[bookmark: _Toc371079160]Lab – Keystone I Boot Lab 
Applications team – Ran Katzur

[bookmark: _Toc371079162]Purpose
The purpose of this lab is to demonstrate all the steps that are needed to boot an allocation from SPI flash memory.
The source code for this Lab, a source code and a linker command file will be given by the instructor.  Appendix A has a copy of source code and linker command files. 



[bookmark: _Toc371079163]Task 1: Observe the source file and build the application. Verify that it works correctly

1. Open CCS Editor and import the led_play project. The location will be provided by the instructor
2. Right click on the project and Open Project properties. Under Build or C/C++ Build (may vary based on version of CCS), set the PDK_INSTALL_DIR variable in the Environment.



[image: ]


3. Right click on the project in the Editor view and Rebuild the project in your CCS environment.
4. Load and run the led_play.out file on core 0 of the EVMC6678 to ensure that the rebuilt example runs on your EVM.   Observe the LED blinks.



Task 2: Building the btbl file – boot table format
The RBL expects the image flashed on the SPI flash to be in Boot Table Format. The led_play example application Code has to be first converted into a Boot Table Format, using the hex6x utility present in CCS installation folder. (…\ccsv5\tools\compiler\c6000_7.4.2\bin) (Or a different version of the compiler). The hex6x utility expects an rmd file in which you provide path to the application binary and a format in which the boot table is expected. The documentation for hex6x utility is provided in the TMS320C6000 Assembly Language Tools documentation that is part of the compiler documentation. The hex6x utility reads the sections in the application binary and creates a flat binary in boot Table format that allows the ROM to interpret and load the sections of the application binary. The RMD file contains, few of the following information:- 
a. The Application.out file that has to be flashed. 
b. –a for the output hex format in ASCII 
c. –e the entry point for the address, i.e. _c_init00 
d. Output file that contains the application.out in boottable format.
e. Memory sections with the MEM and ROW WIDTH
1. Create a new directory c:\temp
2. Copy the out file from the project to the temp directory that you just created. Note, you can copy the out file from the debug directory of the project
3. Copy hex6x from the bin directory (…\ccsv5\tools\compiler\c6000_7.4.2\bin) to the temp directory
4. Open a cmd window and cd it to the temp directory
5. Create the rmd file led_play.rmd using notepad or any other editor as follows:
led_play.out
-a
-boot
-e _c_int00

ROMS
{
	ROM1:  org = 0x0C000000, length = 0x100000, memwidth = 32, romwidth = 32
	files = {led_play.btbl}
}

6. Run hex6x with led_play.rmd  “hex6x  led_play.rmd”
7. The following is a screen shot of the hex6x run:

[image: ]


8. Do dir and notice that the file led_play.btbl was generated
9. Note that if you look at the led_play.map map file, and find the text section, you can see the definition of the section and the length in the btbl file. From the map file:
[image: ]

And from the file led_play.btbl:

[image: ]


Task 3: Convert to i2c/SPI format
From the generated output in previous step which is in the boot table format convert it into the i2c/spi format by passing through the b2i2c. 
The byte-aligned boot table is then divided into 0x80 byte blocks and appended with length and checksum to adhere to the format required by the RBL, this is generated by passing through the b2i2c utility. 
The b2i2c utility is part of the MCSDK installation and present in the following folder. mcsdk_2_01_XX_YY\tools\boot_loader\ibl\src\util\btoccs

1. Copy the b2i2c.exe utility from the release (directory …\MCSDK_2_01_XX\mcsdk_2_01_XX_YY\tools\boot_loader\ibl\src\util\btoccs  into the temp directory 
2. Run b2i2c, specify the input and output file name “b2i2c led_play.btbl led_play.btbl.i2c”
3. The screen shot of the run is given below
4. Do dir and see that the i2c format file led_play.btbl.i2c was generated

[image: ]

Task 4: Convert to CCS downloaded format
Next the i2c formatted file need to be converted into CCS acceptable .dat format using b2ccs utility present in the mscdk\tools\boot_loader\ibl\src\util\btoccs. 


