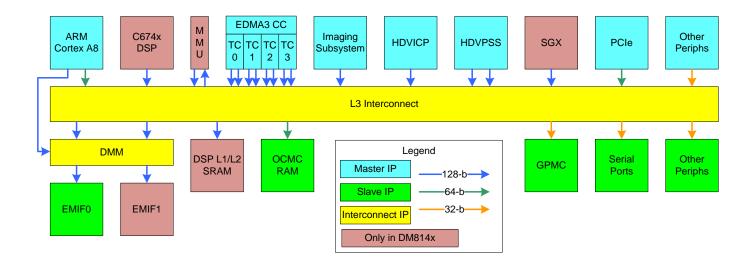
Bandwidth Management in DM814x / DM385

11 June 2013

TI Confidential – NDA Restrictions

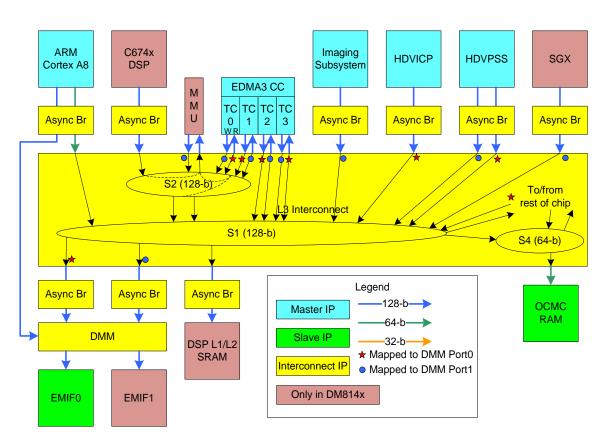

1

DM385 and DM814x

- DM814x and DM385 Interconnect / DMM are same, except
 - In DM385,
 - C674x DSP is NOT present
 - DSP L1/L2 RAM is NOT present
 - MMU (used by DSP) is NOT present
 - EMIF1 is NOT present
 - SGX is NOT present
 - In DM814x
 - SATA1 is NOT present
- Other differences between DM814x and DM385 are mentioned in the slides where ever applicable

DM814x/DM385 Interconnect overview

- Master IP Initiates bus requests ٠
- Slave IP Responds to bus requests ٠
- L3 Interconnect Routes/arbitrates bus requests between Masters and Slaves
- Dynamic Memory Manager (DMM)
 - Provides interleaved view of two EMIF's in single address space (DM814x)
 - Provides non-interleaved view of single EMIF in single address space (DM385)
- External Memory Interface (EMIF) Queues/schedules requests to DRAM



Interconnect Key Characteristics

- Bandwidth
 - Per Interconnect link (128b links)
 - Up to (L3 MHz) 200 MHz * 16B/cycle * 88%= 2.8 GBps (refer to device datasheet for clock rate)
 - 88% represents peak efficiency due to packet overhead
 - Refer to device datasheet for information on link mapping to L3 clock domain and link width.
 - EMIF/DDR
 - DM814x
 - Up to 400 MHz * 2 (for ddr) * 4B/ddr edge * 2 ports = 6.4 GBps
 - (Theoretical) (refer to device datasheet for clock rate and width)
 - DM385
 - Up to 400 MHz * 2 (for ddr) * 4B/ddr edge * 1 ports = 3.2 GBps (Theoretical) (refer to device datasheet for clock rate and width)
 - Practical DDR bandwidth is 50-55% of theoretical DDR BW

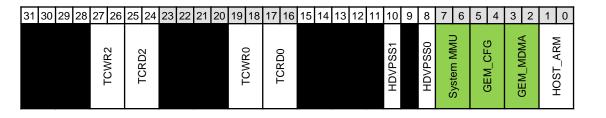
DM814x / DM385 Detailed Connectivity for key masters/slaves

