
Docs » 3. Board/EVM Abstration » 3.1. Board Support

3.1. Board Support

3.1.1. Introduction

Board library contains a set of general initialization and setup functions that are board-
speci�c. This component includes libraries for boards supported in the Processor SDK
release. Refer to the package content for the list of supported boards.Board component also
includes diagnostic software. Refer to Processor SDK RTOS DIAG for additional details on
available diagnostic examples.

3.1.1.1. Board APIs

The Board_init() API supports initialization of PLL, peripheral clocks, external DDR memory,
pinmux and IO Delay con�gurations. API Reference for application:

#. include <ti/board/board.h>

Example API pseudo code for Board_init() is as follows:

/* Setting up for pinmux and uart */
Board_STATUS ret;
Board_initCfg boardCfg;

boardCfg = BOARD_INIT_MODULE_CLOCK \| BOARD_INIT_PINMUX_CONFIG \|
BOARD_INIT_UART_STDIO;

ret = Board_init(boardCfg);

3.1.1.2. LLD Dependencies

3.1.1.2.1. I2C

http://www.ti.com/
file:///C:/share_folder/Processor-SDK-doc-builds/update-board-porting-instructions/processor-sdk-rtos/esd/docs/06_03_00/rtos/index.html
file:///C:/share_folder/Processor-SDK-doc-builds/update-board-porting-instructions/processor-sdk-rtos/esd/docs/06_03_00/rtos/Board_EVM_Abstration.html

Application need to con�gure BOARD_INIT_MODULE_CLOCK option to have I2C operational.
I2C is used to read EEPROM data. An I2C handle will be opened in polling mode, and closed
after the board ID data is retrieved from EEPROM using Board_getIDInfo() API.

For DRA7xx EVMs, I2C is also used to con�gure various I/O expanders and board muxes to
enable PDK examples to function properly on the EVM. The I2C handles are opened in polling
mode and closed after the board mux initialization has completed.

3.1.1.2.2. UART

Application need to con�gure Board_init() with the BOARD_INIT_UART_STDIO option to use
the UART stdio API.

After Board_init() completes, application can invoke UART stdio functions such as
UART_printf, UART_scanFmt, and etc.

3.1.1.2.3. SCICLIENT

AM65xx/J7xx Board library uses sciclient APIs for con�guring the PLL clocks.

3.1.2. Application Integration for AM5x/DRA7xx

When con�guring pinmux with IO Delay settings for AM5x and DRA7xx boards, there is a
hard restriction: the code/data/stack during the IO Delay setup must be within local internal
memory. Refer to SOC TRM for additional information.

The board library speci�es two sections for users to de�ne for the sole purpose of meeting
this requirement. They are: BOARD_IO_DELAY_CODE and BOARD_IO_DELAY_DATA. Below
are examples of how to specify these section into the local memory, OCMC_RAM1:

In baremetal case with a linker cmd �le:

BOARD_IO_DELAY_CODE : {

 . = ALIGN(4);
 (BOARD_IO_DELAY_CODE)

} > OCMC_RAM1

BOARD_IO_DELAY_DATA : {

 . = ALIGN(4);
 (BOARD_IO_DELAY_DATA)

} > OCMC_RAM1

In a CCS RTSC project with .cfg �le:

Program.sectMap["BOARD_IO_DELAY_DATA"] = "OCMC_RAM1";
Program.sectMap["BOARD_IO_DELAY_CODE"] = "OCMC_RAM1";

3.1.2.1. Considerations for DRA7xx devices

When integrating the board library in applications on DRA7xx, these code/data sections will
likely overlap and con�ict with the code/data sections used by the Secondary Boot Loader
(SBL) as both modules will assume full access to OCMC_RAM1. Also, as the SBL performs
identical con�guration using the common pad con�g data structures, the pinmux request
made by an application will be redundant. Therefore, it is advised that the pinmux API be
used only when loading the application via CCS. When loading via SBL, there are three
options available for handling this con�ict:

1. Place the BOARD_IO_DELAY_DATA/BOARD_IO_DELAY_CODE sections to another internal
memory location. The Board library will check to see if the board code/data/stack are
located in internal memory before executing the sequence. If another internal memory
section is available for placement (e.g. L2SRAM, OCMC_RAM2), then it is acceptable to
place the sections in these locations. The Board init sequence will proceed as expected.

2. Place the BOARD_IO_DELAY_DATA/BOARD_IO_DELAY_CODE sections into external
memory. The pinmux subroutine in the Board library checks for code/data/stack
placement and will fail if it detects that they reside in DDR and return before performing
the con�guration. The failure will not a�ect any other Board init requests as other �ags
are treated orthogonally.

3. Remove the BOARD_IO_DELAY_DATA/BOARD_IO_DELAY_CODE sections. This is the
preferred solution as it removes redundant code from executing and will optimize
code/data size and load speed. In order to remove these sections, two modi�cations are
required:

Place BOARD_IO_DELAY_DATA/BOARD_IO_DELAY_CODE input sections into an output
Dummy Section (DSECT). DSECTs are a Special Linker Section Type which are relocated
for linker resolution but otherwise do not allocate space to a memory map, place
sections in the output �le, or ever get loaded to the target. In order to place these
sections into DSECTS, modify the placement as follows:

Replace:

Program.sectMap["BOARD_IO_DELAY_DATA"] =
"OCMC_RAM1"; Program.sectMap["BOARD_IO_DELAY_CODE"] = "OCMC_RAM1";

http://processors.wiki.ti.com/index.php/Linker_Special_Section_Types#DSECT_Sections

With:

Program.sectMap["BOARD_IO_DELAY_DATA"] = new
Program.SectionSpec(); Program.sectMap["BOARD_IO_DELAY_CODE"] = new
Program.SectionSpec(); Program.sectMap["BOARD_IO_DELAY_DATA"].type =
"DSECT"; Program.sectMap["BOARD_IO_DELAY_CODE"].type = "DSECT";

Remove the BOARD_INIT_PINMUX_CONFIG �ag from the call to Board_init. Since the
BOARD_IO_DELAY_DATA/BOARD_IO_DELAY_CODE sections no longer actually exist, we
must instruct the application that it is no longer safe to call the routines and access the
data. Otherwise, the CPU will branch to and access unde�ned memory and cause various
exceptions

3.1.3. Custom Board Addition

This section provides the guidelines for creating a custom board library.

Below image shows the recommended sequence to be followed while porting processor SDK
to custom board.

3.1.3.1. Board Con�gurations

Board library supports di�erent SoC and HW board speci�c con�guration functions. Below
table shows con�gurations supported by board library across di�erent platforms.

Board Con�guration Description R

Pinmux Con�gures pinmux for interfaces on the HW board. `

Adding custom board library can follow two approaches as mentioned below

Approach 1: Update �les in existing TI board library and modify for custom board.
This approach will be less time consuming since the board library setup is already existing
in the processor SDK, but need to maintain TI board library separately for reference.

Approach 2: Add custom board to PDK build
This approach involves one time e�ort of setting up the custom board library but makes it
easy to switch between custom board library and TI reference board library. In this
approach during migration to updated processor SDK, review and selective updates from
existing TI board reference source will need to be considered.

Refer the section Board Library Creation with Custom Name for additional steps involved
in creating board library with Approach 2.

3.1.3.2. Creating Board Con�gurations

Before updating the board library with con�gurations for custom board, it is recommended
to use GEL �le and CCS for validating the con�gurations. Follow the steps mentioned below

Update the SoC clock con�gurations in the GEL �le. TI provides Clock Tree Tool to simulate
the device clocks.
Update the PLL clock con�gurations in GEL �le if custom board uses a di�erent input clock
than the eval platform and/or needs di�erent clock outputs.
Update DDR PHY and timing con�gurations for custom board. Refer the guidelines
described in Application Report on EMIF Tools
After GEL �le update is complete, connect to custom board using JTAG, run the GEL script
to apply the modi�ed con�gurations and verify the con�gured values. Load and run
simple hello world example out of SoC internal memory and DDR memory.

3.1.3.3. Updating Board Con�gurations

Board Con�guration Description R

SoC Clock Settings Enables power domains and clocks for SoC peripherals C

DDR Con�guration Con�gures DDR/EMIF controller and DDR timing parameters. E

PLL Con�guration Con�gures PLL modules to generate various clocks used by the SoC. N

Ethernet Con�guration Con�gures Ethernet PHYs on the board. N

IO Instances De�nes IO instances for HW interfaces. N

Board Detection EEPROM board ID for board detection. N

Board Flash APIs Provides Common APIs for accessing �ash devices. N

SerDes Con�guration Con�gures SerDes interface internal muxing and basic setup. N

http://www.ti.com/tool/CLOCKTREETOOL
file:///C:/share_folder/Processor-SDK-doc-builds/update-board-porting-instructions/processor-sdk-rtos/esd/docs/06_03_00/rtos/FAQ.html#useful-ddr-configuration-resources
http://www.ti.com/tool/CLOCKTREETOOL
file:///C:/share_folder/Processor-SDK-doc-builds/update-board-porting-instructions/processor-sdk-rtos/esd/docs/06_03_00/rtos/FAQ.html#useful-ddr-configuration-resources

Steps for updating the board library con�gurations for a custom board is described in this
section. Updating some of the con�gurations may need additional steps based on the
platform. Refer Platform Speci�c Con�guration section for more details.

3.1.3.3.1. Pinmux

When the BOARD_INIT_PINMUX_CONFIG option is speci�ed, the Board_init() API con�gures
the pinmux for the board. If applicable, it will also con�gure IO delay values for those device
pads, which ensures correct IO timings are met along with the pinmux settings. Refer SOC
TRM for additional details.

The pinmux data to be con�gured is generated by the TI pinmux tool. Refer to TI PinMux Tool
for more information.

Once the pinmux selection is done, Copy the pinmux tool generated �les to your custom
board library implementation folder.

Refer Platform Speci�c Con�guration section for more details on the �les generated by
pinmux tool for di�erent platforms.

3.1.3.3.2. SoC Clock Settings

The core clocks and module clocks used on the custom board library may vary based on the
power requirements and external components used on the boards.

<Board>_clock.c: De�nes functions and structures for con�guring the clock and power
modules. Update this �le based on the data from clock tree tool and GEL �le validation.

3.1.3.3.3. DDR Con�guration

The board library has the correct DDR initialization sequence to initialize the DDR memory on
your board. You may need to make changes to the AC timings, hardware leveling, and DDR
PHY con�guration, some or all of which may be di�erent than the TI supported platforms.
GEL �le can be used to verify the settings in CCS before modifying the source in the board
library.

<Board>_ddr.c: De�nes functions and structures for con�guring the DDR module. Update this
�le based on the DDR timing parameters speci�c to custom board.

3.1.3.3.4. PLL Con�guration

The SOC board library in the PDK con�gures the SOC PLL and module clock settings to the
nominal settings required to be used with the TI evaluation platform. If you want to use
di�erent clock settings due to power consideration, or if you are using a variant of the device

http://processors.wiki.ti.com/index.php/TI_PinMux_Tool

that needs to be clocked di�erently, you can enter the PLL and clock settings in the board
library. All of the PLL and module clock settings are consolidated in the following �les:

<Board>.c: Contains calls related to all board-level initialization. <Board> refers to the
evaluation platform (For example, evmam335x)
<Board>_pll.c: De�nes the Board_PLLInit() function that con�gures the dividers and
multipliers for the clock tree.

3.1.3.3.5. Ethernet Con�guration

The custom board may have external components (�ash devices, Ethernet PHY, etc.) that are
di�erent from the components populated on the TI-supported EVM. These components and
their support �les need to be added to the
pdk_xx_xx_xx_xx/packages/ti/board/src/<customBoardName>/device path and linked as part
of the board library build.

3.1.3.3.6. IO Instances

If your custom board uses an IO instance di�erent from the TI-supported board, the instance
needs to be modi�ed in the Pin Mux setup as well as in the board_cfg.h �le in
pdk_xx_xx_xx_xx/packages/ti/board/src/<customBoardName>/include

3.1.3.3.6.1. Board Detection

TI de�ned board detect mechanism using structure stored in I2C EEPROM
Board Lib APIs read and write Board ID to EEPROM on I2C address 0x50
Application boards, if available, will have their own EEPROM with board information
Structure typically de�nes:

Board ID (IDK vs GP EVM vs custom)
Revision number (board revision to address board level issues)
Serial Number (internal tracking)
MAC ID (Custom MAC ID use)

 Note

Board detection is TI de�ned mechanism to detect evaluation platform details. This needs
to be removed/replicated from board based on customer board implementation. In case
board detect mechanism is not used in custom board, check for the Board_getIDInfo() API
calls and make necessary changes in the code to avoid dependencies on board detect
mechanism.

3.1.3.3.6.2. Board Flash APIs

Board library includes a dedicated �ash library to abstract the HW �ash interface access
using a standard set of APIs. In case custom board uses �ash devices that are di�erent from
eval platform, update to board �ash APIs is required. Check the board �ash library available
at <PDK_INSTALL_PATH>/packages/ti/board/src/�ash and make changes required for custom
board as needed.