1. Copy the b2ccs.exe utility from the release (directory …\MCSDK_2_01_XX\mcsdk_2_01_XX_YY\tools\boot_loader\ibl\src\util\btoccs  into the temp directory 
2. Run b2ccs, specify the input and output file name “b2ccs  led_play.btbl.i2c led_play.i2c.ccs”
3. The screen shot of the run is given below
4. Do dir and see that the i2c format file led_play.i2c.ccs  was generated
[image: ]


Task 5: Adding Boot parameter Table
An updated boot parameter table is read from the SPI before the actual boot starts.  To combine together the boot parameter table and the boot table in the ccs format romparse.exe is used.  A *.map file contains the name of the boot table and the values for the boot parameter table.  The following shows a standard boot parameter map file:
section {
 boot_mode = 50
 param_index = 0
 options = 1
 core_freq_mhz = 1000
 exe_file = "led_play.i2c.ccs"
 next_dev_addr_ext = 0x0
 sw_pll_prediv = 5
 sw_pll_mult = 32
 sw_pll_postdiv = 2
 sw_pll_flags = 1
 addr_width = 24
 n_pins = 4
 csel = 0
 mode = 0
 c2t_delay = 0
 bus_freq_mhz = 0
 bus_freq_khz = 500
}

1. Copy romparse.exe utility from \MCSDK_2_XX_YY\mcsdk_2_01_XX_YY\tools\boot_loader\ibl\src\util\romparse to the temp directory
2. Create a map file. You can copy and paste the above file into nysh.spi.map (nysh stands for Keystone I first two families, Nyquist and Shannon). A screen shot is given below[image: ]
3. Run romparse with the map file as a parameter  “romparse nysh.spi.map”
4. Note that the program romparse hardcoded the name of the output file (i2crom.ccs) and the i2c address into the parameter table that is appended to the boot table. 
5. The screen shot of the run is given below
6. Do dir and see that the i2c format file i2crom.ccs  was generated
[image: ]



7. The program romparse was developed to work with EEPROM connected via i2c. SPI boot protocol is the same as i2c, except that EEPROM is connected to page 0x51 of the i2c while SPI boot starts from 0. The 0x51 is hard-written into the output file i2crom.ccs.  The user must change this value into 00.  This is done by the following:
a. Open the file i2crom.ccs with an editor (I use notepad in the screen shots below)
[image: ]
b. Change the 51 to 0. The same file will be looked like the following:
[image: ]



c. Save the modified file

Task 5: Big Endian format
The program led_play was built as little endian. The EVM is running as little endian as well, but the RBL always works as big endian. The program byteswapccs  swaps the bytes for big endian RBL. The source for byteswapccs.c is given in the Appendix. An executable was built and will be given to the students.
1. Create an EXE from byteswapccs.c  (This is already done)
2. Run byteswapccs.exe  with the input file as the i2crom.ccs generated at previous step and output as the app.dat that will be flashed to the NOR
3. The screen shot of the run is given below
4. Do dir and see that the big endian file app.dat  was generated

[image: ]


Task 5: Flash the EVM SPI flash
1. Configuring the EVM for CCS NOR flashing
Flashing the EVM SPI flash is done using CCS connected to the EVM. The EVM is in no-boot (or sleep) mode.  The EVM mode is determined by the setting of four switches on the board, Sw3, SW4, SW5 and SW6. The switches control the following:
· SW3 DSP Boot mode, DSP Configuration 
· SW4 DSP boot Configuration 
· SW5 DSP boot Configuration 
· SW6  DSP boot Configuration, PLL setting, PCIe mode Selection 

The following table is taken from http://processors.wiki.ti.com/index.php/TMDXEVM6678L_EVM_Hardware_Setup  describes the various mode setting of the EVM:


[image: ]

The location of the switched on the EVM  for the non-boot case is given by the following pictures. 



