC signal polarity can be changed by setting pixelCIlkPolarity,
actVidPolarity, hsPolarity and vsPolarity parameters of Vps_DctrlOutputinfo passed to
IOCTL_VPS_DCTRL_SET_VENC_OUTPUT IOCTL.

Video Driver Porting Guide for TDA2xx, TDA2Ex and TDA3xx

12

I3 TEXAS
INSTRUMENTS

Draft v0.1

Along with setting this DSS parameters, it is important to set the clock inversion at the SOC level
using Bsp_platformSetLcdClkPolarity() function.

Example Code Snippet:

Vps DctrlOutputInfo vencOutput;

vencOutput.vencId

vencOutput.pixelClkPolarity

vencOutput.actVidPolarity

vencOutput.hsPolarity

vencOutput.vsPolarity

VPS_DCTRL_DSS_VENC_LCD1;
VPS_DCTRL_POLARITY ACT LOW;
VPS_DCTRL_POLARITY ACT HIGH;
VPS_DCTRL_POLARITY ACT LOW;

VPS_DCTRL POLARITY ACT LOW;

retVal = Fvid2 control(dctrlHandle, IOCTL VPS DCTRL SET VENC OUTPUT,

&vencOutput, NULL);

Bsp platformSetLcdClkPolarity (BSP_PLATFORM VENC LCD1, FVID2 POL LOW) ;

4.4LCD Timing

The DSS LCD timing can be changed by setting vencinfo.modelnfo[0].mInfo parameters of DSS

DCTRL driver Vps_DctrIConfig parameter passed to IOCTL_VPS_DCTRL_SET_CONFIG IOCTL.

The DSS DCTRL driver supports standard video timings. This can be selected by setting
venclinfo.modelnfo[0].miInfo.standard to any supported video standards like 1080p60
(FVID2_STD_1080P_60),-720p60 (FVID2_STD_720P_60) etc. If the timing required by the LCD

panel is different from the supported standard timings, then vencinfo.modelnfo[0].mInfo.standard

should be set to FVID2_STD_CUSTOM and all other timing parameters of
venclnfo.modelnfo[0].mInfo should be set by the application.

Note: The pixel clock information (pixelClock) in the minfo structure is not used by the DSS DCTRL

driver. The application has to configure the Video PLL separately which is discussed in next section.

Example Code Snippet:

Vps_DctrlConfig dctrlCfg;

Fvid2 ModeInfo *mInfo;

dctrlCfg.vencInfo.numVencs

dctrlCfg.vencInfo.tiedVencs

1U0;

0U;

mInfo = &dctrlCfg.vencInfo.modeInfo[0U].mInfo;

Fvid2ModeInfo init (mInfo);

mInfo->standard
mInfo->width

mInfo->height

FVID2 STD CUSTOM;

800U;

4800;

Video Driver Porting Guide for TDA2xx, TDA2Ex and TDA3xx

13

I3 TEXAS

INSTRUMENTS Draft v0.1
mInfo->scanFormat = FVID2 SF PROGRESSIVE;
mInfo->pixelClock = 29232U; /* Not used by driver */
mInfo->fps = 60U; /* Not used by driver */
mInfo->hBackPorch = 40U;
mInfo->hSyncLen = 48U;

mInfo->hFrontPorch = 40U;

mInfo->vBackPorch = 29U;
mInfo->vSyncLen = 3U;
mInfo->vFrontPorch = 13U;

retvVal = Fvid2 control (dctrlHandle, IOCTL VPS DCTRL SET CONFIG,

&dctrlCfg, NULL);

4 5LCD Pixel Clock - Video PLL

The DSS LCD pixel clock could be derived from different clock source like Video PLL or DISPC
functional clock depending on the SOC clock architecture. This is described in “Display Subsystem
Clock Tree” under DSS chapter of TRM.