3.1.3.4. Platform Speci�c Con�gurations

3.1.3.4.1. J721E

3.1.3.4.1.1. Board File Names

Board library �le names for J721E are di�erent when compared with other platforms in
processor SDK. This is to facilitate the easy migration of board library to custom platforms.
Read the �le name <Board>.c as board_init.c and <Board>_xxx.c/h as board_xxx.c/h in all the
references in above sections.

3.1.3.4.1.2. Pinmux

Follow below steps to update pinmux con�guration for custom board on J721E platform.
Pinmux project �les provided under j721e_evm board folder can be used as reference for
pinmux con�guration.

Download the pinmux �les <Platform Name>_pinmux.h and <Platform
Name>_pinmux_data.c generated by pinmux tool and copy them to custom board folder.
Open ‘packages/ti/board/src/j721e_evm/<Platform Name>_pinmux.h’ and make below
modi�cations.

Change #include “pinmux.h” to #include
<ti/board/src/j721e_evm/include/pinmux.h>
Change #include “csl_types.h” to #include <ti/csl/csl_types.h> * Modify ‘j721e_evm’
in above step if a di�erent name is used for custom board.

 Tip

<Platform Name>_pinmux.h �le contains the basic pin de�nition macros which will not
change with every pin con�guration change. This �le generation and above step is one
time con�guration for a given pinmux tool version.

Modify the Board_pinmuxCon�g() function in
‘packages/ti/board/src/j721e_evm/board_pinmux.c’ �le to remove pinmux con�gurations
speci�c to EVM addon boards. Look for the comment “Pinmux for Application cards” in the
function Board_pinmuxCon�g(). All the code after this comment till end of the function
and ‘i2cPinmux’ variable can be removed. Board_pinmuxCon�g function shall look as
below after the update

Board_STATUS Board_pinmuxConfig (void)
{
 Board_STATUS status = BOARD_SOK;

 /* Pinmux for baseboard */
 Board_pinmuxUpdate(gJ721E_MainPinmuxData,
 BOARD_SOC_DOMAIN_MAIN);
 Board_pinmuxUpdate(gJ721E_WkupPinmuxData,
 BOARD_SOC_DOMAIN_WKUP);

 return status;
}

Rebuild the board library with new pinmux con�gurations

Follow additional steps (optional) below to clean-up the TI EVM addon board speci�c �les.

Remove below �les from SRCS_COMMON build con�guration in
‘packages/ti/board/src/j721e_evm/src_�les_j721e_evm.mk’ and remove the �les from the
board folder ‘packages/ti/board/src/j721e_evm’

J721E_pinmux_data_gesi.c
J721E_pinmux_data_gesi_cpsw9g.c
J721E_pinmux_data_info.c

3.1.3.4.1.3. SerDes Con�guration

J721E board library includes SerDes module which con�gures the SerDes interface internal
pinmux to route PCIe, USB and SGMII to di�erent interfaces on the board. If custom board
uses similar design, SerDes con�gurations (board_serdes_cfg.c) can be reused. Otherwise this
con�guration can be ignored.

3.1.3.4.2. AM65xx

3.1.3.4.2.1. Pinmux

Follow below steps to update pinmux con�guration for custom board on AM65xx platforms.

Download the pinmux �les <Platform Name>_pinmux.h and <Platform
Name>_pinmux_data.c generated by pinmux tool
Copy the �les to custom board folder and rename them to match with board name if
needed.
Rebuild the board library with new pinmux con�gurations

3.1.3.4.2.2. SerDes Con�guration

AM65xx board library includes SerDes module which con�gures the SerDes interface internal
pinmux to route PCIe, USB and SGMII interfaces to di�erent personality cards. If custom
board uses similar design, SerDes con�gurations can be reused. Otherwise this con�guration
can be ignored.

3.1.3.4.3. AM57xx

3.1.3.4.3.1. Pinmux

Pinmux tool output for AM57xx platform includes IO delay information. Below are the �les
generated by pinmux tool:

boardPadDelay.h: Includes the prototypes of all structures and functions used by
pinmux functions
boardPadDelayInit.c: Includes the pinmux pad con�g data for all device pads along
with values used to compute Manual/Virtual mode values.This data is used to
con�gure pinmux during board initialization.
boardPadDelayTune.h: This �le includes the compile time macros used to select the
Timing modes to be con�gured for modules during board Initialization.
boardPadDelayDevice.c: This �le includes the pinmuxdata for runtime pinmux
con�guration of the MMC module.

Copy the above listed �les generated by pinmux tool to custom board folder and rebuild the
board library with updated pinmux con�gurations.

3.1.3.4.4. AM335x/AM437x

3.1.3.4.4.1. Pinmux

Follow below steps to update pinmux con�guration for custom board on AM335x/AM437x
platforms.

Download the pinmux �les <Platform Name>pinmux.h and <Platform
Name>_pinmux_data.c generated by pinmux tool
At the bottom of <Platform Name>pinmux.h change extern pinmuxBoardCfg_t
g<Platform Name>PinmuxData[]; to extern pinmuxBoardCfg_t g<Custom Board
Name>PinmuxData[];
Change <Platform Name>_pinmux_data.c to <Platform Name>_<Custom Board
Name>pinmux_data.c
Change g<Platform Name>PinmuxData to g<Custom Board Name>PinmuxData at the
end of the �le in <Platform Name>_<Custom Board Name>pinmux_data.c
The last step is to invoke the PinMuxModuleCon�g in the �le <BoardName>_pinmux.c
that is found at <PDK_INSTALL_PATH>packagestiboardsrc<BoardName>. For Example
to add three instances of UART in the pinmux setup, users can add :

/* UART */
 status = PINMUXModuleConfig(CHIPDB_MOD_ID_UART, 0U, NULL);
 status = PINMUXModuleConfig(CHIPDB_MOD_ID_UART, 1U, NULL);
 status = PINMUXModuleConfig(CHIPDB_MOD_ID_UART, 4U, NULL);

- Rebuild the board library with new pinmux con�gurations

3.1.3.4.5. K2G

3.1.3.4.5.1. Pinmux

Follow below steps to update pinmux con�guration for custom board on K2G platforms.
Download the pinmux �les <Platform Name>pinmux.h and <Platform
Name>_pinmux_data.c generated by pinmux tool
Copy the �les to custom board folder and rename them to match with board name if
needed.
Rebuild the board library with new pinmux con�gurations

3.1.3.5. Custom Board Validation

Validate the basic functionality of custom board using hardware diagnostics before bringing-
up RTOS applications or Linux. Hardware diagnostics help verify the functionality of on-board
peripherals and external interfaces of each board.

Refer Board Diagnostics section for more details on the diagnostic tests supported as part of
processor SDK.

Below are the recommended diagnostic tests which can be validated on custom board

External memory (DDR): DDR timing and leveling setting can be checked out using
mem_test
Debug UART: Debug UART pin functionality
Boot Media: Validate functionality of SD/MMC, OSPIor any other boot interfaces
Board ID/EEPROM test: Recommend checking out/writing ID on personality EEPROM.
This also checkout I2C pin functionality
Ethernet PHY: Ethernet diagnostics tests read PHY con�guration over MDIO and check
for Link up status. Good �rst step before bringing up any network stack

3.1.3.6. Creating Board Library with Custom Name

This section describes how to create a board library with custom name using AM572x as an
example. Due to dependencies on the starterware, AM335x/AM437x board library creation is
di�erent and is described in the section for AM335x/AM437x.

As mentioned in section Board Con�gurations, adding custom board library can follow one of
two approaches. This section provides detailed instructions for the second approach - adding
a custom board to PDK build.

3.1.3.6.1. Instructions to add custom Board to the PDK build

Follow below steps for creating board library with custom name. AM572x platform is used as
reference in the examples wherever needed.

Step 1: Creating new directory for custom board library

In <PDK_INSTALL_PATH>/packages/ti/board/src, create new directory myCustomBoard and
copy �les from existing board library package which closely matches your custom board
design.

Step 2: Updating names and make�le inside the customBoard package

In <PDK_INSTALL_PATH>/packages/ti/board/src/myCustomBoard, rename �le
src_�les_<Board>.mk to src_�les_myCustomBoard.mk. This �le will need a bit of work
depending on what elements of board you need for your platform. At a minimum, modify
SRCDIR and INCDIR to have correct paths to the newly created directory in previous step:

SRCDIR += src/myCustomBoard src/myCustomBoard/device src/myCustomBoard/include
INCDIR += src/myCustomBoard src/myCustomBoard/device src/myCustomBoard/include

Step 3: Adding MACRO based inclusion of updated board_cfg.h corresponding to custom
Board

In packages/ti/board/board_cfg.h, add the lines pointing to board_cfg.h �le in your
customBoard package so that updated peripheral instances and board speci�c de�nes can
be picked up

#if defined (myCustomBoard)
#include <ti/board/src/myCustomBoard/include/board_cfg.h>
#endif

Step 4: Update top level board package make�le to include build for customBoard library

Modify make�le packages/ti/board/build/make�le.mk which includes all relevant make�les
for low level driver(LLD), source �les relevant to board and the common board.c �le.

Add customBoard build for board.c and boardStub.c (notice the newly added
myCustomBoard):

ifeq ($(BOARD),$(filter $(BOARD),evmAM335x icev2AM335x skAM335x bbbAM335x evmAM437x idkAM437x
skAM437x myCustomBoard evmAM572x idkAM571x idkAM572x evmK2H evmK2K evmK2E evmK2L evmK2G iceK2G
evmC6678 evmC6657))
Common source files across all platforms and cores
SRCS_COMMON += board.c
endif

ifeq ($(BOARD),$(filter $(BOARD),evmAM335x icev2AM335x iceAMIC110 skAM335x bbbAM335x evmAM437x
idkAM437x skAM437x myCustomBoard evmAM572x idkAM571x idkAM572x evmK2H evmK2K evmK2E evmK2L iceK2G
evmC6678 evmC6657 evmOMAPL137 lcdkOMAPL138 idkAM574x evmDRA72x evmDRA75x evmDRA78x evmTDAxx j721e_sim
j721e_qt j7200_evm tpr12_evm))
Board stub function enabled for all the boards except evmK2G
SRCS_COMMON += boardStub.c
endif

Add customBoard build for board library source �les and LLD �les:

ifeq ($(BOARD),$(filter $(BOARD), myCustomBoard evmAM572x idkAM571x idkAM572x))
include $(PDK_BOARD_COMP_PATH)/src/$(BOARD)/src_files_$(BOARD).mk
include $(PDK_BOARD_COMP_PATH)/src/src_files_lld.mk
endif

Step 5: Update Global makerules

Make�le packages/ti/build/makerules/build_con�g.mk de�nes the global CFLAGS used to
compile di�erent PDK components. Add the following line in the BOARD speci�c
con�gurations:

CFLAGS_GLOBAL_myCustomBoard = -DSOC_AM572x -DmyCustomBoard=myCustomBoard

The SOC_AM572x macro ensures that the CSL applicable to this SOC will be included in the
build. Use the SoC name that corresponds to the platform of your custom board.

Optional step to update RTSC platform de�nition If you have a custom RTSC platform
de�nition for your custom board that updates the memory and platform con�guration using
RTSC Tool then you need to update the platform.mk �le that associates the RTSC platform
with the corresponding board library

In packages/ti/build/makerules/platform.mk, add the following lines:

ifeq ($(BOARD),$(filter $(BOARD), evmAM572x))
 PLATFORM_XDC = "ti.platforms.evmAM572X"
endif

ifeq ($(BOARD),$(filter $(BOARD), myCustomBoard))
 PLATFORM_XDC = "evmAM572XCustom"
endif

 Note

The SYSBIOS platforms follow the convention to consolidate all platform de�nitions under
SYSBIOS_INSTALL_PATH/packages/ti/platforms/* hence the convention ti.platorms.
<platformName> but for custom platform, users are not required to follow this
convention.

Step 6: Update source �les corresponding to drivers used in board library

Make�le src_�les_lld.mk �le adds source �les corresponding to LLD drivers used in the board
library. Usually most boards utilize control driver like I2C (for programming the PMIC or
reading EEPROM), UART drivers (for IO) and boot media drivers like (SPI/QSPI, MMC or
NAND). In the example below, we assume that the custom Board library has dependency on
I2C, SPI and UART LLD drivers. Since the LLD drivers will be linked to the application along
with board library, board library only needs <driver>_soc.c corresponding to SOC used on the
custom Board.

In packages/ti/board/src/src_�les_lld.mk, add the following lines:

ifeq ($(BOARD),$(filter $(BOARD), myCustomBoard))
SRCDIR += $(PDK_INSTALL_PATH)/ti/drv/i2c/soc/am572x \
 $(PDK_INSTALL_PATH)/ti/drv/uart/soc/am572x \
 $(PDK_INSTALL_PATH)/ti/drv/spi/soc/am572x

INCDIR += $(PDK_INSTALL_PATH)/ti/drv/i2c/soc/am572x \
 $(PDK_INSTALL_PATH)/ti/drv/uart/soc/am572x \
 $(PDK_INSTALL_PATH)/ti/drv/spi/soc/am572x

Common source files across all platforms and cores
SRCS_COMMON += I2C_soc.c UART_soc.c SPI_soc.c
endif

 Note

For all LLD drivers linked to the board library you need to include corresponding
<drv>_soc.c �le. For example if you include GPIO driver for setting board mux then
GPIO_soc.c needs to be added to LLD source �les.