[image: ]



And a close-up of the switches





[image: ]




2. The CCS NOR writer is part of the release at location MCSDK_2_XX_YY\mcsdk_2_01_XX_YY\tools\writer\nor\evmc6678l .  The README.txt file (in the \nor\docs directory) gives instructions how to flash the NOR memory.  The way the flash data was developed, some minor modifications to the README.txt file are needed.  The following is the updated instructions:
Steps to program the NOR:

1. Be sure to set the boot mode dip switch to no boot/EMIF16 boot mode on the EVM.
2. Copy app.dat  file to writer\nor\evmc66xxl\bin directory
3. Change the file_name  to app.dat and start_addr to 0 in writer\nor\evmc66xxl\bin\norwriter_input.txt if necessary.  See the screen shot below  for the norwrite_input.txt file
4. Open CCSv5 and launch the evmc66xx emulator target configuration and connect to core 0.
5. Load the program writer\nor\evmc66xxl\bin\norwriter_evm66xxl.out to CCS, be sure evmc66xxl.gel is used in CCS  and DDR is initialized.  Ignore the red comment that says that it does not find the main() C source.
6. Open the Memory view (in CCSv5, view->Memory Browser), and view the memory address 0x80000000.
7. Load app.dat to 0x80000000:
     * In CCSv5, right click mouse in memory window, select "load memory".
     * Browse and select writer\nor\evmc66xxl\bin\app.dat (TI data format), click "next" . See the following screen shot

[image: ]
     * Set the Start Address to "0x80000000", enter the size of the file.  If you check the line “use the file header information to set the start address and size of memory block to be loaded, it will load the file size automatically, see the picture below. Click "finish"
[image: ]
8. After the app.dat  file is loaded into the memory, run the program (in CCSv5, press F8), it will start to program the  NOR.
9. When programming is completed, the console will print "NOR programming completed successfully", if there is any error, the console will show the error message.

2. The following screen shots shows the nor_writer_input.txt file
[image: ]

3. The following screen shoots shows the CCS after loading the memory and the norwriter program
[image: ]
4. The next screen shoot shows the console after running the norwriter program
[image: ]

Task 6: Boot from NOR SPI
1. Power off the EVM, change the EVM switched according to the Boot Mode Dip Switch Setting from above  - ROM SPI BOOT  off, on, off, off  on,on,on,on  on,on,off,on  on,on,on,on . A screen shot of the dip switch is given below
[image: ]

[bookmark: _GoBack]
2. Power up the EVM. The LED will blink. The last screen shot shows the blinking LED

[image: ]




Appendix A


/*
 * led_play.c
 *
 *  Created on: Aug 1, 2014
 *      Author: a0272049
 */


#include <cerrno>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "ti\platform\platform.h"
#include "ti\platform\resource_mgr.h"

/* OSAL functions for Platform Library */
uint8_t *Osal_platformMalloc (uint32_t num_bytes, uint32_t alignment)
{
    return malloc(num_bytes);
}

void Osal_platformFree (uint8_t *dataPtr, uint32_t num_bytes)
{
    /* Free up the memory */
    if (dataPtr)
    {
        free(dataPtr);
    }
}

void Osal_platformSpiCsEnter(void)
{
    /* Get the hardware semaphore.
     *
     * Acquire Multi core CPPI synchronization lock
     */
    while ((CSL_semAcquireDirect (PLATFORM_SPI_HW_SEM)) == 0);

    return;
}

void Osal_platformSpiCsExit (void)
{
    /* Release the hardware semaphore
     *
     * Release multi-core lock.
     */
    CSL_semReleaseSemaphore (PLATFORM_SPI_HW_SEM);

    return;
}

void main(void) {
    platform_init_flags init_flags;
    platform_init_config init_config;
    platform_info p_info;
    uint32_t led_no = 0;
    char message[] = "\r\nHello World.....\r\n";
    uint32_t length = strlen((char *)message);
    uint32_t i;