The different clock source of the LCD pixel clock can be selected by Bsp_PlatformCIkSrc vencCIkSrc
of Bsp_PlatformVencSrc structure which is passed to Bsp_platformSetVencCIkSrc() platform API.

The Bsp_platformSetPIlIFreq() platform API can be used to change the Video PLL frequency as per
the LCD timing. Note the pixelClk parameter is in KHz.

Note: The Video PLL may not be able to lock to all possible pixel clock frequency. In such cases, the
DISPC internal dividers LCD and PCD can be used in conjunction with the Video PLL dividers to
achieve the required pixel clock at the SOC pad level. For example, is the required pixel clock is
29.232 MHz, which can’t be locked by PLL, then the video PLL can be programmed to generate
29.232*4 MHz and then use the PCD divisor as 4 to get the required pixel clock for the LCD. This
can be set by setting divisorLCD and divisorPCD parameters of Vps_DctrlVencDivisorInfo structure
passed to IOCTL_VPS_DCTRL_SET_VENC_PCLK_DIVISORS IOCTL.

Example Code Snippet:
Bsp PlatformSetPllFreq vP11Cfg;
Bsp PlatformVencSrc vencClkCfg;
vP11Cfg.videoPll = BSP PLATFORM PLL VIDEOI;
vP11Cfg.pixelClk = 29232 * 4; /* In KHz */
if (TRUE == Bsp platformIsTda3xxFamilyBuild())
{

vP11Cfg.videoPll = BSP PLATFORM PLL EVE VID DSP;

Video Driver Porting Guide for TDA2xx, TDA2Ex and TDA3xx 14

I3 TEXAS

INSTRUMENTS

Draft v0.1

}

retVal =

Bsp platformSetPllFreq(&vP1l1Cfqg);

vencClkCfg.outputVenc = BSP PLATFORM VENC LCD1;

vencClkCfg.vencClkSrc

BSP_PLATFORM CLKSRC_DPLL VIDEOl CLKOUTI;

if (TRUE == Bsp platformIsTda3xxFamilyBuild())

{

vencClkCfg.vencClkSrc = BSP_PLATFORM CLKSRC_DPLL EVE VID DSP;

}

retVal =

Bsp platformSetVencClkSrc (&vencClkCfqg) ;

/* Set the LCD PCD divisors */

Vps_DctrlVencDivisorInfo vencDivisors;

vencDivisors.vencId

vencDivisors.divisorLCD

VPS_DCTRL_DSS VENC LCD1;

1;

vencDivisors.divisorPCD =-4;

retVal =

Fvid2 control (detrlHandle, IOCTL VPS DCTRL SET VENC PCLK DIVISORS,

&vencDivisors, NULL);

5 CAL Configuration

This section describes the various CAL parameters that could possibly change while porting the
driver to new board. The assumption is that CAL was able to receive from a sensor on one board (it
could be TI EVM or custom board

5.1 Lane position

The position of each lane could be changed using the create time parameter, with following SoC
specific restriction. Please review the schematic to determine on which lanes data and clock is

connected.

Vision
Interface

SDK

IssCapturelLink CsiZParams.cmplxIoCfg[x].clockLane.position

IssCapturelink Csi2Params.cmplxIoCfg[x].datallane.position

X indicate instance of PHY, which is O in case of TDA3x and 0 or 1 in case of TDA2EX

BSP Interface

Vps CaptIssOpenParams t.cmplxIoCfg[x].clockLane.position

Video Driver Porting Guide for TDA2xx, TDA2Ex and TDA3xx 15

I3 Texas
INSTRUMENTS Draft v0.1

IssCapturelink CsiZ2Params.cmplxIoCfg[x].datallane.position

Additional Care about TDAZ2EXx TDA3Xx

Clock Lane Position Fixed at position 1 always Cannot be the 5" lane

5.2 Lane polarity

The data on CSI2 is transported on differential lines i.e. each lane will have positive and a negative
line. The positive line of lane is marked as csi2_0_dx0 (csi2_M_dx0) and negative line is marked as
csi2_0_dyO0 (csi2_M_dy0). The line could be configured as either positive / negative pair
(csi2_M_dx0/ csi2_M_dy0) or as negative / positive pair ((csi2_M_dy0/ csi2_M_dx0))

When configured as positive / negative pair csi2_M_dx0 is the positive line and csi2_M_dy0 is the
negative line and inverted if marked as negative / positive pair.