Step 7: Add custom Board to BOARDLIST and update CORELIST

In packages/ti/board/board_component.mk, modify the build to add your custom board and
specify the cores for which you want to build the board library. Example to build board library
for only A15 and C66x cores, limit the build by specify only a15_0 and C66x in the CORELIST

board_lib_BOARDLIST = myCustomBoard evmAM335x icev2AM335x skAM335x bbbAM335x evmAM437x
idkAM437x skAM437x evmAM572x idkAM571x idkAM572x evmK2H evmK2K evmK2E evmK2L evmK2G iceK2G \

#board_lib_am572x_CORELIST = c66x a15_0 ipu1_0
board_lib_am572x_CORELIST = a15_0 c66x

Step 8: Update .bld �les for XDCTOOL based build steps

Make corresponding changes in packages/ti/board/con�g.bld, by adding the following lines:

var myCustomBoard = {
 name: "myCustomBoard",
 ccOpts: "-DmyCustomBoard -DSOC_AM572x",
 targets: [C66LE,A15LE]
}

var boards = [evmAM335x, icev2AM335x, skAM335x, bbbAM335x, evmAM437x, idkAM437x, skAM437x,
myCustomBoard, evmAM572x, idkAM571x, idkAM572x, evmK2H, evmK2K, evmK2E, evmK2L, evmK2G, evmC6678,
evmC6657];

Also, in packages/ti/board/package.bld, add the following line:

Pkg.otherFiles[Pkg.otherFiles.length++] = "src/myCustomBoard/src_files_myCustomBoard.mk";

Step 9: Add custom board to board list

Add myCustomBoard to AM572x board list in �le packages/ti/build/soc_info.mk:

BOARD_LIST_am572x = evmAM572x idkAM572x myCustomBoard

Step 10: Build the custom board library with the updated settings

First change directory to <PDK_INSTALL_PATH>/packages and run pdksetupenv.bat.

Then change directory to <PDK_INSTALL_PATH>/packages/ti/board and build the board
library:

gmake LIMIT_SOCS=am572x LIMIT_BOARDS=myCustomBoard LIMIT_CORES=a15_0

3.1.3.7. Creating Custom Board Library for AM335x and AM437x

This section describes how to create a custom board library for AM335x/AM437x. Currently
the AM335x and AM437x board libraries reuse the board support code in legacy starterware
(now part of the PDK). Therefore, rebuilding the board library involves compiling the
starterware source code. Both approaches of creating a custom board library are described
in this section:

Modifying an existing TI board
Adding a new custom board

3.1.3.7.1. Modifying an Existing TI Board for AM335x/AM437x

This approach is less time consuming since the board library setup already exists in PDK, but
requires users to back up the existing TI board library for reference. The instructions below
use AM335x GP EVM as the existing board to modify. Users may choose to modify any other
existing board and the procedure is the same.

Step 1: Generating a new pinmux con�guration
Download and run the PINMUX Tool.
Use “Open an Existing Design” and open
<PDK_INSTALL_PATH>/packages/ti/starterware/tools/pinmux_con�g/am335x/gpevm_con�g.pinm
Use the tool to change the con�guration and make sure there are no con�icts.
When con�guration is �nalized, save the starterware pinmux �les as shown below:

https://www.ti.com/tool/PINMUXTOOL

Step 2: Using newly generated pinmux �les for the board to be modi�ed

Open am335x_pinmux.h saved in previous step and replace the following line at the
bottom of the �le

extern pinmuxBoardCfg_t gAM335xPinmuxData[];

with the following lines from
<PDK_INSTALL_PATH>/packages/ti/starterware/board/am335x/am335x_pinmux.h:

/** \brief Pinmux configuration data for the board. Auto-generated from
 Pinmux tool. */
extern pinmuxBoardCfg_t gGpevmPinmuxData[];

/** \brief Pinmux configuration data for the board. Auto-generated from
 Pinmux tool. */
extern pinmuxBoardCfg_t gEvmskPinmuxData[];

/** \brief Pinmux configuration data for the board. Auto-generated from
 Pinmux tool. */
extern pinmuxBoardCfg_t gBbPinmuxData[];

/** \brief Pinmux configuration data for the board. Auto-generated from
 Pinmux tool. */
extern pinmuxBoardCfg_t gBbbPinmuxData[];

/** \brief Pinmux configuration data for the board. Auto-generated from
 Pinmux tool. */
extern pinmuxBoardCfg_t gIceV1PinmuxData[];

/** \brief Pinmux configuration data for the board. Auto-generated from
 Pinmux tool. */
extern pinmuxBoardCfg_t gIceV2PinmuxData[];

/** \brief Pinmux configuration data for the board. Auto-generated from
 Pinmux tool for IceV2, but with AMIC11x naming. Intended for
 manual deviation from IceV2, if applicable. */
extern pinmuxBoardCfg_t gAMIC11xPinmuxData[];

Rename am335x_pinmux_data.c saved in previous step to
am335x_gpevm_pinmux_data.c.

Then replace the following line toward the end of this �le

pinmuxBoardCfg_t gAM335xPinmuxData[] =

with

pinmuxBoardCfg_t gGpevmPinmuxData[] =

Replace am335x_pinmux.h and am335x_gpevm_pinmux_data.c in folder
<PDK_INSTALL_PATH>/packages/ti/starterware/board/am335x with the two �les newly
generated and modi�ed above. It is recommended to keep a copy of this folder as a
reference before replacing the two �les.

Step 3: Updating board library �les accordingly

Update pinmux con�guration in
<PDK_INSTALL_PATH>/packages/ti/board/src/evmAM335x_pinmux.c. For example, to add
another UART instance, the following line can be added to function Board_pinmuxCon�g():

status = PINMUXModuleConfig(CHIPDB_MOD_ID_UART, 1U, NULL);

Update power and clocking in
<PDK_INSTALL_PATH>/packages/ti/board/src/evmAM335x.c. For example, to enable
power and clocking for the second UART instance, the following line can be added to
function Board_moduleClockInit():

status = PRCMModuleEnable(CHIPDB_MOD_ID_UART, 1U, 0U);

Update LLD initialization if necessary in
<PDK_INSTALL_PATH>/packages/ti/board/src/evmAM335x_lld_init.c. For example, to
initialize the second UART, following line can be added to function Board_uartStdioInit():

UART_stdioInit(1);

Step 4: Rebuilding board library for the modi�ed board

Setup build environment:

C:\ti\pdk_am335x_1_0_17\packages>pdksetupenv.bat

Rebuild board library:

C:\ti\pdk_am335x_1_0_17\packages\ti\board>gmake LIMIT_SOCS=am335x LIMIT_BOARDS=evmAM335x

Step 5: Rebuilding the boot loader

After the board library is rebuilt, the application can be built against the new board library. If
the secondary boot loader is used to initialize the board, the boot loader will also need to be
rebuilt according to section Building AM335x/AM437x Bootloader.

For example, issue following command under <PDK_INSTALL_PATH>/packages/ti/starterware
to build MMCSD boot loader for AM335x:

file:///C:/share_folder/Processor-SDK-doc-builds/update-board-porting-instructions/processor-sdk-rtos/esd/docs/06_03_00/rtos/index_Foundational_Components.html#building-the-bootloader

gmake bootloader BUILDCFG=boot BOOTMODE=mmcsd PLATFORM=am335x-evm PROFILE=release -s KW_BUILD=no

3.1.3.7.2. Adding a New Custom Board for AM335x/AM437x

For this approach, due to the board library’s dependencies on starterware for
AM335x/AM437x, additional steps are needed on top of what’s described in section Board
Library Creation with Custom Name. Please follow all the steps given in that section to setup
the custom board, and do the following before building the custom board library:

First, make sure “var myCustomBoard” is added to packages/ti/board/con�g.bld and it
includes all custom starterware �les, especially the pinmux data source �le. For example,

var myCustomBoard = {
 name: "myCustomBoard",
 ccOpts: "-DmyCustomBoard -DSOC_AM335X -DAM335X_FAMILY_BUILD -Dam335x -DBUILDCFG_MOD_UART -
DBUILDCFG_MOD_GPIO -DBUILDCFG_MOD_I2C -DBUILDCFG_MOD_MCSPI -DBUILDCFG_MOD_QSPI -
DBUILDCFG_MOD_PRU_ETH -DBUILDCFG_MOD_MMCSD -DBUILDCFG_MOD_CPSW -DBUILDCFG_MOD_PWMSS -
DBUILDCFG_MOD_DSS -DBUILDCFG_MOD_USB -DBUILDCFG_MOD_GPMC -DBUILDCFG_MOD_DCAN -DBUILDCFG_MOD_MCASP -
DBUILDCFG_MOD_VPFE -DBUILDCFG_MOD_MDIO -DBUILDCFG_MOD_DMTIMER -DBUILDCFG_MOD_EDMA3CC -
DBUILDCFG_MOD_EDMA3TC -DBUILDCFG_MOD_RTC -DBUILDCFG_MOD_WDT -DBUILDCFG_MOD_ADC -DBUILDCFG_MOD_LCDC",
 stwFiles: ["$(PDK_INSTALL_PATH)/ti/starterware/board/am335x/am335x_myCustomBoard_pinmux_data.c",
 ...
}

Second, in packages/ti/board/src/src_�les_starterware.mk, add custom board build option
and add custom pinmux data source �le. For example,

ifeq ($(BOARD),$(filter $(BOARD), evmAM335x icev2AM335x iceAMIC110 skAM335x bbbAM335x myCustomBoard))
 ...

 ifeq ($(BOARD),$(filter $(BOARD), myCustomBoard))
 SRCS_COMMON += am335x_myCustomBoard_pinmux_data.c
 endif

3.2. Diagnostics

3.2.1. Overview

The Processor SDK RTOS Diagnostic package is designed to be a set of baremetal tests to run
on a given board to provide data path continuity testing on peripherals. For
K2H/K2E/K2L/C66x devices, this functionality is provided by POST.

3.2.2. Building the Examples

3.2.2.1. Pre-requisites to Building

1. Set your environment using pdksetupenv.bat or pdksetupenv.sh. The diagnostic
application uses the same environment variables as the board library build. Refer to the
Processor SDK RTOS Building page for information on setting up your build environment.

2. You will need the following libraries built:

Board
UART
GPIO
I2C
SPI
CSL
ICSS
PRUSS
MMCSD
EMAC
USB
UDMA
SCICLIENT

(Note: not every library is used for every application, and these libraries should come pre-
built with any fresh installation of the Processor SDK)

3.2.2.2. Compiling the Diagnostic Applications

To build the diagnostic examples:

1. cd <PDK>/packages/ti/board/diag
2. make <BOARD>

This will make the diagnostic applications for a speci�c $BOARD. Output �les will be located
in: <PDK>/packages/ti/board/bin/<BOARD>

3.2.2.3. Creating the SD Card Loadable Files

For converting the compiled .out �les to a format loadable by TI’s Secondary Boot Loader
(SBL), you must follow these two steps:

1. out2rprc.exe [.out �le] [rprc output]
2. MulticoreImageGen.exe LE 55 [output name] 0 [rprc output]

file:///C:/share_folder/Processor-SDK-doc-builds/update-board-porting-instructions/processor-sdk-rtos/esd/docs/06_03_00/rtos/index_overview.html#building-the-sdk

Out2rprc.exe and MulticoreImageGen.exe are tools supplied by TI and can be located in the
<PDK>/packages/ti/boot/sbl/tools folder. “rprc output” can be any spare name of your
choosing. “output name” can also be any name of your choosing. For diagnostic
applications, your �nal output name must have the keyword “TEST” in it. You will have to
do this process for every .out application you wish to be loadable on the SD card.

Alternatively, there is also a make target to automate this process:

1. cd <PDK>/packages/ti/board/diag
2. make <BOARD>_sd

This will compile all the applications for a speci�c $BOARD, and also create the SD card
loadable �les. The output �les will be located in:
<PDK>/packages/ti/board/bin/<BOARD>/sd. Note that the framework application is named
“app” to allow it to be the default application to be loaded by the SBL.

 Note

Diagnostic tests on AM65xx platform supports A53 and R5 cores. A53 binary path:
<PDK>/packages/ti/board/bin/<BOARD>/sd/armv8. R5 binary path:
<PDK>/packages/ti/board/bin/<BOARD>/sd/armv7.

3.2.2.4. Creating the SPI Flash Loadable Files

SPI boot shall be the primary boot option for the platforms (Ex: AMIC110 ICE) which does not
support SD card interface. All the diagnostic tests are integrated into framework binary for
the ease of use in the case of SPI boot. Integrated diagnostic framework test binary can be
loaded and executed through UART port.

Use below command to build the diagnostic tests and create SPI �ash loadable �les.

make <BOARD>_spi

3.2.2.5. Make targets

The simplest invocation is to use “make <BOARD>” to compile all the applications. Here is a
list of make targets implemented for the diagnostic make�le:

make <BOARD> - compile all diagnostic applications for one speci�c BOARD
make clean - clean and remove all applications for all supported BOARDs
make <BOARD>_clean - clean and remove all application for one speci�c BOARD
make <BOARD>_sd - compile all diagnostic applications for one speci�c BOARD and
create the SD card loadable �les with those compiled applications

make <BOARD>_spi - compile all diagnostic applications for one speci�c BOARD and
create the SPI �ash loadable �les with those compiled applications

The <BOARD> supported depends on your Processor SDK RTOS variant. Refer to following
table for available <BOARD> for each Processor SDK RTOS variant:

 Note

OMAPL137 EVM diagnostic tests does not support executing from a boot device. Use the
command make evmOMAPL137 to build the diagnostics. Diagnostics test binaries need to
be executed from CCS.