- ARM
 - Minimal latency to DDR space by using direct path thru DMM
 - Bypasses interconnect
- DSP
 - Always uses MMU path
 - MMU can be disabled if not needed
- EDMA TC0 and TC1
 - Can optionally use MMU path (in DM814x ONLY), based on MMR setting.
- EDMA TC2 and TC3
 - Routed directly thru S1 to maximize concurrency where required
- DMM Mapping
 - ~1/2 of IP mapped to DMM Port0
 - ~1/2 of IP mapped to DMM Port1
- S2: MMU Loopback switch
- S1: Provides crossbar connectivity between 128-b masters and each memory⁵

Bandwidth Management Overview

- DM814x has Cortex-A8, HDVICP, HDVPSS, EDMA, Ducati /M3, DSP, USB, GMAC, ISS, etc as data traffic initiators.
- DM385 has Cortex-A8, HDVICP, HDVPSS, EDMA, Ducati /M3, USB, GMAC, etc as data traffic initiators.
- Above initiators transfer data to/from targets such as DDR memory, OCMC RAM, other processors memory & peripherals.
- Each initiator have programmable
 - pressure control for interconnect.
 - priority control for EMIF
- This would enable each initiator to get latency and/or bandwidth they require.

L3 Interconnect Pressure


- Pressure controlled independently for each initiator.
- 3 pressure levels
 - 0 = Lowest, 1 = Middle, 3 = highest
 - round robin arbitration within a given pressure level.
- Determines which pending bus requests to a given slave wins arbitration in a switch
 - E.g., controls which concurrent request is sent to EMIF/DMM next
- ISS
 - **BW regulator** dynamically controls pressure
 - No Pressure bits to control priority statically
- HDVPSS
 - Bit0 IP Controlled Dynamic
 - Custom scheme based on internal FIFO status
 - Based on margin to overflow/underflow
 - Bit1 MMR Controlled Static (INIT_PRIORITY_n)
- PCIe, USB, EMAC, EDMA_TC0, TC2:
 - Statically programmed
 - Via chip level MMR (INIT_PRIORITY_n).
- C674x DSP (via MMU) *, EDMA_TC1, TC3, HDVICP, SGX * :
 - BW regulator dynamically controls pressure
 - * ONLY in DM814x

MMR based Pressure settings

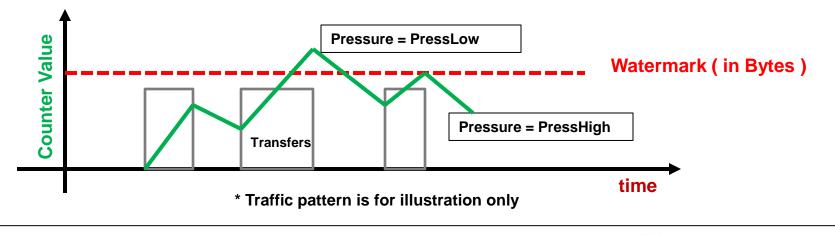
 Registers to set L3 Pressure via INIT_PRIORITY_0 & INIT_PRIORITY_1 in control module.

INIT_PRIORITY_0: 0x48140608

Only in DM814x

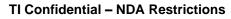
INIT_PRIORITY_1 : 0x4814060C

31 30 29 28 27 26 25 24 23 22	21 20 19 18	17 16	15 14	13 12	11 10	98	76	5 4	3 2	1 0
	SGX	PCIE	M3\Ducati		SATA1	SATA	USB_QMGR	USB_DMA		CPGMAC0


Only in DM385

8

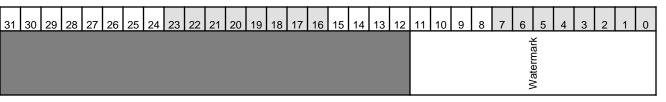
Bandwidth Regulator


- For a given initiator:
- Increases pressure when the actual consumed bandwidth is lower than expected bandwidth
- Decreases pressure once the expected bandwidth is reached.
- Mechanism
 - A counter is incremented by number of bytes transferred (read + write)
 - At each clock cycle, a quantity corresponding to expected bandwidth is subtracted from the counter.
 - A Watermark value for the counter is programmed.
 - When counter value is less than Watermark high pressure (as define by PressHigh) is applied,
 - Else low pressure (as defined by PressLow) is applied.