Vision SDK | IssCapturelLink Csi2Params.cmplxIoCfg[x].clockLane.pol
Interface

IssCapturelink Csi2Params.cmplxIoCfg[x].datallane.pol

FALSE indicated negative / positive pair and TRUE indicates positive / negative pair

5.3 Frames not received / No video captured

After moving to “new board” if CAL is not able to capture any video stream and above parameters
have been checked and verified / configured correctly, please check on below points

5.3.1 Sensor Slave Address

Ensure the sensor or CSI2 stream source address is not changed. Recommend to use 12C utility
provided in BSP package to probe and check accessibility. Please refer section 2 for details.

5.3.2 CSI2 Clock recoganized by CAL

Once the sensor & CAL has synchronized (LP state transitions have been completed) the PHY
provides the byte clock to CAL PPI which in turn used to reset the PPI. Until PPI is out of reset CAL
cannot receive the data, this status can be monitored by reading CAL_CSI2_COMPLEXIO_CFG bit
29 (RESET_DONE). This Bit should be SET

This register could be accessed at <CAL Base Address> + 0x304

If CSI2 clock is not being recognized by CAL and sensor is confirmed to be working, please check
the electrical characteristics of the CSI2 lines. Please check for common-mode differential voltage,
peaks etc...

Video Driver Porting Guide for TDA2xx, TDA2Ex and TDA3xx 16

I3 TEXAS
INSTRUMENTS Draft v0.1

6 12C and UART Configuration

This section describes the various steps to setup 12C and UART configuration that could possibly
change when migrating to new LCD or board.

6.112C Changes

The 12C read/write functions to communicate to the sensors/LCD is part of the “devices” module. The
information of the various 12C instances used in the board is part of the “board” module. Depending
on the 12C instance used in the board, use can change this information in Bsp_Boardl2cIinstData
structure present in src/boards/src/bsp_board<SOC>.c file. This structure has the 12C instance 1D
used by Sensor/LCD driver, instance base address, bus frequency and CPU interrupt to be used.

Note/Caution: The driver instance ID starts from O where as the 12C instance starts from 1 because
of legacy software compatibility.

6.2UART Changes

The UART instance for console prints can be changed in file
<INSTALL_DIR/examples/utility/src/bsputils_uart.c file.

Note/Caution: The driver instance ID starts from 0 where as the 12C instance starts from 1 because
of legacy software compatibility.

7 Chip and CPU Level Configuration
7.1PRCM Module Enable
7.2 Interrupt Crossbar
7.3Non-Cached Section

8 Porting Board Module

8.1 Changing Pin Mux

Depending on the board level connection, the VIP and DSS pin mux needs to be changed. This can
be done in the customer boot loader/application. But if the application is using the “Board” module,
then the change should be done in Bsp_boardSetPinMux<Tda2xx/Tda2ex/Tda3xx>() APl present in
<INSTALL_DIR>/src/boards/src/bsp_board<Tda2xx/Tda2ex/Tda3xx>.c file.

In case of TDA2xx and TDAZ2EXx platforms, the default pin mux settings is also done in
Bsp_platformTda2xxSetPinMux() API present in
<INSTALL_DIR>/src/platforms/src/bsp_platformTda2xx.c file and hence should be changed.
Alternatively the application can bypass the pin mux settings of this function by setting
Bsp_PlatformInitParams.isPinMuxSettingReq to FALSE while calling Bsp_platforminit() API.