3.2.3. Running the Diagnostic Examples

3.2.3.1. Loading through SD Card (Default Method)

Your SD card must be set up to a bootable format. Refer to the Processor SDK RTOS Boot
page for information on how the SD card is handled.

You will need to compile the diagnostic applications for your BOARD, created their respective
SD card loadable �les, and copied them onto an SD card. You will also need the SBL (renamed
to “MLO”) on the SD card. To do so:

1. cd <PDK>/packages/ti/board/diag
2. make <BOARD>_sd
3. copy all the content under <PDK>/packages/ti/board/bin/<BOARD>/sd to your SD card
4. copy the MLO to your SD card (default location at

<PDK>/packages/ti/boot/sbl/binary/<BOARD>/mmcsd
5. insert your SD card into your board and power on your board
6. open Terminal emulator program eg: Teraterm to connect to the board’s UART console

 Note

Use MAIN UART0 console for running the tests on A53 core and MCU UART console for
running the tests on R5 core for AM65xx platform.

1. press the “Hard Reset” button on your board. (This is to force re-booting, and not
absolutely necessary. Because Terminal emulator program is opened after boot is

make target / Variant am335x am437

<Board> evmAM335x skAM335x bbbAM335x icev2AM33 5x iceAMIC11 0 evmAM

file:///C:/share_folder/Processor-SDK-doc-builds/update-board-porting-instructions/processor-sdk-rtos/esd/docs/06_03_00/rtos/index_Foundational_Components.html#boot

powered on, you would’ve missed the initial printout messages. This step is for
demonstration and con�dence checking that the board has booted correctly)

 Note

Diagnostic tests on AM65xx platform supports A53 and R5 cores. A53 binary path:
<PDK>/packages/ti/board/bin/<BOARD>/sd/armv8. R5 binary path:
<PDK>/packages/ti/board/bin/<BOARD>/sd/armv7.

 Note

SBL binary name is di�erent on AM65xx platform and requires system �rmware binary
also to be copied to SD card. Copy the sbl_mmcsd_img_mcu1_0_release.tiimage �le from
<PDK>/packages/ti/boot/sbl/binary/mmcsd/<BOARD> to SD card and rename it to
tiboot3.bin. Copy the system �rmware image
<PDK>/packages/ti/drv/sciclient/soc/V0/sysfw.bin to SD card

You should see the following screen when board is bootted with diagnostic binaries in SD
card:

The framework diagnostic application should be loaded through SBL, and gives you the
options:

help - prints the command menu and descriptions of the commands
run - run a diagnostic application found on the SD card

status - current status of the framework run

Below is an example of running a diagnostic application:

Result of return from above run:

3.2.3.2. Loading through SPI Flash

This section describes creating the diagnostic test images for SPI �ash booting, programming
and running them from SPI �ash. Currently SPI boot is supported only by iceAMIC110
platform.

You will need to compile the diagnostic applications for your BOARD, create their respective
SPI �ash loadable �les, and program them onto SPI �ash. To do so:

1. cd <PDK>/packages/ti/board/diag
2. make <BOARD>_spi
3. Start CCS and launch target con�guration �le for AMIC110 ICE board
4. Connect the target, load and run the SPI �ash writer binary. Prebuilt SPI �ash writer is

available at <AM335x
PDK>packagestistarterwaretools�ash_writerspi_�ash_writer_AM335X.out

5. Choose option 1 to initiate image �ashing
6. Enter the �le name as SPI bootloader along with full path (Ex: <AM335x

PDK>packagestistarterwarebinarybootloaderbinam335x-
evmgccbootloader_boot_mcspi_a8host_release_ti.bin)

7. Enter o�set as 0
8. Wait until �ashing completes successfully
9. Rerun the SPI �ash writer binary and program diagnostic framework loader at o�set

20000. Diagnostic framework loader binary will be available at <AM335x
PDK>packagestiboardbiniceAMIC110spiapp

10. Rerun the SPI �ash writer binary and program diagnostic framework at o�set 40000.
Diagnostic framework binary will be available at <AM335x
PDK>packagestiboardbiniceAMIC110spiframework

Sample CCS output of SPI �ash writer is shown below:

1. open Terminal emulator program eg: Teraterm to connect to the board’s UART console
2. press the “Hard Reset” button on your board. (This is to force re-booting, and not

absolutely necessary. Because Terminal emulator program is opened after boot is
powered on, you would’ve missed the initial printout messages. This step is for
demonstration and con�dence checking that the board has booted correctly)

You should see the following screen:

The framework diagnostic application should be loaded through SBL, and gives you the
options:
help - prints the command menu and descriptions of the commands
run - run a diagnostic application found on the SD card
status - current status of the framework run

Below is an example of running a diagnostic application:

Result of return from above run:

3.2.3.3. Running or debugging on CCS

To debug your application, CCS can give you access to the chip’s memory and register values.
You can follow the below steps to load and run an application in CCS. If you have a SD card
loadable image, and is able to load your application, you can connect to the A15 core in CCS
and load symbols without having to load and run the entire application. After running “make
all” or “make $BOARD”, the output �les should be generated under
<PDK>/packages/ti/board/bin/ directory. You will have to navigate down to the $BOARD
you’re building (eg. idkAM572x, evmAM572x, etc.) and the $TARGET core you’re building for
(eg. armv7).

For the existing diagnostic applications, you may need to de�ne PDK_RAW_BOOT before
compiling. This is done by adding the line “#de�ne PDK_RAW_BOOT” to an individual
application source �le or to <PDK>/packages/ti/board/src/<BOARD>/include/board_cfg.h to
apply for all applications. This is used because the default diagnostic loading method is
through SD card, and the pinmux is done already. Adding this option only forces the
diagnostic applications to do pinmuxing within the application itself (and not depend it being
done).

To run on CCS:

1. Connect USB cable to the board’s JTAG
2. Connect the UART serial cable. For the IDK boards, the UART console is the same as the

usb JTAG connector, so no additional cable is necessary.
3. Plug in power cord to your board
4. Press the power button on the board to turn the board on
5. Setup and run CCSv6.1 (or higher). Follow the Processor SDK RTOS Getting Started Guide

on how to setup your CCS to connect to the board
6. Launch target con�guration for the board
7. Connect to the core that you built your application for. For example: for idkAM572x armv7

projects, click on the Cortex A-15 MPU0 core and press the connect button
8. Load the program by pressing the load button and navigate the explorer to the .out �le

that you want to load
9. Press the Run button to run the program

10. Check UART console to see if anything is printed out. **If nothing is printed out, pause the
core and see where the program counter is at. If it is at 0x3808c (or near it), try reloading
the program and running again.

 Note

Diagnostics are built for both DSP (C674x) and ARM (arm9) cores on omapl13x platform.

3.2.3.4. Running on a di�erent ARM core

The diagnostic baremetal applications are typically targeted for Core 0 of an ARM corepac. It
is possible to load and run it on one of the subcores in CCS. To do so, please consider the
following:

file:///C:/share_folder/Processor-SDK-doc-builds/update-board-porting-instructions/processor-sdk-rtos/esd/docs/06_03_00/rtos/index_overview.html#processor-sdk-rtos-getting-started-guide

1. Enable Cache - setup typically only enables cache for the main ARM core. You may have to
explicitly enable the data and instruction cache. See relevant cache functions under
pdk/packages/ti/csl/arch.

2. [For AM57x boards] Set OPP to high - SBL would set OPP to high for Core 0, but may not
do it for the subcores. You can do so by using the GEL �le. After connecting to the core,
run the function under Scripts -> AM572x PRCM CLOCK con�guration ->
AM572x_PRCM_Clock_Con�g_OPPHIGH (similarly named for AM571x).

3.2.4. Diagnostic Applications

Name Description

lcdTouchscreen_TEST Test for device detection and read the X, Y and Z axis values to con�rm

adc_TEST Test for ADC con�guration for Channel sequencing and One shot mod

ambient_TEST Test for device detection on board and working of the light sensor.

buzzer_TEST Writes to GPIO in connected to a buzzer. Requires user to verify sound

clock_TEST Probes the clock generator on I2C bus

currentMonitor_TEST Read voltage, current on I2C devices

currentMonitorStress_TEST Read voltage, current on I2C devices. Test is repeated for 100 cycles. P

dcan_TEST Does DCAN loopback writes and reads. Passes on successful return.

eeprom_TEST Reads the EEPROM and prints out the board’s ID information. Passes

emac_TEST Sends packet o PHY loopback t verify MAC operations

emacStress_TEST Veri�es EMAC Ethernet ports by sending and receiving 10240 packets

emmc_TEST Writes to and read from eMMC memory. Passes on reading back the c

emmcStress_TEST Writes to and read from eMMC memory. Test covers the entire eMMC

app The main diagnostic application. This is loaded by SBL and can load ot

gmac_TEST Sends and receive packets over ethernet, both internally and external

haptics_TEST Writes to the GPIO pin connected to a motor (haptics). Requires user t

hdmi_TEST Tests HDMI display output

icssEmac_TEST Con�gures one ICSS EMAC port and tests functionality via packet loop

lcd_TEST Tests LCD display output and touch input

lcdTouchscreen_TEST Prompts the user for touches on the LCD touchscreen and report bac

led_TEST Cycles through GPIO LEDs on the board. Requires user to verify the LE

ledStress_TEST Cycles through GPIO LEDs on the board. Requires user to verify the LE

Name Description

ledIndustrial_TEST Cycles through the I2C LEDs on the board. Requires user to verify LED

ledIndustrialStress_TEST Cycles through the I2C LEDs on the board. Requires user to verify LED

mcspi_TEST Attempts one write and read on the MCSPI header. Requires user to v

mem_TEST Writes and reads to external (DDR) memory of the board. Value writte

memStress_TEST Writes and reads to external (DDR) memory of the board. Walking 1’s

mmcsd_TEST Writes to and read from MMCSD memory. Passes on reading back the

mmcsdStress_TEST Writes to and read from MMCSD memory. Passes on reading back the

nand_TEST Tests reading and writing to NAND �ash memory

nor�ash_TEST Tests reading and writing to NOR �ash memory

nor�ashStress_TEST Tests reading and writing to NOR �ash memory. Entire NOR �ash mem

oled_TEST Light up the OLED display to verify functionality

pmic_TEST Writes and reads to the PMIC controller. This is to verify ability to use

qspi_TEST Tests the Quad SPI by writing and reading back the value written to m

rotarySwitch_TEST Tests the rotary switch at the 10 possible positions

rtc_TEST Test for setting date and time to RTC registers and running the clock

temperature_TEST Tests reading back from temperature sensor via I2C. Test passes on s

temperatureStress_TEST Tests reading back from temperature sensor via I2C. Test passes on s

uart2usb_TEST Tests uart messages over usb port.

uart_TEST Data Path continuity test for UART output. Requires user to verify that

uartStress_TEST
Veri�es UART port with large block of data transfer. Sends 10M

Need to run this test from CCS. SD boot support is not availabl

mcasp_TEST On-board audio codec functionality is exercised by this test. Audio sup

mcaspAudioDC_TEST Multi-channel audio daughter card functionality is exercised by this te

pwm_TEST Demonstrates the usage of PWM CSL FL APIs by con�guring the PWM

usbDevice_TEST Veri�es the USB device mode operation of board under test. USB mod

usbHost_TEST Veri�es the USB host mode operation of boardf under test. USB modu

usbHostStress_TEST Veri�es the USB host mode operation of boardf under test. USB modu

ospi_TEST Tests the Octal SPI by writing and reading back the value written to m

ospiStress_TEST Tests the Octal SPI by writing and reading back the value written to m

Some diagnostic applications expect additional jumpers or hardware settings to complete.
Refer to below section.

3.2.5. Additional Jumper or Hardware Settings

3.2.5.1. Current Monitor

For iceK2G, this test expects J16 and J17 to be connected with jumper shunts. This enables
the current monitors to be used.

3.2.5.2. GMAC

For idkAM572x, idkAM571x, idkAM574x and evmAM572x, this test expects loopback plugs to
be used on both Ethernet ports. These loopback plugs will loopback the TX lines back to the
RX lines. The Ethernet ports are the RJ-45 connectors labeled “Ethernet” on the board.