9

TEXAS

STRUMENTS



Setting up a Bandwidth Regulator

Bandwidth : 0x08

Watermark: 0x0C

MovingWindow * Bandwidth

Required Bandwidth

Bus Freq / (2^5)

Press: 0x10

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Γ
																													s LOW	do:Li	- IĥI- I	
																														Coord	0 1	

Press Low should be less than equal to Press High

Clear History : 0x014

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Write 1 after updating other registers

Bandwidth Regulator Base Address

Bandwidth Regulator name	Base Address
HDVICP0_BW_REGULATOR	0x44401C00
EDMA_RD3_BW_REGULATOR	0x44001F00
EDMA_WR3_BW_REGULATOR	0x44002000
EDMA_RD1_BW_REGULATOR	0x44002100
EDMA_WR1_BW_REGULATOR	0x44002200
MMU_BW_REGULATOR (DSP)	0x44002300
SGX_BW_REGULATOR	0x44402400
ISS_BW_REGULATOR	0x44402500

Only in DM814x

Example for DSP Bandwidth Regulator programming

 Intent - DSP should have minimal latency but should not take excessive bandwidth

• Details

- L3 Interconnect = 200 MHz
- Highest Pressure for DSP accesses by default (for low latency)
- Low Pressure if Bandwidth exceeds 100 MB/s
- Compute watermark over a 200 interconnect cycle interval, or 1us

Calculation

- Bandwidth register => $100MBps / (200 MHz/2^5) = 16 = 0x10$
- Watermark register => 1 us * 100 MBps = 100 = 0x64
- Pressure Register => { PressLow = 0x0, PressHigh = 0x3 }
- Start Bandwidth Reg by writing 0x1 to Clear History register

Example for HDVICP Bandwidth Regulator programming

 Intent - HDVICP should have 1GB/s bandwidth & should not take excessive bandwidth

• Method

- L3 Interconnect = 200 MHz
- Medium Pressure for HDVICP accesses by default (to ensure bandwidth)
- Low Pressure if Bandwidth exceeds 1GBps
- Compute watermark over 500 interconnect cycles, or 2.5 us

Calculation

- Bandwidth register => 1000MB/s / (200 MHz/2^5) = 160 = 0xA0
- Watermark register => 2.5 us * 1000 MB/s = 2500 = 0x9C4
- Pressure Register => { PresLow = 0x0 ,PressHigh = 0x1 }
- Start Bandwidth Reg by writing 0x1 to Clear History register

Priority Control in EMIF

- Every initiator except HDVPSS there is a priority configuration in DMM PEG registers
- HDVPSS priority is programmed in VPDMA descriptor
- Priority is 3 bit field (0 ... 7), 0 is highest priority, 7 is lowest
- Priority determines prioritization of data transfers in EMIF

Configuring DMM PEG

	DMM_PEG_PRIO7 : 0x63C															
:	31	3028	27	2624	23	2220	19	1816	15	1412	11	108	7	64	3	20
	PRIO ₆₃		PRIO ₆₂		PRIO ₆₁		PRIO ₆₀		PRIO ₅₉		PRIO ₅₈		PRIO ₅₇		PRIO ₅₆	
V	N7	P7	W6	P6	W5	P5	W4	P4	W3	P3	W2	P2	W1	P1	W0	P0

.....