Video Driver Porting Guide for TDA2xx, TDA2Ex and TDA3xx 17

I3 Texas
INSTRUMENTS Draft v0.1

9 Supporting new Sensor/Camera

On TDAXxx platform sensors (camera modules) could be interfaced in one following methods (but not
limited to). In the following sections, we will highlight the changes required to support new sensor.

e Smart Sensor (YUV/RGB), Interface : Parallel or CSI2

¢ RAW Sensor (Bayer), Interface : Parallel or CSI2

e FPD Link 11l
o Parallel (Sensor + UB913 -> FPD Link Ill + UB914 -> Parallel)
o CSI2 (Sensor + UB913 -> FPD Link 11l + UB964 -> CSI2)

9.1 Smart Sensor
9.1.1 BSP Driver Updates
9.1.2 VisionSDK Updates
9.2RAW Sensor
9.2.1 BSP Driver Updates

9.2.2 VisionSDK Updates

All ISS sensors are based on the ISS sensor framework. This framework supports easy way to
control and configure the external sensor and also easy way to add a new sensor or to remove
existing sensor.

Below is list of main steps required to add new sensor in the Vision SDK for the ISS usecase.

1.Each sensor is implemented in a unique file under
vision_sdk\examples\tda2xx\src\modules\iss\iss_sensors folder. For the given new sensor, add a
new C file.

2.Create a global instance of the structure ChainslssSensor_Params in this file.

3.Implement the init function in this file. This init function should initialize instances of
ChainslssSensor_Params and registers the new sensor to the sensor frame work using
ChainslssSensor_RegisterSensor API.

4.Implement IssGetDefaultiISPConfig API. This api is used to get the default ISP configuration for this
sensor. If the sensor does not support DCC, this default configuration will be used for configuring
ISP. Also for H3A and GLBCE modules, the configuration comes from this file. DCC profile does not
have configuration for H3A and GLBCE modules

Video Driver Porting Guide for TDA2xx, TDA2Ex and TDA3xx 18

I3 TEXAS
INSTRUMENTS

Draft v0.1

5.Implement IssGetAewbConfig API. If the usecase uses AEWB algorithm, this APl is used for
initializing AEWB create parameters. Based on the H3A configuration, it initializes AEWB create
parameters, AE dynamic params and AWB calibration data. It also initializes the DCC information in

AEWB create parameters.

6.Implement IssGetSensorDefaultConfig API. This API initializes sensor configuration with the
default resolution of the sensor. This resolution is used in configuring other ISP modules.

7.Call the implemented init function from ChainslssSensor_Init, available in the file
vision_sdk/examples/tda2xx/src/modules/iss/iss_sensors/chains_iss_sensors.c

8.Add this new sensor file in vision_sdk/examples/tda2xx/src/modules/iss/SRC_FILES.MK make file
so that it gets build along with the other files.

9.3FPD Link I

There 2 types of FPD Link Il receiver supported, the received video frame are transmitted to TDAxx
via a parallel interface or on CSI2 interface. A typical chain‘could be as show below

FPD
Link 111
UB913

Sensor
\ 4

Serialize
r
UB913

Sensor
v

FPD
Link 111
UB913

Sensor
4

Serialize
.
UB913

Sensor
4

A

FPD TDAXxx SoC

\ 4

Link 111 —
UB914

De

Serialize —=——b
r :UB914

v

Figure 1 FPD Link IlI: Parallel Output

A

TDAxx SoC
v

FPD Link

1]

UB964 —
De

Serializer

4

Figure 2 FPD Link Ill: CSI2 Output

Above section highlighted in Yellow represents a camera module, that encapsulates a video sensor
& FPD Link Il serializer. (e.g. http://www.ti.com/tool/TIDA-00262
http://www.spectrumdigital.com/multides-surround-view-kit/). Please refer the BSP/Vision SDK user

guide for supported sensor/serializer/de-serializer combinations.