3.2.5.3. ICSS EMAC

Name Description

pcie_TEST Tests the PCIe interface in end point and rootcomplex mode using tw

bootEeprom_TEST Veri�es boot EEPROM by writing a block of data, reading back written

bootEepromStress_TEST Veri�es boot EEPROM read/write covering entire memory.

extRtc_TEST Test for setting date and time to external RTC and running the clock

extRtcStress_TEST Test for setting date and time to external RTC and running the clock. T

icssgEmac_TEST Veri�es ICSSG EMAC ports in loopback with one port connected to ano

icssgEmacStress_TEST Veri�es ICSSG EMAC ports in loopback with one port connected to ano

icssgLed_TEST Cycles through LEDs on the IDK application board.

icssgLedStress_TEST Cycles through LEDs on the IDK application board. Test is repeated fo

bootSwitch_TEST Veri�es boot mode switch by con�guring boot strap pins as GPIOs and

button_TEST Veri�es push buttons on the board. Test prompts for pressing a speci

mcan_TEST Veri�es MCAN ports on the board with two ports connected with each

mcanStress_TEST Veri�es MCAN ports on the board with two ports connected with each

rs485_TEST Veri�es PRU UART port on the board. Supports board to board test an

rs485Stress_TEST
Veri�es PRU UART port on the board. Sends 10MB of data from

Need to run this test from CCS. SD boot support is not availabl

Power On Self Test Veri�es basic memory devices on the board and displays the board ID

For idkAM572x, idkAM574x and idkAM571x, this test expects loopback plug to be used on J6.
These loopback plugs will loopback the TX lines back to the RX lines. For iceK2G, this test
expects loopback plugs to be used on all four ICSS EMAC ports.

3.2.5.4. LCD Touchscreen

For idkAM572x, idkAM574x and idkAM571x, this test expects the LCD module to be
connected. This requires the two ribbon cables (one for display, one for the capacitive-touch
IC) to be connected.

3.2.5.5. McSPI

For idkAM572x, idkAM574x and idkAM571x, this test expects pins to be connected to the
Industrial I/O header. The Industrial I/O header, J37, has two columns in parallel, one of which
is the McSPI input and the other being VDD. Thus, connecting any row with a jumper will yield
a ‘1’ read on that McSPI input. By connecting the �rst, second, third, and forth row with
jumpers would yield 0x1, 0x2, 0x4, and 0x8 being read respectively.

3.2.5.6. PWM

PWM output generated while running the diagnostic test can be veri�ed at below pins.

evmK2G - J12 pin 33

evmAM572x - P17 pin 5

idkAM437x - J16 pin 14

evmAM335x - J5 pin 13

3.3. Diagnostics Execution

3.3.1. Overview

Detailed test procedure and additional HW setup needed for running the processor SDK
board diagnostic tests are explained in the following sections. Logs shown for each test are
for sample reference, actual logs may slightly vary from platform to platform.

Two di�erent modes of diagnostic tests are supported - Functional and Stress. Functional
tests verify basic functionality of an interface to con�rm the interface HW connectivity. Stress
tests verify the functionality of an interface under stress conditions which will con�rm the
stability of the HW interface.

Refer to Diagnostic Applications section for details of the platforms supported by each of the
diagnostic tests described below.

Application/Daughter cards required for running the test are not mentioned in the test setup
assuming the tests are run with full HW kit.

3.3.2. Functional Tests

This section describes the test procedure and setup for diagnostic functional tests.

3.3.2.1. Accelerometer Test

This test veri�es the Accelerometer sensor on the HW platform under test.

3.3.2.1.1. Test Accessories

No additional accessories are required for running this test.

3.3.2.1.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.2.1.3. Test Execution

Select the menu option to run ‘accelerometer_TEST’
Verify the test log on serial console

3.3.2.1.4. Test Log

Sample log for Accelerometer test is shown below

* Accelerometer Test *

Test: Expected Result: Actual Result: Result:
---------------- ---------------- -------------- -------
0x32 PASS
Self-Test(X Axis) 120-550 247 PASS
Self-Test(Y axis) 120-550 192 PASS
Self-Test(Z Axis) 140-750 349 PASS
Exiting

3.3.2.2. ADC Test

This test veri�es ADC interface on the HW platform under test.

3.3.2.2.1. Test Accessories

No additional accessories are required for running this test.

3.3.2.2.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.2.2.3. Test Execution

Select the menu option to run ‘adc_TEST’
Verify the test log on serial console

3.3.2.2.4. Test Log

Sample log for ADC test is shown below

* ADC Test *

Voltage sensed on the AN0 line : 846mV
Voltage sensed on the AN1 line : 1156mv

Test PASSED!

3.3.2.3. Boot EEPROM Test

This test veri�es Boot EEPROM memory. First and last page of the EEPROM are written with a
test pattern and read back for data veri�cation.

3.3.2.3.1. Test Accessories

No additional accessories are required for running this test.

3.3.2.3.2. Test Setup

Make sure pins 2-3 of J44 and J45 headers on AM65x CP board are shorted

3.3.2.3.3. Test Execution

Select the menu option to run ‘bootEeprom_TEST’
Verify the test log on serial console

3.3.2.3.4. Test Log

Sample log for boot EEPROM test is shown below

* Boot EEPROM Test *

Running Boot EEPROM test

Detecting the Boot EEPROM device...

Boot EEPROM device detection successful

Boot EEPROM boundary verification test...

Verifying the Boot EEPROM first page...

Verifying the Boot EEPROM last page...

Boot EEPROM boundary verification test successful

Boot EEPROM test Passed

3.3.2.4. Boot Switch Test

Test veri�es boot mode switch by con�guring boot strap pins as GPIOs and reading the pin
state with boot switch set in di�erent patterns. Test prompts to set the boot switch with a
speci�c pattern and waits for user con�rmation of the setting. ON-OFF-ON… sequence
indicated by the test starts from switch position 1.

3.3.2.4.1. Test Accessories

No additional accessories are required for running this test.

3.3.2.4.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.2.4.3. Test Execution

Select the menu option to run ‘bootSwitch_TEST’
Setup the boot switch as instructed by the serial console log
Verify the test log on serial console

3.3.2.4.4. Test Log

Sample log for boot switch test is shown below

* Boot Switch Test *

Set All switches to OFF
Press Enter after setting the switches

Set the Switches to ON-OFF-ON-OFF...
Press Enter after setting the switches

Set the Switches to OFF-ON-OFF-ON...
Press Enter after setting the switches

Set All switches to ON
Press Enter after setting the switches

Test Passed

3.3.2.5. Button Test

Veri�es push buttons on the board. Test prompts for pressing a speci�c button which should
be detected by the test and displayed on the console.

3.3.2.5.1. Test Accessories

No additional accessories are required for running this test.

3.3.2.5.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.2.5.3. Test Execution

Select the menu option to run ‘button_TEST’
Press the button as instructed by the test messages on the serial console.
Verify the test log on serial console. Make sure the button press is detected properly.

 Note

Button release detection is supported only on AM65xx platform.

3.3.2.5.4. Test Log

Sample log for push button test is shown below

* Button Test *

Running button test...
Button SW 5 WAIT Waiting for button press Button Pressed
Button SW 5 WAIT Waiting for button release Button released
Button SW 5 PASS
Button SW 6 WAIT Waiting for button press Button Pressed
Button SW 6 WAIT Waiting for button release Button released
Button SW 6 PASS
Test PASSED!

3.3.2.6. Buzzer Test

This test veri�es the Buzzer interface on the HW platform under test.

3.3.2.6.1. Test Accessories

No additional accessories are required for running this test.

3.3.2.6.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.2.6.3. Test Execution

Select the menu option to run ‘buzzer_TEST’
Verify the Buzzer sound on the HW platform
Verify the test log on serial console
Press ‘y’ to con�rm proper buzzer output or any other key to indicate failure

3.3.2.6.4. Test Log

Sample log for buzzer test is shown below

* Buzzer Test *

Testing Buzzer sound
Press 'y' to verify pass: y
Received: y

Test PASSED!

3.3.2.7. Clock Generator Test

This test veri�es clock generator interface on the HW platform under test. Need to probe and
con�rm the clocks during the test.

3.3.2.7.1. Test Accessories

Oscilloscope to verify the clock outputs

3.3.2.7.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.2.7.3. Test Execution

Select the menu option to run ‘clock_TEST’
Verify the test log on serial console
Verify the clock generator output clocks and con�rm the result on the serial console

3.3.2.7.4. Test Log

Sample log for clock generator test is shown below

 CLOCK GENERATOR Test

Running Clock generator Detect Test

Clock generator Detection Successful!

Clock generator Detect Test Passed!

Running Clock generator probe Test

Probe the clock generator clock outputs
Are the signals generated properly ?
Press 'Y' to confirm, any other key to deny
y

Clock generator probe Test Passed!

Clock generator Test Passed!

Clock generator Tests Completed!!

-----------------X-----------------

3.3.2.8. Current Monitor Test

Test reads the voltage and current values from di�erent current monitor devices available on
the board. All the current monitor devices available on the board are veri�ed during the test.

3.3.2.8.1. Test Accessories

No additional accessories are required for running this test.

3.3.2.8.2. Test Setup

For iceK2G, this test expects J16 and J17 to be connected with jumper shunts. This enables
the current monitors to be used.

3.3.2.8.3. Test Execution

Select the menu option to run ‘currentMonitor_TEST’
Verify the test log on serial console

3.3.2.8.4. Test Log

Sample log for current monitor test is shown below

**
* Current Monitor Test *
**

Running Current Monitor Test...

Verifying Device VDD_CORE at Address - 0x40
Setting the configuration register...
Setting the calibration register...
Calibration Value = 16777
Reading the Shunt Voltage register...
Shunt Voltage Register Value = 9
Shunt Voltage = 0mV
Reading the Bus Voltage register...
Bus Voltage Register Value = 800
Bus Voltage = 1000mV
Reading the Power register...
Power Register Value = 3
Power = 915mW
Reading the Current register...
Current Register Value = 74
Current = 11mA

Verifying Device VDD_MCU at Address - 0x41
Setting the configuration register...
Setting the calibration register...
Calibration Value = 16777
Reading the Shunt Voltage register...
Shunt Voltage Register Value = 1534
Shunt Voltage = 3mV
Reading the Bus Voltage register...
Bus Voltage Register Value = 797
Bus Voltage = 996mV
Reading the Power register...
Power Register Value = 501
Power = 19108mW
Reading the Current register...
Current Register Value = 12566
Current = 383mA

Verifying Device VDD_MPU at Address - 0x42
Setting the configuration register...
Setting the calibration register...
Calibration Value = 27962
Reading the Shunt Voltage register...
Shunt Voltage Register Value = 6
Shunt Voltage = 0mV
Reading the Bus Voltage register...
Bus Voltage Register Value = 802
Bus Voltage = 1002mV
Reading the Power register...
Power Register Value = 3
Power = 503mW
Reading the Current register...
Current Register Value = 82
Current = 7mA

Verifying Device SoC_DVDD3V3 at Address - 0x43
Setting the configuration register...
Setting the calibration register...
Calibration Value = 27962
Reading the Shunt Voltage register...
Shunt Voltage Register Value = 15
Shunt Voltage = 0mV
Reading the Bus Voltage register...
Bus Voltage Register Value = 2665
Bus Voltage = 3331mV
Reading the Power register...
Power Register Value = 28
Power = 2670mW
Reading the Current register...
Current Register Value = 205
Current = 18mA

Verifying Device SoC_DVDD1V8 at Address - 0x44
Setting the configuration register...
Setting the calibration register...
Calibration Value = 5592
Reading the Shunt Voltage register...
Shunt Voltage Register Value = 108
Shunt Voltage = 0mV
Reading the Bus Voltage register...
Bus Voltage Register Value = 1442
Bus Voltage = 1802mV
Reading the Power register...
Power Register Value = 21
Power = 3204mW
Reading the Current register...
Current Register Value = 295
Current = 26mA

Verifying Device SoC_AVDD1V8 at Address - 0x45
Setting the configuration register...
Setting the calibration register...
Calibration Value = 41943
Reading the Shunt Voltage register...
Shunt Voltage Register Value = 1196
Shunt Voltage = 2mV
Reading the Bus Voltage register...
Bus Voltage Register Value = 1442
Bus Voltage = 1802mV
Reading the Power register...
Power Register Value = 387
Power = 14760mW
Reading the Current register...
Current Register Value = 5358
Current = 65mA

Verifying Device SoC_VDDS_DDR at Address - 0x46
Setting the configuration register...
Setting the calibration register...
Calibration Value = 8388
Reading the Shunt Voltage register...
Shunt Voltage Register Value = 256
Shunt Voltage = 0mV

Reading the Bus Voltage register...
Bus Voltage Register Value = 956
Bus Voltage = 1195mV
Reading the Power register...
Power Register Value = 50
Power = 1335mW
Reading the Current register...
Current Register Value = 1049
Current = 63mA

Verifying Device VDD_DDR at Address - 0x47
Setting the configuration register...
Setting the calibration register...
Calibration Value = 8388
Reading the Shunt Voltage register...
Shunt Voltage Register Value = 38
Shunt Voltage = 0mV
Reading the Bus Voltage register...
Bus Voltage Register Value = 957
Bus Voltage = 1196mV
Reading the Power register...
Power Register Value = 8
Power = 689mW
Reading the Current register...
Current Register Value = 156
Current = 9mA

3.3.2.9. DCAN Test

This test veri�es the DCAN ports on the HW platform under test. Test supports verifying the
DCAN interface in internal and external loopback modes.