	DMM_PEG_PRIO0 : 0x620														
31	3028	27	2624	23	2220	19	1816	15	1412	11	108	7	64	3	20
PI	PRIO ₇		PRIO ₆		PRIO₅		PRIO₄		PRIO ₃		PRIO ₂		PRIO₁		IO ₀
W7	P7	W6	P6	W5	P5	W4	P4	W3	P3	W2	P2	W1	P1	W0	P0

the 3-bit priority coded on the 3 least significant bits (0 is the higher priority) A "W" field-specific active-high local write enable bit, always read as 0

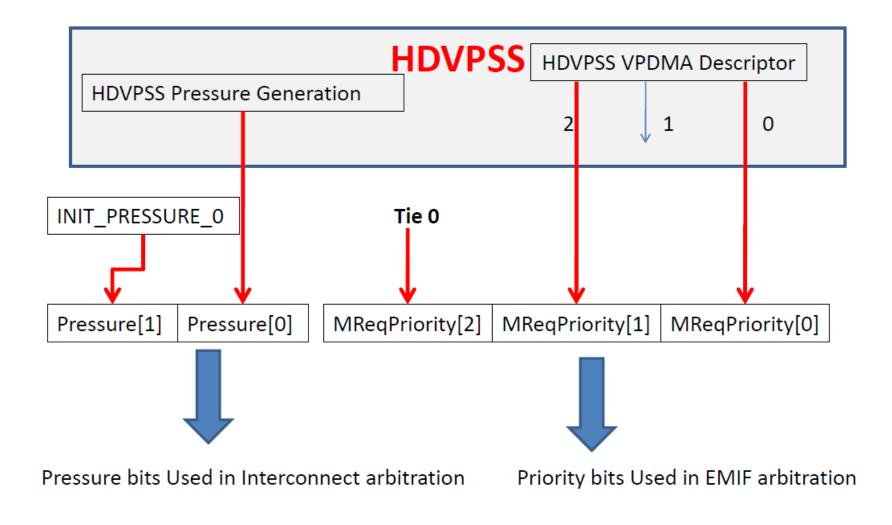
The role of the W bit is to allow the modification of a single entry without requiring a readmodify-write sequence.

DMM PEG Registers

Initiator	Register	Register Address	Priority Field
CortexA8	DMM_PEG_PRIO0	0x4E00_0620	PRIO0
System MMU	DMM_PEG_PRIO1	0x4E00_0624	PRIO10
Ducati	DMM_PEG_PRIO1	0x4E00_0624	PRIO14
SATA1	DMM_PEG_PRIO2	0x4E00_0628	PRIO16
TPTC0 Read	DMM_PEG_PRIO3	0x4E00_062C	PRIO24
TPTC1 Read	DMM_PEG_PRIO3	0x4E00_062C	PRIO25
TPTC2 Read	DMM_PEG_PRIO3	0x4E00_062C	PRIO26
TPTC3 Read	DMM_PEG_PRIO3	0x4E00_062C	PRIO27
TPTC0 Write	DMM_PEG_PRIO3	0x4E00_062C	PRIO28
TPTC1 Write	DMM_PEG_PRIO3	0x4E00_062C	PRIO29
TPTC2 Write	DMM_PEG_PRIO3	0x4E00_062C	PRIO30
TPTC3 Write	DMM_PEG_PRIO3	0x4E00_062C	PRIO31
SGX530	DMM_PEG_PRIO4	0x4E00_0630	PRIO32
HDVICP0	DMM_PEG_PRIO5	0x4E00_0634	PRIO40
ISS	DMM_PEG_PRIO5	0x4E00_0634	PRIO44
GMAC0	DMM_PEG_PRIO6	0x4E00_0638	PRIO48
USB DMA	DMM_PEG_PRIO6	0x4E00_0638	PRIO52
USB QMGR	DMM_PEG_PRIO6	0x4E00_0638	PRIO53
SATA0	DMM_PEG_PRIO7	0x4E00_063C	PRIO57
PCIe	DMM_PEG_PRIO7	0x4E00_063C	PRIO58