Video Driver Porting Guide for TDA2xx, TDA2Ex and TDA3xx 19

http://www.ti.com/tool/TIDA-00262
http://www.spectrumdigital.com/multides-surround-view-kit/

i3 TEXAS
INSTRUMENTS Draft v0.1

Assumption: The reminder of this section assumes that a sensor driver for “Camera Module” is
available and support for configuring/control of UB913/UB964 requires to be added in VisionSDK.

The UB960 & UB914 drivers are provided as an utility as part of BSP package, please refer
<VisionSDK Install Directory>

\ti components\drivers\vayu drivers\bspdrivers \examples\utility\src in
files bsputils ub960.c & bsputils lvds.c

9.3.1 De Serializer / Aggregator 12C Address
If the Deserializer address requires to be changed, please update macros below

e UB960 I12C address is specified by UB960_SLAVE ADDR in file <visionSDK Install

Directory>\ti components\drlvers\vayu drlvers\bspdrlvers \examples\u
tility\bsputils ub960.h

e UB914 12C address is specified by BSPUTILS DESX ADDR in file <visionSDK Install

Directory>\ti components\drlvers\vayu drlvers\bspdrlvers \examples\u
tility\bsputils lvds.c

o Where X ranges from 1 to 6

9.3.2 Serializer 12C Address

If adding support for a new sensor-+ Serializer & De Serializer, please refer section 1 and skip this
step. If the Serializer address requires to be changed, please update macros below

For a supported sensor + Serializer & de Serializer combination, the actual Serializer 12C address
and associated ALIAS 12C (refer section 9.3.3) address would be defined. It's recommended to
retain the alias address and update the actual serailizer address. These addresses would be defined

as below
e UB960
o For SAT0088/0V10635 I12C address is specified by SAT0088_0V10635_SER_ADDR
in file <VisionSDK Install
Directory>\ti components\drivers\vayu drivers\bspdrivers \examp
les\utility\bsputils ub960.h
e UB914

o For SAT0088/0V10635 I2C address is specified by BSPUTILS_SER_ID ADDR in
file <visionSDK Install

Directory>\ti components\drivers\vayu drivers\bspdrivers \examp
les\utility\bsputils lvds.c

9.3.3 Sensor I12C Address

If adding support for a new sensor + Serializer & De Serializer, please refer section [and skip this
step. If the sensor address requires to be changed, please update macros below

Video Driver Porting Guide for TDA2xx, TDA2Ex and TDA3xx 20

I3 TEXAS
INSTRUMENTS Draft v0.1

For a supported sensor + Serializer & de Serializer combination, the actual sensor 12C address and
associated ALIAS 12C address would be defined. It's recommended to retain the alias address and
update the actual serailizer address. These addresses would be defined as below

e UB960

o For SAT0088/0V10635 12C address is specified by
SAT0088 _OV10635_ SENSOR _ADDR infile <visionSDK Install
Directory>\ti components\drivers\vayu drivers\bspdrivers \examp
les\utility\bsputils ub960.h

e UB914

o For SAT0088/0V10635 12C address is specified by
BSPUTILS OV1063x_I2C ADDR infile <visionSDK Install
Directory>\ti components\drivers\vayu drivers\bspdrivers \examp
les\utility\bsputils lvds.c

e If ALIAS I12C address requires an update, ensure to update sensor alias address in Board
Module of BSP

o The sensor address is also stored.in‘the Board Module of BSP
o The device data is represented by structure Bsp BoardDeviceData

o Search for the device driver id in
\ti_components\drivers\vayu. drivers\bspdrivers_\src\boards\src* e.g.
FVID2 VID SENSOR TIDA00262 APT AR0140 DRV,

FVID2_ VID. SENSOR MULDES_OV1063X_ DRV, efc...

o Depending on the number of sensor’s supported, there would multiple entries for a
given sensor.

o As part of Device Data, the sensor 12C address is also specified, please update the
address to reflect the new 12C address e.g.