    /* Initialize platform with default values */
    memset(&init_flags, 0x01, sizeof(platform_init_flags));
    memset(&init_config, 0, sizeof(platform_init_config));
    if (platform_init(&init_flags, &init_config) != Platform_EOK) {
        return;
    }

    platform_uart_init();
    platform_uart_set_baudrate(115200);

    platform_get_info(&p_info);

    /* Write to the UART */
    for (i = 0; i < length; i++) {
        if (platform_uart_write(message[i]) != Platform_EOK) {
            return;
        }
    }

    /* Play forever */
    while(1) {
        platform_led(led_no, PLATFORM_LED_ON, PLATFORM_USER_LED_CLASS);
        platform_delay(30000);
        platform_led(led_no, PLATFORM_LED_OFF, PLATFORM_USER_LED_CLASS);
        led_no = (++led_no) % p_info.led[PLATFORM_USER_LED_CLASS].count; 
    }
}





/*led_play

 Created on: Aug 1, 2014
     Author: a0272049
*/

-c
-heap  0x41000
-stack 0xa000
 
/* Memory Map */
MEMORY
{
    L1PSRAM (RWX)  : org = 0x0E00000, len = 0x7FFF
    L1DSRAM (RWX)  : org = 0x0F00000, len = 0x7FFF
    L2SRAM (RWX)   : org = 0x0800000, len = 0x080000
    MSMCSRAM (RWX) : org = 0xc000000, len = 0x200000
    DDR3 (RWX)     : org = 0x80000000,len = 0x10000000
}
 
SECTIONS
{
    .csl_vect    >       MSMCSRAM
    .text        >       MSMCSRAM
    GROUP (NEAR_DP)
    {
        .neardata
        .rodata
        .bss
    } load       >      MSMCSRAM
    .stack       >      MSMCSRAM
    .cinit       >      MSMCSRAM
    .cio         >      MSMCSRAM
    .const       >      MSMCSRAM
    .data        >      MSMCSRAM
    .switch      >      MSMCSRAM
    .sysmem      >      MSMCSRAM
    .far         >      MSMCSRAM
    .testMem     >      MSMCSRAM
    .fardata     >      MSMCSRAM
    platform_lib > 	MSMCSRAM
}


********************************************************************************************
 * FILE NAME: byteswapccs.c
 *
 * DESCRIPTION: A CCS file is read in, the data is byte swapped, and a CCS file is written out
 *
 *  usage: byteswapccs infile outfile
 *
 ********************************************************************************************/
#include <stdio.h>
#include <malloc.h>


int main (int argc, char *argv[])
{
    FILE *fin, *fout;
    unsigned int v, b0, b1, b2, b3;
    int a, b, c, d, n;
    int i;
    char iline[132];


    if (argc != 3)  {
        fprintf (stderr, "usage: %s infile outfile\n", argv[0]);
        return (-1);
    }


    fin = fopen (argv[1], "r");
    if (fin == NULL)  {
        fprintf (stderr, "%s: Could not open input file %s\n", argv[1]);
        return (-1);
    }
printf (stderr, "%s:  input file %s\n", argv[1]);
    fout = fopen (argv[2], "w");
    if (fout == NULL)  {
        fprintf (stderr, "%s: Could not open output file %s\n", argv[2]);
        fclose (fin);
        return (-1);
    }
      printf (stderr, "%s:  output file %s\n", argv[2]);