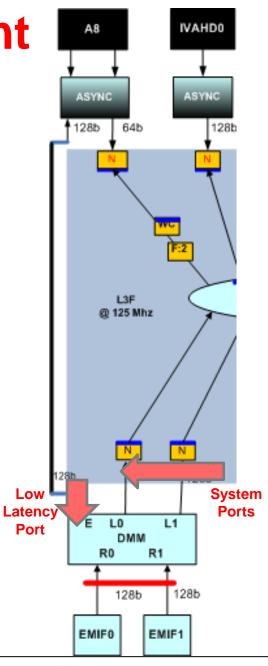
Only in DM814x

Only in DM385



EMIF Priority setting through DMM example

- Set Ducati/M3 Priority of 0x1
 - Register DMM_PEG_PRIO1 , Field PRIO14 (Bits 27-24) would be used to change ducati priority
 - DMM_PEG_PRIO1 address = 0x4E00_0624
 - Data to be written (0b1001) << 24 = 0x0900_0000</p>
 - Once Data is written , Field PRIO14 (Bits 27-24) would reflect value as 0b0001
- Note: DMM_PEG_PRIOx registers doesn't need read-modify-write sequence



HDVPSS pressure & priority settings

A8 Priority Management

- DM81xx L3 architecture provides DDR access to the system via two paths
 - Low latency port to ARM (A8)
 - System access ports (Rest of peripherals)
- In order to implement better priority arbitration between A8 and rest of the peripherals, its important to program the following registers to enable class of service.
 - PBBPR register
 - [23:16]COS_COUNT_1 : Priority Raise Counter for class of service 1. Number of m_clk cycles after which the EMIF momentarily raises the priority of the class of service 1 commands in the Command FIFO. A value of N will be equal to N x 16 clocks.
 - [15:8]COS_COUNT_2 : Number of m_clk cycles after which the EMIF momentarily raises the priority of the class of service 2 commands in the Command FIFO. A value of N will be equal to N x 16 clocks.
 - [7:0]PR_OLD_COUNT : Number of memory transfers after which the EMIF momentarily raises the priority of old commands in the OCP Command FIFO.
 - DMM Priority

TEXAS

NSTRUMENTS

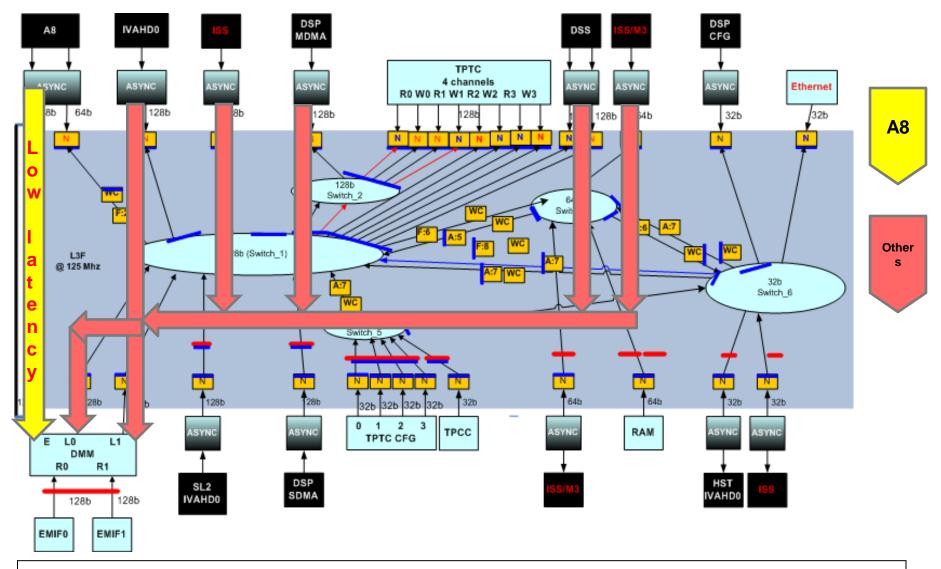
Configuring PBBPR

31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
	5	2	z
Ð	L NO	En la	Ō
ERV	O U U	O U U	OLD
RES	SO CO	SO CO	<u>د</u> ۲