* ForFVID2 VID SENSOR TIDA00262 APT AR0140 DRV slave address is
defined by BOARD APT TIDA00262 AR0140 I2C ADDR 0

*» For FVID2 VID SENSOR MULDES OV1063X DRV slave address is defined
by BOARD UB960 OV1063X 1 ALIAS I2C ADDR
9.3.4 Adding support for sensor + serializer & de serializer combination

The sections below presume that the sensor driver has been added (and recommended to be tested
without serializer / de serializer). Please refer section 9.1& 9.2 steps to add the sensor.

Below listed steps are to be followed to add support the required sensor with serializer & de
serailizer. Sensor with serializer & de serializer will be referred as camera module, in the reminder of
this section.

Video Driver Porting Guide for TDA2xx, TDA2Ex and TDA3xx 21

I3 Texas
INSTRUMENTS Draft v0.1

9.3.4.1 Sensor Related changes

1. Add a“new” sensor driver ID, to uniquely identify the sensor + serializer & de serailizer
combination.

a. Infile
\ti components\drivers\vayu drivers\bspdrivers \include\devices
\bsp device.h

b. IMPORTANT : If this sensor cannot be connected to TDAxx devices without
serializer & de serializer, its recommended to skip this step. Instead use the sensor
identifier itself.

2. Supporting the camera module in platform / SoC

a. Devices can be selectively supported on the SoC, i.e. a given device can work only
with one SoC or multiple SoC. E.g. IMX 224 is supported only on TDA3x SoC
FVID2 VID SENSOR SONY IMX224 CSI2 DRV

b. Determine on which SoC that this camera module requires to be supported
c. Add your device as a supported device

i. For each SoC, the supported list of devices is listed by SoC Specific board
data

TDA3X :

ti components\drivers\vayu drivers\bspdrivers \src\boards\src\bsp boar
dTda3xx.c, gBoardTda3xxDefaultDevData, gBoardTda3xxMultiDesDevData
etc..

TDA2x:

\ti components\drivers\vayu drivers\bspdrivers \src\boards\src\bsp boa
rdTda2xx.c, gBoardTda2xxDefaultDevData, gBoardTdaZxxMultiDesDevData,
etc..

ii. Add your own <your own device data>.h file

ii. Add a MCARO to define/provide all the required member of
Bsp BoardDeviceData

iv. Include this macro to initialize board data as required. Please refer

1. TDA3x:
\ti components\drivers\vayu drivers\bspdrivers \src\
boards\src\bsp boardTda3xx.c & see what is being done for
BSP BOARD TDA3XX DEFAULT DEVDATA,
gBoardTda3xxDefaultDevData & gBoardTda3xxDefaultData

2. TDA2x:
\ti components\drivers\vayu drivers\bspdrivers \src\
boards\src\bsp boardTda2xx.c & see what is being done for
BSP BOARD TDA2XX MULTIDES DEVDATA,
gBoardTda2xxMultiDesDevData &
gBoardTdaZxxMultiDesData

Video Driver Porting Guide for TDA2xx, TDA2Ex and TDA3xx 22

I3 TEXAS
INSTRUMENTS Draft v0.1

3. PINMUX

If any pinmux is required, to bring in the data to TDAXxx devices, please update function
Bsp boardSetPinMux () in file

ti components\drivers\vayu drivers\bspdrivers \src\boards\src\bsp board
.C

9.3.4.2 UB913 & UB914 / serializer & de serializer

UB913 & UB914 configuration / control are provided as utility in BSP package. File
\ti components\drivers\vayu drivers\bspdrivers \examples\utility\src\bsput
ils 1lvds.c Implements UB913/UB914 configurations/control.

e UB914 Configurations

o The structure gMulDesParams stores the register address & value pair, which would
be used to configure UB914

o Recommended

= Define your own structure, copy the contents of gMulDesParams, update for
serializer, sensor & their aliases