    /* Read the CCS data file header, write it out unchanged */
    fgets (iline, 132, fin);
    sscanf (iline, "%x %x %x %x %x", &a, &b, &c, &d, &n);
    fputs (iline, fout);

  printf ( "  header   -> %x %x %x %x %x", &a, &b, &c, &d, &n);


    for (i = 0; i < n; i++)  {
        fgets (iline, 132, fin);
        sscanf (&iline[2], "%x", &v);

        b0 = (v >> 24) & 0xff;
        b1 = (v >> 16) & 0xff;
        b2 = (v >>  8) & 0xff;
        b3 = (v >>  0) & 0xff;

        v = (b3 << 24) | (b2 << 16) | (b1 <<8) | b0;
        fprintf (fout, "0x%08x\n", v);
      printf (fout, "0x%08x\n", v);
    }

    fclose (fout);
    fclose (fin);

    return (0);

}


image5.png
c:\b_temp>
b_tenp>
b_tenp>

b_tenp>h2i2c led_play.bthl led_play.bthl.iZe

Uolume in drive C is 0SDisk
Uolune Serial Number is 7498-8BE9

Directory of c:\b_temp

08,05 /2014
08,85 /2014
1171972012
05 /67,2014
08 /85 /2014
08,/85 /2014
08,/85 /2014
08./85/2014

2 Dircs>

<DIR> .
<DIR>

24,587 h2i2c.exe
8907880 hexbx_oxe
1721772 led_piay.bthl
1757933 led play.bthl.iZe
5437452 led_play.out
155 led play.rnd
1,807,779 bytes
15,3187073]344 hytes free




image6.png
\b_temp>

\b_tenp>dir
Uolime in drive C is 0SDisk
Uolune Serial Number is 7498-8BE9
Directory of ci\b_temp

8/85/2614 81:38 PN <DIR>

led_play.bthl.iZc led_play.iZc.ces

8/85/2614 B1:38 PN <DIR> :
171972612 87:33 PN 24,0088 hices.exe
171972612 87:33 PN 247587 h2i2c.exe
5/87/2614 10:35 AN 8907880 hexbx_oxe
8/85/2614 11:29 AN 1721772 led_piay.bthl
8/85/2614 11:58 AN 1257933 led play.bthl.iZe
8/85 /2614 B1:38 PN 1237529 led play.iZe.ccs
8/85/2614 B9:39 AN 5430452 led_play.out
8/85/2614 11326 AN 155 led_play.rnd
8 File(s> 2,085,316 bytes

2 Dirds> 15,307.890,688 hytes free




image7.png
__ nysh:spimap N
File Edit Format View Help

section {
boot_node = 50

paran_index = 0

options = 1

core_freq_ithz = 1000
exe_file = "Ted_play.i2c.ccs”
next_dev_addr_ext = 0x0
sw_pTl_prediv =5

sw_pllimult = 32
sw_pl1_postdiv = 2
sw_pll_flags = 1

addr_width = 24

n_pins = 4

csel

mode = 0
c2t_delay = 0
bus_freq_nhz
bus_freq_khz





image8.png
\b_temp>ronparse nysh.sp:

£\b_tenp>
:\b_tenp>dir

Uolime in drive C is 0SDisk
Uolune Serial Number is 7498-8BE9

Directory of c:

8./85/2014 .
8./85 /2614 :
171972612 24,008
171972612 24587
5/87/2614 890,880
8/85/2614 176601
8/85/2614 1720772
8/85/2614 1757933
8/85/2614 1737529
8/85/2614 543]452
8/85/2614 185
8./85 /2614 332
171972612 66,842

2,249,891 bytes
2 Dirds> 15,306.825,728 hytes free




image9.png
File Edit Format View Help

1651 1 10000 1 397b
0x00500000
0x00320000
0x40200002
0X00010018
0x00040000
0x00000000
0x03¢80000




image10.png
File Edit Format View Help

1651 1 10000 1 397b
0x00500000
0x00320000
0x40200002
0x00010018
0x00040000




image11.png
i\b_temp>
\b_tenp>

Uolume in drive C is 0SDisk
Uolune Serial Numher is 7498-8BE9

Directory of ci\b_tenp

8,/06,2014 <DIR>
8/06,2014 <DIR>

8/06,2014 176,601
171972012 247088
171972012 247587
9,20/2013 507016
5,07,2014 890,886
5,05 ,/2014 176601
8,05,/2014 1720772
8,05,/2014 1757933
8,05,/2014 1737529
8,05,/2014 543]452
8,05,/2014 185
8/05,2014 332
171972012 66,842