PBBPR: (EMIF4_0_CFG_BASE + 0x54), (EMIF4_1_CFG_BASE + 0x54)*

- [23:16] COS_COUNT_1
 - Priority Raise Counter for class of service 1. Number of m_clk cycles after which the EMIF momentarily raises the priority
 of the class of service 1 commands in the Command FIFO. A value of N will be equal to N x 16 clocks.
 - MAX = 0xFF
 - MIN = 0x0 (defaults to 1)
 - Recommended : Lower than default (needs system testing)
- [15:8] COS_COUNT_2
 - Number of m_clk cycles after which the EMIF momentarily raises the priority of the class of service 2 commands in the Command FIFO. A value of N will be equal to N x 16 clocks.
 - MAX = 0xFF
 - MIN = 0x0 (defaults to 1)
 - Recommended : DEFAULT
- [7:0] PR_OLD_COUNT
 - Number of memory transfers after which the EMIF momentarily raises the priority of old commands in the OCP Command FIFO.
 - MAX = 0xFF
 - MIN = 0x0 (defaults to 1)
 - Recommended : 0x10 0x60 (needs system test)

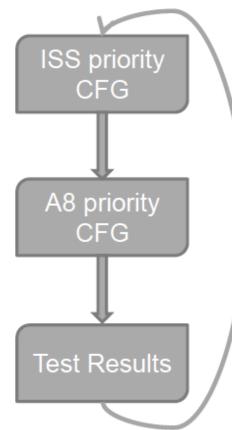
*Not valid for DM385



ISS Based applications - **Priority Management**

6124@otffidential - NDA Restrictions

BW competitors for ISS


ISS priority control

- Following should be following in the given order:
 ISS BW REGULATOR
 - This should be the first knob to step up the ISS priority.
 - Set PRESS_LOW and PRESS_HIGH to either '2' or '3' to setup static level 2 or level 3 pressure on ISS to DDR path.
 - DMM PRIORITY
 - Configure DMM PEG priority to make ISS initiator as higher priority (0 is highest) and other initiators (A8, IVA..etc) lower priority.
 - ISS CLKDIV CONTROLs
 - Gradually decrease IPIPEIF_CLKDIV to lowest value which can meet the usecase.
 - Gradually decrease RSZ_CLKDIV from default value of 0xFFFF to reduce RSZ operation speed and thus RSZ DMA out rate. This should help RSZ OVF issues.

How to solve OVF issues?

- Overflows in ISS are a result of insufficient availability of peak bandwidth to ISS DMA. As a result it could result in RSZ, ISIF overflows or IPIPEIF read under-run issues and cause performance losses.
- Tuning system for maximizing ISS bandwidth is typically a 2 step process – first resolve peripheral priority to give ISS top priority and second enable QOS on A8 so that it doesn't deplete DMM/DDR resource.
- Peripherals priority conflicts
 - This covers priority arbitration conflicts between peripherals such as ISS and other peripherals such as DSS, IVAHD, DSP..etc
 - To configure ISS priority in such cases, following two priority schemes should be enough:
 - ISS BW REGULATOR
 - Configure ISS BW regulator to prioritize ISS to DDR path with a priority override of '2' or '3' (level). This is similar to setting the L3_PRIO statically with the similar level.
 - DMM PRIORITY
- ARM vs ISS priority conflicts
 - In this scenario the conflict is between ISS, DSS..etc and ARM (A8) for DDR priority arbitration. Since A8 has a low latency path to DDR regular DMM_PRIORITY configuration scheme doesn't work well. To configure ISS priority in such cases please follow:
 - BURST PRIO (PBBPR register)
 - Configure COS_COUNT_1, COS_COUNT_2 and PR_OLD_COUNT
 - DMM PRIORITY

Thank You