3.3.2.9.1. Test Accessories

DCAN loopback cable (for evmK2G)

3.3.2.9.2. Test Setup

Connect two DCAN ports (P2 and P3) with DCAN loopback cable - only on evmK2G

3.3.2.9.3. Test Execution

Select the menu option to run ‘dcan_TEST’
Follow the instructions on serial console to select the DCAN instance
Verify the test log on serial console

3.3.2.9.4. Test Log

Sample log for DCAN test is shown below

* DCAN Test *

**** DCAN APPLICATION TEST ****
Menu:
1. DCAN External Loopback test - DCAN1 Instance
2. DCAN Internal Loopback test - DCAN2 Instance
x. Exit
Select DCAN APPLICATION TEST : 1

DCAN External Loopback Test App: DCAN1 MSG OBJ 1 (TX) to DCAN1 MSG OBJ 2 (RX)

DCAN -- External Loopback Testmode test Passed!!

**** DCAN APPLICATION TEST ****
Menu:
1. DCAN External Loopback test - DCAN1 Instance
2. DCAN Internal Loopback test - DCAN2 Instance
x. Exit
Select DCAN APPLICATION TEST : 2

DCAN Internal Loopback Test App: DCAN2 MSG OBJ 1 (TX) to DCAN2 MSG OBJ 2 (RX)

DCAN -- Internal Loopback Testmode test Passed!!

**** DCAN APPLICATION TEST ****
Menu:
1. DCAN External Loopback test - DCAN1 Instance
2. DCAN Internal Loopback test - DCAN2 Instance
x. Exit
Select DCAN APPLICATION TEST : x

DCAN Application Test exiting...

3.3.2.10. EEPROM Test

This test reads and displays the board ID details from the EEPROM memory.

3.3.2.10.1. Test Accessories

No additional accessories are required for running this test.

3.3.2.10.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.2.10.3. Test Execution

Select the menu option to run ‘eeprom_TEST’
Verify the board ID details displayed on the serial console

3.3.2.10.4. Test Log

Sample log for Board ID EEPROM test is shown below

* EEPROM Test *

header: aa5533ee
boardName: 66AK2GICE
version: 1.0A
serialNum: 09164P540001
Test PASSED!

 Note

Board ID content shown in the above log changes from platform to platform.

3.3.2.11. EMAC Test

This test veri�es the EMAC Ethernet port on HW platform under test. Ethernet link and data
transmit/receive are veri�ed during this test. Ethernet interface is con�gured for 100mbps
speed and 10 packets are sent/received during the test. Ethernet cable disconnect/reconnect
and data transfer after cable connection is also veri�ed during the test.

3.3.2.11.1. Test Accessories

Ethernet loopback cables/plugs

3.3.2.11.2. Test Setup

Connect the Ethernet loopback cables to the EMAC Ethernet port (RJ-45) on the board. Check
below table for the details of EMAC Ethernet ports used by the test on di�erent platforms.

HW Platform Ethernet Port

HW Platform Ethernet Port

iceK2G J10

am65xx_evm J12 on CP board

am65xx_idk J12 on CP board

3.3.2.11.3. Test Execution

Select the menu option to run ‘emac_TEST’
Follow the instructions on serial console for disconnecting and connecting the cable
during the test.
Verify the test log on serial console

3.3.2.11.4. Test Log

Sample log for Ethernet loopback test is shown below

**
* ETHERNET LOOPBACK Test *
**

Reading Ethernet PHY Register Dump...
Register Dump for PHY Addr - 0x0000
PHY Register 0x0000 - 0x1140
PHY Register 0x0001 - 0x7949
PHY Register 0x0002 - 0x2000
PHY Register 0x0003 - 0xa231
PHY Register 0x0004 - 0x01e1
PHY Register 0x0005 - 0xc1e1
PHY Register 0x0006 - 0x006f
PHY Register 0x0007 - 0x2001
PHY Register 0x0008 - 0x4806
PHY Register 0x0009 - 0x0300
PHY Register 0x000a - 0x8c00
PHY Register 0x000b - 0x0000
PHY Register 0x000c - 0x0000
PHY Register 0x000d - 0x401f
PHY Register 0x000e - 0x0006
PHY Register 0x000f - 0x3000
PHY Register(STRAP1) 0x006e - 0x0000
PHY Register(STRAP2) 0x006f - 0x0000
RGMII Control Register (RGMIICTL) Value - 0x00d3
 --- RGMII_RX_CLK_DELAY - 0x0001
 --- RGMII_TX_CLK_DELAY - 0x0001
RGMII Delay Control Register (RGMIIDCTL) Value - 0x0077
EMAC loopback test application initialization
main: emac_open success
Configuring Phy
Waiting for Link Status
Link is UP!!

Sending Packet: 1
Sending Packet: 2
Sending Packet: 3
Sending Packet: 4
Sending Packet: 5
Sending Packet: 6
Sending Packet: 7
Sending Packet: 8
Sending Packet: 9
Sending Packet: 10
Received Packet: 1
Received Packet: 2
Received Packet: 3
Received Packet: 4
Received Packet: 5
Received Packet: 6
Received Packet: 7
Received Packet: 8
Received Packet: 9
Received Packet: 10

Packets sent: 10, Packets received: 10

Ethernet Loopback test passed
All tests completed
Please disconnect the loopback cable

Link is Down
Please reconnect the loopback cable
Link is UP

Reading Ethernet PHY Register Dump...
Register Dump for PHY Addr - 0x0000
PHY Register 0x0000 - 0x1000
PHY Register 0x0001 - 0x796d
PHY Register 0x0002 - 0x2000
PHY Register 0x0003 - 0xa231
PHY Register 0x0004 - 0x01e1
PHY Register 0x0005 - 0xc1e1
PHY Register 0x0006 - 0x006f
PHY Register 0x0007 - 0x2001
PHY Register 0x0008 - 0x4006
PHY Register 0x0009 - 0x1000
PHY Register 0x000a - 0x0000
PHY Register 0x000b - 0x0000
PHY Register 0x000c - 0x0000
PHY Register 0x000d - 0x401f
PHY Register 0x000e - 0x0006
PHY Register 0x000f - 0x3000
PHY Register(STRAP1) 0x006e - 0x0000
PHY Register(STRAP2) 0x006f - 0x0000
RGMII Control Register (RGMIICTL) Value - 0x00d3
 --- RGMII_RX_CLK_DELAY - 0x0001
 --- RGMII_TX_CLK_DELAY - 0x0001
RGMII Delay Control Register (RGMIIDCTL) Value - 0x0077
EMAC loopback test application initialization
main: emac_open success
Configuring Phy
Waiting for Link Status
Link is UP!!

Sending Packet: 1
Sending Packet: 2
Sending Packet: 3
Sending Packet: 4
Sending Packet: 5
Sending Packet: 6
Sending Packet: 7
Sending Packet: 8
Sending Packet: 9
Sending Packet: 10
Received Packet: 1
Received Packet: 2
Received Packet: 3
Received Packet: 4
Received Packet: 5
Received Packet: 6
Received Packet: 7
Received Packet: 8
Received Packet: 9
Received Packet: 10

Packets sent: 10, Packets received: 10

Ethernet Loopback test passed
All tests completed

3.3.2.12. eMMC Test

This test veri�es eMMC memory interface on the HW platform under test. 16KB of data is
written and read during the test.

3.3.2.12.1. Test Accessories

No additional accessories are required for running this test.

3.3.2.12.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.2.12.3. Test Execution

Select the menu option to run ‘emmc_TEST’
Verify the test log on serial console

3.3.2.12.4. Test Log

Sample log for eMMC test is shown below

* eMMC Test *

PASS: Read/Write Success for this pattern

3.3.2.13. External RTC Test

This test veri�es setting the time, date and running the clock for on-board RTC interface. RTC
con�guration is done through I2C interface. Time and date are read for 5 times for every
5secs during the test to demonstrate operation of the RTC clock.

3.3.2.13.1. Test Accessories

No additional accessories are required for running this test.

3.3.2.13.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.2.13.3. Test Execution

Select the menu option to run ‘extRtc_TEST’
Verify the test log on serial console
Con�rm the test result by pressing ‘y’ if RTC time/date changes properly or press any
key for failure

3.3.2.13.4. Test Log

Sample log for external RTC test is shown below

* RTC Test *

Setting Time...

Setting Date...

Reading Time...

Reading Date...

Displaying time: 11:59:53 PM
Displaying Day: Sunday
Displaying Date: 31/12/18

Displaying time: 11:59:57 PM
Displaying Day: Sunday
Displaying Date: 31/12/18

Displaying time: 12:0:2 AM
Displaying Day: Monday
Displaying Date: 1/1/19

Displaying time: 12:0:7 AM
Displaying Day: Monday
Displaying Date: 1/1/19

Displaying time: 12:0:12 AM
Displaying Day: Monday
Displaying Date: 1/1/19

Displaying time: 12:0:17 AM
Displaying Day: Monday
Displaying Date: 1/1/19
If the time and date increment, press 'y' to indicate pass or any other character to indicate failure
y

RTC test passed...

3.3.2.14. GMAC Test

This test veri�es the GMAC Ethernet ports of the HW platform under test.

3.3.2.14.1. Test Accessories

Ethernet loopback cables/plugs

3.3.2.14.2. Test Setup

Connect the Ethernet loopback cables to the GMAC Ethernet port (RJ-45) on the board. Check
below table for the details of GMAC Ethernet ports used by the test on di�erent platforms.

HW Platform Ethernet Port

idkAM571x J10 & J12

idkAM572x J10 & J12

idkAM574x J10 & J12

evmAM572x Both ports of P5

3.3.2.14.3. Test Execution

Select the menu option to run ‘gmac_TEST’
Verify the test log on serial console

3.3.2.14.4. Test Log

Sample log for GMAC test is shown below

* GMAC Test *

Test Port Link Link-Speed Status Error
-------------------- ---- ---- -------------------- ------ ---------------------------
Phy Loopback 1 Up Phy Loopback PASS
10Mbps Full-Duplex 1 Up 10Mbps Full duplex PASS
100Mbps Half-Duplex 1 Up 100Mbps Half duplex PASS
100Mbps Full-Duplex 1 Up 100Mbps Full duplex PASS
Phy Loopback 2 Up Phy Loopback PASS
10Mbps Full-Duplex 2 Up 10Mbps Full duplex PASS
100Mbps Half-Duplex 2 Up 100Mbps Half duplex PASS
100Mbps Full-Duplex 2 Up 100Mbps Full duplex PASS
Exiting

3.3.2.15. Haptics Test

This veri�es haptics motor using vibrations on the HW platform under test.

3.3.2.15.1. Test Accessories

No additional accessories are required for running this test.

3.3.2.15.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.2.15.3. Test Execution

Select the menu option to run ‘haptics_TEST’
Verify the test log on serial console
Check for the vibrations on the HW platform

3.3.2.15.4. Test Log

Sample log for Haptics test is shown below

* Haptics Test *

Testing Haptics (vibration)
Press 'y' to verify pass: y
Received: y

Test PASSED!

3.3.2.16. HDMI Test

This test veri�es HDMI display port on the HW platform under test. Color bar and di�erent
colors are displayed on HDMI monitor during the test.

3.3.2.16.1. Test Accessories

HDMI Display
HDMI cable

3.3.2.16.2. Test Setup

Connect the HDMI Display to the HDMI port on the board. Check below table for the details
of HDMI ports used by the test on di�erent platforms.

HW Platform HDMI Port

evmK2G J36

3.3.2.16.3. Test Execution

Select the menu option to run ‘hdmi_TEST’
Verify the color bar and di�erent colors displayed on the HDMI Monitor.
Verify the test log on serial console and con�rm test result.

3.3.2.16.4. Test Log

Sample log for HDMI test is shown below

 HDMI Test

Running HDMI Device Detect Test
sil9022 HDMI Chip version = b0
HDMI Device Detect Test Passed

Displaying Colorbar... WAIT Press 'y' if Colorbar is displayed, any other key for failure: y
Display Colorbar - PASS
Displaying WHITE... WAIT Press 'y' if WHITE is displayed, any other key for failure: y
Display WHITE - PASS
Displaying BLUE... WAIT Press 'y' if BLUE is displayed, any other key for failure: y
Display BLUE - PASS
Displaying GREEN... WAIT Press 'y' if GREEN is displayed, any other key for failure: y
Display GREEN - PASS
Displaying RED... WAIT Press 'y' if RED is displayed, any other key for failure: y
Display RED - PASS
Displaying PURPLE... WAIT Press 'y' if PURPLE is displayed, any other key for failure: y
Display PURPLE - PASS
Displaying PINK... WAIT Press 'y' if PINK is displayed, any other key for failure: y
Display PINK - PASS
Displaying BLACK... WAIT Press 'y' if BLACK is displayed, any other key for failure: y
Display BLACK - PASS
Displaying YELLOW... WAIT Press 'y' if YELLOW is displayed, any other key for failure: y
Display YELLOW - PASS

HDMI Tests Completed!!

-----------------X-----------------

3.3.2.17. ICSS EMAC Test

This test veri�es ICSS EMAC Ethernet port on HW platform under test. PRU-ICSS Ethernet
ports are con�gured for 100mbps speed and 5 packets are sent/received during the test.

3.3.2.17.1. Test Accessories

Ethernet loopback cables/plugs

3.3.2.17.2. Test Setup

Connect the Ethernet loopback cables to the PRU-ICSS Ethernet ports (RJ-45) on the board.
Check below table for the details of Ethernet ports used by the test on di�erent platforms.