\b_temp>hytesuapces i2cron.ccs app.dat

app.dat
h2ces.exe
B2i2c_exe
bytesuapces .exe
hexbx.exe
i2cron.ces
Ted_play-bthl
led_play bthl.iZe
led play.iZe.ccs
led_playout
led_play.rnd
nysh.spi map
romparse exe

2,475,708 bytes

2 Dirds> 15,636.299.7%6 hytes free





image12.png
Boot Mode Dip Switch Settings

The EVM supports booting image from various devices (EEPROM, NAND or NOR) via IBL (at 12C address 0x51), 12C EEPROM (at 12C address 050), anc
modes (such as Ethemet, SRIO, PCle, SPI etc.) which address the boot source directly from the ROM code. Below is the table showing the boot mode dip

settings for different boot mode that the EVM supports:

Boot Mode

DIP SW3
(Pin1,2,3,4)

DIP SW4
(Pin1,2,3,4)

DIP SW5
(Pin1,2,3,4)

DIP SW6
(Pin1,2,3,4)

IBL NOR boot on image 0 (default)

(off, off, on, off)'?

(on, on, on, on)®

(on, on, on, off)*

(on. on, on, on)

[1BL NOR boot on image 1

[(oft, off, on, offy

[(coft, on, on, on)

[(on. on, on, oty

[(on. on. on, on)

[1BL NAND boot on image 0

[(oft, off, on, offy

[con. off, on, on)

[(on. on, on, oty

[(on. on. on, on)

[1BL NAND boot on image 1

[(oft, off, on, offy

[(oft, off, on, on)

[(on. on, on, oty

[(on. on. on, on)

[IBL TFTP boot

[(oft, off, on, offy

[con. on, off, on)

[(on. on, on, oty

[(on. on. on, on)

[i2c POST boot

[(oft, off, on, offy

[(on. on. on, on)

[(on. on. on, on)

[(on. on. on, on)

RO SPI Boot®

(off. on, off, off)

(on. on. on, on)

(on. on, off. on)

(on. on. on, on)

ROM SRIO Boot®

(off. off, on, on)

(on. on, on, off)

(on. off, on, off)

(off. on, on, on)

ROM Ethernet Boot®

(off. on, off. on)

(on. on, on, off)

(on. on, off, off)

(off. on, on, on)

ROM PCIE Boot”

(off. on, on, off)

(on. on. on, on)

(on. on, on, off)

(off. on, on, on)

No boot

[(coff. on. on. on)

[(on. on. on. on)

[(on. on. on. on)

[(on. on. on. on)




image13.png




image14.png




image15.png
¥ Load Memory

Load Memory
Selecta file containing the memory data to be loaded

Note that the default format is Raw Data Format.
For Tl Data Format, specify ".dat” as the file extension.
For COFF Format, specify ".out” as the file extension.

ELF files are not supported by this tool. Use Program Load instead.

File: CAH\MCSDK_2.01 6\mesdk 2,01 02_06\tools\writer\nor\evmc6678 \bin\app.dat | Browse..

Loading COFF files using this tool is not recommended. Use Program Load instead.

Use the file header information to set the start address and size of the memory block to be loaded.