= Ensure that your configuration is compiled and included

e UB913 Configurations

o The structure gSerParamsstores the register address & value pair, which would be
used to configure UB913

o Recommended

= Define your own structure, copy the contents of gSerParams, update for
serializer, sensor & their aliases

= Ensure that your configuration is compiled and included
e Follow above procedures for serializer & de serializer, de-initialization
e |2C Expanders

o On TDAxx EVM's 12C 10 expanders are used to configure the modes of 913, 914
and power up the sensor. Please update if required

9.3.4.3 UB913 & UB964 / serializer & de serializer
UB913 & UB964 configuration / control are provided as utility in BSP package. File
\ti components\drivers\vayu drivers\bspdrivers \examples\utility\src\
bsputils ub%60.c
e UB964 Configurations (UB960 Configurations)

o gUb960Cfg TIDA, gUb960Cfg IMI, gUb960Cfg SAT0088 OV10635, etc...
defines the UB964 configurations. It's a register address, value & delay pairs

Video Driver Porting Guide for TDA2xx, TDA2Ex and TDA3xx 23

I3 Texas
INSTRUMENTS Draft v0.1

o The configuration to use is determined by the driver instance ID
(FVID2 VID SENSOR TIDA00262 APT AR0140 DRV,
FVID2 VID SENSOR IMI OV10640 DRV,
FVID2 VID SENSOR MULDES OV1063X DRV, etc...)

o Recommended

= Copy the UB964 configuration from one of the above, to specific
sensor+serializer+deserializer combination.

= Make necessary changes, for
e |2C Address, Alias Addresses, operating modes, speed, etc...

= Update the function BspUtils appInitUb960 () to provide newly added
configuration for you sensor/serializer/de serializer combination

e UB913 Configurations

o gUB913SerCfg, gub913SerCfg_SAT0088_0OV10635, etc... defines the UB913
configurations. It's a register address; value & delay pairs

o The configuration to use is determined by the driver instance ID
(FVID2 VID SENSOR TIDA00262 APT AR0140 DRV,
FVID2 VID SENSOR IMI OV10640 DRV,
FVID2 VID SENSOR -MULDES OV1063X DRV, etc...)

o Recommended

= Copy the UB913 configuration from one of the above, to specific
sensor+serializer+deserializer combination.

= Make necessary changes, for

= Update the function BspUtils appInitUB913Ser () to provide newly
added configuration for you sensor/serializer/de serializer combination

o Follow above procedures for serializer & de serializer, de-initialization

9.3.4.4 Vision SDK Changes

Please follow steps specified in section to initialize the sensor’s. Before the sensor could be
initialized, please follow below steps initialize serializer & de deserializer’s

e Common

o Please follow steps listed in section 9.1.2 & 9.2.2 to add a valid capture source in
VisionSDK

° Smart Sensor

o A common utility is provided to initialize the sensor in file
vision sdk\examples\tda2xx\src\devices\video sensor.c and function
VidSensor create ()

Video Driver Porting Guide for TDA2xx, TDA2Ex and TDA3xx 24

I3 TEXAS
INSTRUMENTS Draft v0.1

o UB960 is initialized with a call to function BspUtils_applnitUb960 ()

o Ensuretocall vidSensor create () in setAppPrameter function of your usecase
and ensure the newly added capture source is specified

¢ RAW Sensor

10 References
1. TDA2xx, TDA2Ex, TDA3xx Technical Reference Manual
2. BSP User Guide

Video Driver Porting Guide for TDA2xx, TDA2Ex and TDA3xx 25

	Table of Contents
	List of Figures
	List of Tables
	1 Overview
	2 BSP I2C Utility
	3 VIP Configuration
	4 DSS Configuration
	5 CAL Configuration
	6 I2C and UART Configuration
	7 Chip and CPU Level Configuration
	8 Porting Board Module
	9 Supporting new Sensor/Camera
	10 References