HW Platform ICSS Ethernet Port

idkAM571x J6

idkAM572x J6

idkAM574x J6

iceK2G All ports of J8 & J9

3.3.2.17.3. Test Execution

Select the menu option to run ‘icssEmac_TEST’
Verify the test log on serial console

3.3.2.17.4. Test Log

Sample log for ICSS EMAC test is shown below

PRU_ICSS0 Loopback Test
Waiting for LINK UP, Make sure to plugin loopback cable
PRU_ICSS0 port 0 LINK IS UP
PRU_ICSS0 port 1 LINK IS UP

Sending Packets on Port 0
Sending Pkt 0
Received pkt: 0
Sending Pkt 1
Received pkt: 1
Sending Pkt 2
Received pkt: 2
Sending Pkt 3
Received pkt: 3
Sending Pkt 4
Received pkt: 4

Sending Packets on Port 1
Sending Pkt 0
Received pkt: 0
Sending Pkt 1
Received pkt: 1
Sending Pkt 2
Received pkt: 2
Sending Pkt 3
Received pkt: 3
Sending Pkt 4
Received pkt: 4
All tests have passed

PRU_ICSS0 Loopback Test Completed!

PRU_ICSS1 Loopback Test
Waiting for LINK UP, Make sure to plugin loopback cable
PRU_ICSS1 port 0 LINK IS UP
PRU_ICSS1 port 1 LINK IS UP

Sending Packets on Port 0
Sending Pkt 0
Received pkt: 0
Sending Pkt 1
Received pkt: 1
Sending Pkt 2
Received pkt: 2
Sending Pkt 3
Received pkt: 3
Sending Pkt 4
Received pkt: 4

Sending Packets on Port 1
Sending Pkt 0
Received pkt: 0
Sending Pkt 1
Received pkt: 1
Sending Pkt 2
Received pkt: 2
Sending Pkt 3
Received pkt: 3
Sending Pkt 4

Received pkt: 4
All tests have passed

PRU1_ICSS0 Loopback Test Completed!

3.3.2.18. ICSSG EMAC Test

This port to port Ethernet test veri�es the PRU-ICSS gigabit Ethernet interface on the board
under test. During the test, Ethernet interface is con�gured for 1000mbps speed with one
port of an ICSS instance is connected to another port. 5 packets are sent from one port and
received by another port. Both the ports are veri�ed for transmit and receive. All the ICSSG
EMAC ports available on the board veri�ed during the test. Note that ICSSG EMAC Test can
also run on a am65xx_idk with Interposer daughter card. For details of Interposer daughter
card, please refer to Device Drivers

3.3.2.18.1. Test Accessories

Ethernet cables

3.3.2.18.2. Test Setup

Connect Ethernet cable between two ports of an PRU-ICSS instance. Make such connections
on all the PRU-ICSS ports available Check below table for the detials of ICSSG Ethernet ports
used by the test on di�erent platforms

HW Platform ICSSG Ethernet Port

am65xx_evm Two ports on J14 of CP board.

am65xx_idk

Two ports on J14 of CP board.

Two ports on J1 of IDK board.

Two ports on J3 of IDK board.

am65xx_idk with Interposer card
Two ports on J14 of CP board.

Two ports on J3 of IDK board.

3.3.2.18.3. Test Execution

Select the menu option to run ‘icssgEmac_TEST’
Verify the test log on serial console

3.3.2.18.4. Test Log

file:///C:/share_folder/Processor-SDK-doc-builds/update-board-porting-instructions/processor-sdk-rtos/esd/docs/06_03_00/rtos/index_device_drv.html#emac

Sample log for ICSGG Ethernet test is shown below

* ICSSG EMAC TEST *

Reading Ethernet PHY Register Dump...

Register Dump for PHY Addr - 0x0000
PHY Register 0x0000 - 0x1140
PHY Register 0x0001 - 0x796d
PHY Register 0x0002 - 0x2000
PHY Register 0x0003 - 0xa231
PHY Register 0x0004 - 0x01e1
PHY Register 0x0005 - 0xc1e1
PHY Register 0x0006 - 0x006f
PHY Register 0x0007 - 0x2001
PHY Register 0x0008 - 0x4806
PHY Register 0x0009 - 0x0300
PHY Register 0x000a - 0x7c00
PHY Register 0x000b - 0x0000
PHY Register 0x000c - 0x0000
PHY Register 0x000d - 0x401f
PHY Register 0x000e - 0x0006
PHY Register 0x000f - 0x3000
PHY Register(STRAP1) 0x006e - 0x0000
PHY Register(STRAP2) 0x006f - 0x0000
RGMII Control Register (RGMIICTL) Value - 0x00d3
 --- RGMII_RX_CLK_DELAY - 0x0001
 --- RGMII_TX_CLK_DELAY - 0x0001
RGMII Delay Control Register (RGMIIDCTL) Value - 0x0077

Register Dump for PHY Addr - 0x0003
PHY Register 0x0000 - 0x1140
PHY Register 0x0001 - 0x796d
PHY Register 0x0002 - 0x2000
PHY Register 0x0003 - 0xa231
PHY Register 0x0004 - 0x01e1
PHY Register 0x0005 - 0xc1e1
PHY Register 0x0006 - 0x006f
PHY Register 0x0007 - 0x2001
PHY Register 0x0008 - 0x4806
PHY Register 0x0009 - 0x0300
PHY Register 0x000a - 0x3c00
PHY Register 0x000b - 0x0000
PHY Register 0x000c - 0x0000
PHY Register 0x000d - 0x401f
PHY Register 0x000e - 0x0006
PHY Register 0x000f - 0x3000
PHY Register(STRAP1) 0x006e - 0x0003
PHY Register(STRAP2) 0x006f - 0x0000
RGMII Control Register (RGMIICTL) Value - 0x00d3
 --- RGMII_RX_CLK_DELAY - 0x0001
 --- RGMII_TX_CLK_DELAY - 0x0001
RGMII Delay Control Register (RGMIIDCTL) Value - 0x0077

Register Dump for PHY Addr - 0x0000
PHY Register 0x0000 - 0x1140

PHY Register 0x0001 - 0x796d
PHY Register 0x0002 - 0x2000
PHY Register 0x0003 - 0xa231
PHY Register 0x0004 - 0x01e1
PHY Register 0x0005 - 0xc1e1
PHY Register 0x0006 - 0x006f
PHY Register 0x0007 - 0x2001
PHY Register 0x0008 - 0x4806
PHY Register 0x0009 - 0x0300
PHY Register 0x000a - 0x3c00
PHY Register 0x000b - 0x0000
PHY Register 0x000c - 0x0000
PHY Register 0x000d - 0x401f
PHY Register 0x000e - 0x0006
PHY Register 0x000f - 0x3000
PHY Register(STRAP1) 0x006e - 0x0000
PHY Register(STRAP2) 0x006f - 0x0000
RGMII Control Register (RGMIICTL) Value - 0x00d3
 --- RGMII_RX_CLK_DELAY - 0x0001
 --- RGMII_TX_CLK_DELAY - 0x0001
RGMII Delay Control Register (RGMIIDCTL) Value - 0x0077

Register Dump for PHY Addr - 0x0003
PHY Register 0x0000 - 0x1140
PHY Register 0x0001 - 0x796d
PHY Register 0x0002 - 0x2000
PHY Register 0x0003 - 0xa231
PHY Register 0x0004 - 0x01e1
PHY Register 0x0005 - 0xc1e1
PHY Register 0x0006 - 0x006f
PHY Register 0x0007 - 0x2001
PHY Register 0x0008 - 0x4806
PHY Register 0x0009 - 0x0300
PHY Register 0x000a - 0x7c00
PHY Register 0x000b - 0x0000
PHY Register 0x000c - 0x0000
PHY Register 0x000d - 0x401f
PHY Register 0x000e - 0x0006
PHY Register 0x000f - 0x3000
PHY Register(STRAP1) 0x006e - 0x0003
PHY Register(STRAP2) 0x006f - 0x0000
RGMII Control Register (RGMIICTL) Value - 0x00d3
 --- RGMII_RX_CLK_DELAY - 0x0001
 --- RGMII_TX_CLK_DELAY - 0x0001
RGMII Delay Control Register (RGMIIDCTL) Value - 0x0077

Register Dump for PHY Addr - 0x0000
PHY Register 0x0000 - 0x1140
PHY Register 0x0001 - 0x796d
PHY Register 0x0002 - 0x2000
PHY Register 0x0003 - 0xa231
PHY Register 0x0004 - 0x01e1
PHY Register 0x0005 - 0xc1e1
PHY Register 0x0006 - 0x006f
PHY Register 0x0007 - 0x2001
PHY Register 0x0008 - 0x4806
PHY Register 0x0009 - 0x0300
PHY Register 0x000a - 0x7c00
PHY Register 0x000b - 0x0000

PHY Register 0x000c - 0x0000
PHY Register 0x000d - 0x401f
PHY Register 0x000e - 0x0006
PHY Register 0x000f - 0x3000
PHY Register(STRAP1) 0x006e - 0x0000
PHY Register(STRAP2) 0x006f - 0x0000
RGMII Control Register (RGMIICTL) Value - 0x00d3
 --- RGMII_RX_CLK_DELAY - 0x0001
 --- RGMII_TX_CLK_DELAY - 0x0001
RGMII Delay Control Register (RGMIIDCTL) Value - 0x0077

Register Dump for PHY Addr - 0x0003
PHY Register 0x0000 - 0x1140
PHY Register 0x0001 - 0x796d
PHY Register 0x0002 - 0x2000
PHY Register 0x0003 - 0xa231
PHY Register 0x0004 - 0x01e1
PHY Register 0x0005 - 0xc1e1
PHY Register 0x0006 - 0x006f
PHY Register 0x0007 - 0x2001
PHY Register 0x0008 - 0x4806
PHY Register 0x0009 - 0x0300
PHY Register 0x000a - 0x3c00
PHY Register 0x000b - 0x0000
PHY Register 0x000c - 0x0000
PHY Register 0x000d - 0x401f
PHY Register 0x000e - 0x0006
PHY Register 0x000f - 0x3000
PHY Register(STRAP1) 0x006e - 0x0003
PHY Register(STRAP2) 0x006f - 0x0000
RGMII Control Register (RGMIICTL) Value - 0x00d3
 --- RGMII_RX_CLK_DELAY - 0x0001
 --- RGMII_TX_CLK_DELAY - 0x0001
RGMII Delay Control Register (RGMIIDCTL) Value - 0x0077
port 0: FW is ready
Port 0: FlowId 2
Port 0: Config FW Complete
port 1: FW is ready
Port 1: FlowId 3
Port 1: Config FW Complete
port 2: FW is ready
Port 2: FlowId 10
Port 2: Config FW Complete
port 3: FW is ready
Port 3: FlowId 11
Port 3: Config FW Complete
port 4: FW is ready
Port 4: FlowId 18
Port 4: Config FW Complete
port 5: FW is ready
Port 5: FlowId 19
Port 5: Config FW Complete

EMAC loopback test application initialization
main: emac_open success

Waiting for LINK UP, Make sure to plugin loopback cable
PRU_ICSS port 0 LINK IS UP!

EMAC loopback test application initialization
main: emac_open success

Waiting for LINK UP, Make sure to plugin loopback cable
PRU_ICSS port 1 LINK IS UP!

EMAC loopback test application initialization
main: emac_open success

Waiting for LINK UP, Make sure to plugin loopback cable
PRU_ICSS port 2 LINK IS UP!

EMAC loopback test application initialization
main: emac_open success

Waiting for LINK UP, Make sure to plugin loopback cable
PRU_ICSS port 3 LINK IS UP!

EMAC loopback test application initialization
main: emac_open success

Waiting for LINK UP, Make sure to plugin loopback cable
PRU_ICSS port 4 LINK IS UP!

EMAC loopback test application initialization
main: emac_open success

Waiting for LINK UP, Make sure to plugin loopback cable
PRU_ICSS port 5 LINK IS UP!

Sending Packets on Port - 0
Sending Packet: 1
Sending Packet: 2
Sending Packet: 3
Sending Packet: 4
Sending Packet: 5

Receiving Packets on Port - 1
Received Packet: 1
Received Packet: 2
Received Packet: 3
Received Packet: 4
Received Packet: 5

Packets Sent: 5, Packets Received: 5
Port 0 Send to Port 1 Receive Test Passed!

Sending Packets on Port - 1
Sending Packet: 1
Sending Packet: 2
Sending Packet: 3
Sending Packet: 4
Sending Packet: 5

Receiving Packets on Port - 0
Received Packet: 1
Received Packet: 2
Received Packet: 3
Received Packet: 4
Received Packet: 5

Packets Sent: 5, Packets Received: 5
Port 1 Send to Port 0 Receive Test Passed!

Sending Packets on Port - 2
Sending Packet: 1
Sending Packet: 2
Sending Packet: 3
Sending Packet: 4
Sending Packet: 5

Receiving Packets on Port - 3
Received Packet: 1
Received Packet: 2
Received Packet: 3
Received Packet: 4
Received Packet: 5

Packets Sent: 5, Packets Received: 5
Port 2 Send to Port 3 Receive Test Passed!