Type Value

- 0 e

PA PLL programmable multiplier = 21
PA PLL programmable divider = 1
the output frequency should be 10 times the
configSGHIISerdes Setup. .. Begin

has been configured.
DDR begin (1066 auto)
XC Setup ... Done

is complete.
DDR done

% Recent Places
Librares

[ sppuat

Date modified Type |

8/6/2014825AM  DATFile

i ] v

] [bsaFomt )





image16.png
Use the file header information to set the start address and size of the memory block to be loadied.




image17.png
File Edt Format View Help

File_name = app.dat
start_addr =0




image18.png
File Edit View Project Tools Run Scripts Window Help

i ais- HE-POE- - & (B CCSDebug ] B cosEdit
%5 Debug 2 | % ) B[22 @ 2| @~ &% 7 7 0|0 Veriables 53 |8 Expressions| i Registers ELEICY RS -1
4 9 Shannon_6678.ccml [Code Composer Studio - Device Debugging] Name. Type Value Location
4 Blackhawk ¥DSSE0N2-USE System Trace Emulator0/CB6. 0 (Suspended - SW Breakpoint) +  pdevice et <umemeds © 00000000 000ETT42C
main]) f rorwriter, A% OAOBETOA, § e Sruct <unnamed> * 0:00000000 oatsTTI0C
—c.im0) at boot.c87 0XO0BGEAZS (the entry point wes reached) » ¢ init flags <truct <unnamed> 000877410
49 Blackhawk XDSS6012-USB Syster Trace Emultor 0/C660c 1 (Disconnected » (& initconfig Siroct unnameds 000877415
@ Blackhawk XDS560v2-USB System Trace Emulator 0/CB61a.2 (Disconnected. ey unsigned nt 000877430
W Blackhawk XDS560v2-USB System Trace Emulator 0/CB61a.3 (Disconnected :
@ Blackhawk XDS560v2-USB System Trace Emulator 0/CB61a. 4 (Disconnected.
W Blackhawk XDS560v2-USB System Trace Emulator 0/CB61a.5 (Disconnected :
@ Blackhawk XDS560v2-USB System Trace Emulator 0/C661a.6 (Disconnected
@ Blackhawk XDS560v2-USB System Trace Emulator 0/CB61a.7 (Disconnected :

%) nonwriterc 51 | [£] 020600000 = 5|0 Memory Browser 53 | Disasemby| H-@-@-Fop it o0
101 a 0x80000000 ~ |Go| | NewTab
403 Function:  main (0 <
Coved main 0 e b e v Cache @

> a0s ex7FFFFF28 00000000 00G0GG00 0OGO00C0 CBGO00D CGOBBO00 OGOOB0D CBGOO0C0 COBBOO0D DO00C000 R
a7 FILE o OXTFFFFFAC 00000000 0000000 00000000 0GO0000 DGOO000 DGOODDD DGOODDD DGOODDD DGO000
05 platform_init_flags  init_flags; @XTFFFFFT0 00000000 00000000 00GO000 0GO0000 OGOO000 DGOODDD DGOODDD DGOODDD DGO0DD0
409 platform_init_config  init_config; BX7FFFFFO4 60060000 00000060 0G00G000 00GO0G00 GOGE0G0D GODEO0E0 0BOGE00 0GO0B000 00B00E00
410 PLATFORWDEVICE info  *p_device; xTFEFFFEE 00060000 00000000 GACG0OCD COBGO0D DGOBBOO0 OGOOC0D CBGOO0CD COBRO0D DO00C000
41 sool ret; exvrFEFFOC
a2
413 printf("NOR Writer Utility Version ¥s\n\n", version); [ ||| exseevee2a
418 exaooo00ss
415 fp = fopen(input_file, "r" exao00005C
S if (Fp == NULL) .|| exaesooese

cC - . xE0000054  0G0BG00 00GOER00 GACCOOCD COBIOO0D CGER000 BOBOOC0D CBGOO0CD COBRO0D DO000000 i

ElConsoledi3 Bl E-5--0

DSP Reset CPU... Done.

Disable all EDMA3 interrupts and
Disable all EDMA3 interrupts and
Disable all EDMA3 interrupts and
Disable all EDMA3 interrupts and
Disable all EDMA3 interrupts and
Disable all EDMA3 interrupts and
Disable all EDMA3 interrupts and
Disable all EDMA3 interrupts and
Disable all EDMA3 interrupts and
Disable all EDMA3 interrupts and
Invalidate ALL Cache...
Invalidate ALL Cache. .. Done.
DSP Reset CPU...

DSP Reset CPU... Done.

Disable all EDMA3 interrupts and

= G [ st [





image19.png
B Console 2

‘Shannon 6678.comkCI0

NOR Writer Utility Version 01.00.00.03

Flashing sector @ (@ bytes of 58860)
Reading and verifying sector @ (@ bytes of 58860)
NOR programming completed successfully




image20.png




image21.png




image1.png
File Edit View Navigate Project Run Scripts Window Help

R

5 % CCsDebug

= B[ "ted_play.c

| B smosinglesiiomap 21 |

00871400 00000200

SRIOMulticore FFt_1_pe66.oe66 (.vecs)

© revere et e 3 3 CE
suia P

» Resource
General
4 Build
4 6000 Compiler
Processor Options
Debug Options
Include Options
Performance Advisor
» Advanced Options.
> C6000 Linker

Debug

Configuration: [Debug [Active ]

] [Manage Configurations..|

5 Builder [ © Behaviour [ 3=

Sipe | 55 Varables] 78 Enironment | 5 Link Order]| 3 Dependencis|

Varable Value orgin Add..
CCS_JAVAHOME BULLD SYSTEM
CCs TS DR BULLD SYSTEM

o (CAUser\s0270965\Wor.. _BULLD SYSTEM et
[POKINSTALLDIR  GAGAMCSDK_2.01 6\pd..._USER: CONFIG

P CUsers IO Wor.. BULDSYSTEM

‘Append variables to native environment
Replace native environment with specified one.

See General for changing tool versions and device settings

@ showatvancedsotings

o J o ]





image2.png
\b_temp>hex6x led_play.rnd
ranslating to ASCIT-Hex Format...

Ted_play-out” -text  (BOOT LOADY
led_play_out: lcinit (BOOT LOAD)
led_play_out: lconst  (BOOT LOAD)
led_playout” Iswitch CBOOT LOAD>

£\b_tenp>
\b_tenp>

:\b_tenp>dir

Uolime in drive C is 0SDisk
Uolune Serial Number is 7498-8BE9

Directory of c:\b_temp

8/85/2014 1 <DIR>
8/85 /2614 1 <DIR> :

5/87/2614 1 890,880 hexbx.oxe
8/85/2614 1 1221772 led_piay.bthl
8/85 /2014 B 5430452 led_play out
8/85/2614 1 155 led_play.rnd

1,607,259 bytes
2 Dirds> 15,320,596.480 hytes free




image3.png
AS3SECTION ALLOCATION RAP

49
50 output
S1section page
52

53.sysmem @
54

55

s6

57 text °
58

origin length

ocoveooe 00041000
ocooeooe  0000000s
ocooooes  0004efiE

0c041000 _ 0ooed7s
ocosl000  000RLTeD

attributes/
input sections

UNINITIALIZED
rts6600_elf.1ib : memory.obj (.sysmem)
~-HoLE--

ti.platform.evn66781.ae66 : platform.obj (.text)




image4.png
File Edit

Format View Help

$4c000000,
04 £O0 20
28 03 E2 92 46 0C 6E
8C A3 62 DC 45 8C F7
A0 00 00 02 14 9E 42
4D EC 3D 00 00 40 O

02
00 8C A3 62 02
BC 4D AC 45 02
6C 6E 10 4D CC
E4 €O 00 00 01

04 03 E2 92
44 03 E2 E2
81 c0 24 02
30 FC 45 00
8D 7B Of

46 0C 6E 00
40 00 00 92
81 04 EA 00
00 60 00 02

sc
46
00
oc