Sending Packets on Port - 3
Sending Packet: 1
Sending Packet: 2
Sending Packet: 3
Sending Packet: 4
Sending Packet: 5

Receiving Packets on Port - 2
Received Packet: 1
Received Packet: 2
Received Packet: 3
Received Packet: 4
Received Packet: 5

Packets Sent: 5, Packets Received: 5
Port 3 Send to Port 2 Receive Test Passed!

Sending Packets on Port - 4
Sending Packet: 1
Sending Packet: 2
Sending Packet: 3
Sending Packet: 4
Sending Packet: 5

Receiving Packets on Port - 5
Received Packet: 1
Received Packet: 2
Received Packet: 3
Received Packet: 4
Received Packet: 5

Packets Sent: 5, Packets Received: 5
Port 4 Send to Port 5 Receive Test Passed!

Sending Packets on Port - 5
Sending Packet: 1
Sending Packet: 2
Sending Packet: 3
Sending Packet: 4
Sending Packet: 5

Receiving Packets on Port - 4
Received Packet: 1
Received Packet: 2
Received Packet: 3
Received Packet: 4
Received Packet: 5

Packets Sent: 5, Packets Received: 5
Port 5 Send to Port 4 Receive Test Passed!

ICSSG Ethernet Port to Port Test Passed!
All Tests Completed

3.3.2.19. LCD Test

This test veri�es LCD display on the HW platform under test. Displaying color bar, LCD
backlight control and touch veri�cation is done during the test.

3.3.2.19.1. Test Accessories

LCD Display

3.3.2.19.2. Test Setup

Connect the LCD Display to the HW platform under test.

3.3.2.19.3. Test Execution

Select the menu option to run ‘lcd_TEST’
Verify the color bar displayed on the LCD display.
Verify that LCD backlight is getting changed during backlight control test
Provide touch inputs during the touch interface test and con�rm that positions are
detected properly
Verify the test log on serial console

 Note

Touch interface test is not supported on all the platforms. Refer to LCD Touchscreen Test
for touch interface test on other platforms.

3.3.2.19.4. Test Log

Sample log for LCD test is shown below

* Display Test *

LCD Board detect successfully

Running LCD Display Test...
DSS application started...
LCD configured successfully
Overlay configuration done
Video Port configuration done
Display the colour bar with maximum brightness

LCD Display Test Successfully

Running LCD Backlight Test

Changing Backlight... WAIT, Check the LCD panel

Increasing the brightness by varying the
duty cycle percentage form 0 to 100...

Decreasing the brightness by varying the
duty cycle percentage form 100 to 0...
 Press 'y' if Brightness is Increasing & Decreasing, Any other key for failure: y
Change Backlight - PASS

Running LCD Touch Detect Test

Running the LCD touch detect test...

Reading the touch device details
Reading the product ID...
The prod Id read is - 928
Reading the firmware version...
The firmware version read is - `ABC
Clearing the buffer status register...

Waiting for user to provide 20 single point touches...
(x - 371, y - 497)
(x - 672, y - 284)
(x - 371, y - 497)
(x - 785, y - 620)
(x - 819, y - 334)
(x - 857, y - 449)
(x - 387, y - 495)
(x - 679, y - 314)
(x - 792, y - 644)
(x - 805, y - 428)
(x - 821, y - 379)
(x - 909, y - 570)
(x - 909, y - 570)
(x - 794, y - 697)
(x - 807, y - 718)
(x - 824, y - 747)
(x - 952, y - 648)
(x - 829, y - 753)
(x - 839, y - 754)

(x - 890, y - 442)
LCD touch detect test passed!

3.3.2.20. LCD Touchscreen Test

This test veri�es the LCD Touchscreen on the HW platform under test.

3.3.2.20.1. Test Accessories

LCD Display

3.3.2.20.2. Test Setup

Connect the LCD Display to the HW platform under test.

3.3.2.20.3. Test Execution

Select the menu option to run ‘lcdTouchscreen_TEST’
Provide multiple touch points to verify multi-touch input detection
Verify the test log on serial console

3.3.2.20.4. Test Log

Sample log for LCD Touchscreen test is shown below

* Touchscreen Test *

Input 9 touches to exit test
Touch t1 t2 t3 t4 t5 t6
t7 t8 t9
1 343, 389 4095,4095 4095,4095 4095,4095 4095,4095 4095,4095
4095,4095 4095,4095 4095,4095
2 343, 389 4095,4095 4095,4095 4095,4095 4095,4095 4095,4095
4095,4095 4095,4095 4095,4095
3 343, 389 4095,4095 4095,4095 4095,4095 4095,4095 4095,4095
4095,4095 4095,4095 4095,4095
4 343, 389 4095,4095 4095,4095 4095,4095 4095,4095 4095,4095
4095,4095 4095,4095 4095,4095
5 343, 389 4095,4095 4095,4095 4095,4095 4095,4095 4095,4095
4095,4095 4095,4095 4095,4095
6 343, 389 4095,4095 4095,4095 4095,4095 4095,4095 4095,4095
4095,4095 4095,4095 4095,4095
7 426, 637 4095,4095 4095,4095 4095,4095 4095,4095 4095,4095
4095,4095 4095,4095 4095,4095
8 426, 637 4095,4095 4095,4095 4095,4095 4095,4095 4095,4095
4095,4095 4095,4095 4095,4095
9 426, 637 4095,4095 4095,4095 4095,4095 4095,4095 4095,4095
4095,4095 4095,4095 4095,4095
9 426, 637 4095,4095 4095,4095 4095,4095 4095,4095 4095,4095
4095,4095 4095,4095 4095,4095

3.3.2.21. ICSS LED Test

This test veri�es LEDs connected to PRU-ICSS ports. All the LEDs are turned ON and OFF for 3
times during the test.

3.3.2.21.1. Test Accessories

No additional accessories are required for running this test.

3.3.2.21.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.2.21.3. Test Execution

Select the menu option to run ‘icssgLed_TEST’
Con�rm that all the PRU-ICSS LEDs on the board are toggling during the test
Verify the test log on serial console
Con�rm the test result by pressing ‘y’ in case of success and any other key for failure

3.3.2.21.4. Test Log

Sample log for ICSS LED test is shown below

* ICSS LED Test *

Testing ICSSG PRG0 and PRG1 LED's
Blinking LEDs...
Press 'y' to verify pass, 'r' to blink again,
or any other character to indicate failure: y
Received: y

Test PASSED!

3.3.2.22. Industrial LED Test

This test veri�es industrial LEDs connected to I2C interface on the HW platform under test. All
the LEDs are turned ON and OFF for 3 times during the test.

3.3.2.22.1. Test Accessories

No additional accessories are required for running this test.

3.3.2.22.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.2.22.3. Test Execution

Select the menu option to run ‘ledIndustrial_TEST’
Con�rm that all the industrial LEDs on the board are toggling during the test
Verify the test log on serial console
Con�rm the test result by pressing ‘y’ in case of success and any other key for failure

3.3.2.22.4. Test Log

Sample log for industrial LED test is shown below

* Industrial LED Test *

Running Industrial LED test...
Verifying LED's connected to I2C IO Expander slave device...

Testing Industrial LEDs
Cycling Ethernet LEDs for 3 times
Press 'y' to verify pass, 'r' to cycle leds again,
or any other character to indicate failure: y
Received: y

Testing Industrial LEDs on AM65x IDK Board
Cycling Ethernet LEDs for 3 times
Press 'y' to verify pass, 'r' to cycle leds again,
or any other character to indicate failure: y
Received: y

Industrial LED test Passed

3.3.2.23. LED Test

This test veri�es general purpose user LEDs on the HW platform under test. All the LEDs are
turned ON and OFF for 3 times during the test.

3.3.2.23.1. Test Accessories

No additional accessories are required for running this test.

3.3.2.23.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.2.23.3. Test Execution

Select the menu option to run ‘led_TEST’
Con�rm that all the general purpose user LEDs on the board are toggling during the
test
Verify the test log on serial console
Con�rm the test result by pressing ‘y’ in case of success or any other key for failure

3.3.2.23.4. Test Log

Sample log for LED test is shown below

* LED Test *

Testing LED
Blinking LEDs...
Press 'y' to verify pass, 'r' to blink again,
or any other character to indicate failure: y
Received: y

Test PASSED!

3.3.2.24. Light Sensor Test

This test veri�es the Ambient Light Sensor on the HW platform under test.

3.3.2.24.1. Test Accessories

No additional accessories are required for running this test.

3.3.2.24.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.2.24.3. Test Execution

Select the menu option to run ‘ambient_light_sensor_TEST’
Verify the test log on serial console

3.3.2.24.4. Test Log

Sample log for Light Sensor test is shown below

* Ambient Light Test *

Test: Expected Result: Actual Result: Result:
---------------- ---------------- -------------- -------
PowerUp/Read 0x03 PASS
Read ADC 0 >=0x80 0x95 PASS
Read ADC 1 >=0x80 0xAC PASS
PowerDown 0x00 0x0 PASS
Read ADC 0 0x00 0x00 PASS
Read ADC 1 0x00 0x00 PASS

3.3.2.25. MCAN Test

Veri�es MCAN ports on the HW platform with two MCAN ports connected with each other.
Data is sent from one port and received on another port. Both the ports are veri�ed for Tx
and Rx.

3.3.2.25.1. Test Accessories

MCAN port to port loopback cable

3.3.2.25.2. Test Setup

Connect two MCAN ports on the board to each other with MCAN cable. Check below table for
the details of MCAN ports used by the test on di�erent platforms.

HW Platform MCAN Ports

am65xx_idk Two ports on P1 connector of IDK board

3.3.2.25.3. Test Execution

Select the menu option to run ‘mcan_TEST’
Verify the test log on serial console

3.3.2.25.4. Test Log

Sample log for MCAN test is shown below

* MCAN Test *

MCANSS Revision ID:
scheme:0x1
Business Unit:0x2
Module ID:0x8e0
RTL Revision:0x5
Major Revision:0x1
Custom Revision:0x0
Minor Revision:0x1
CAN-FD operation is enabled through E-Fuse.
Endianess Value:0x87654321
Successfully configured MCAN0
MCANSS Revision ID:
scheme:0x1
Business Unit:0x2
Module ID:0x8e0
RTL Revision:0x5
Major Revision:0x1
Custom Revision:0x0
Minor Revision:0x1
CAN-FD operation is enabled through E-Fuse.
Endianess Value:0x87654321
Successfully configured MCAN1

Transmitting Data on MCAN Port0 and Receiving on MCAN port 1

Sending Packet - 1

Message successfully transferred with payload Bytes:0xf

Message ID:0x100000

Message Remote Transmission Request:0x0

Message Extended Frame ID(0:11Bit ID/1:29bit ID):0x0

Message Error State Indicator(0:Error Active/1:Error Passive):0x0

Message Data Length Code:0xf

Message BRS:0x1

Message CAN FD format:0x1

Message Store Tx Events:0x1

Message Marker:0xaa

Message DataByte0:0xaa

Message DataByte1:0x30

Message DataByte2:0xb9

Message DataByte3:0xd6

Message DataByte4:0xfb

Message DataByte5:0x4b

Message DataByte6:0x87

Message DataByte7:0x27

Message DataByte8:0x97

Message DataByte9:0x58

Message DataByte10:0x0

Message DataByte11:0xc0

Message DataByte12:0xd4

Message DataByte13:0xe

Message DataByte14:0x3

Message successfully received with payload Bytes:0xf

Received last message with following details:
Message ID:0x100008

Message Remote Transmission Request:0x0

Message Extended Frame ID(0:11Bit ID/1:29bit ID):0x0

Message Error State Indicator(0:Error Active/1:Error Passive):0x0

Message TimeStamp:0x0

Message Data Length Code:0xf

Message BRS:0x1

Message CAN FD format:0x1

Message Filter Index:0x0

Message Accept Non-matching Frame:0x0

Message DataByte0:0xaa

Message DataByte1:0x30

Message DataByte2:0xb9

Message DataByte3:0xd6

Message DataByte4:0xfb

Message DataByte5:0x4b

Message DataByte6:0x87

Message DataByte7:0x27

Message DataByte8:0x97

Message DataByte9:0x58

Message DataByte10:0x0

Message DataByte11:0xc0

Message DataByte12:0xd4

Message DataByte13:0xe

Message DataByte14:0x3

Received Packet - 1

Sending Packet - 2

Message successfully transferred with payload Bytes:0xf

Message ID:0x100000

Message Remote Transmission Request:0x0

Message Extended Frame ID(0:11Bit ID/1:29bit ID):0x0

Message Error State Indicator(0:Error Active/1:Error Passive):0x0

Message Data Length Code:0xf

Message BRS:0x1

Message CAN FD format:0x1

Message Store Tx Events:0x1

Message Marker:0xaa

Message DataByte0:0xaa

Message DataByte1:0xcb

Message DataByte2:0x62

Message DataByte3:0xc5

Message DataByte4:0xf2

Message DataByte5:0xf0

Message DataByte6:0x42

Message DataByte7:0xd0

Message DataByte8:0x5e

Message DataByte9:0x8

Message DataByte10:0xf0

Message DataByte11:0x26

Message DataByte12:0x97

Message DataByte13:0xb

Message DataByte14:0x26

Message successfully received with payload Bytes:0xf

Received last message with following details:
Message ID:0x110008

Message Remote Transmission Request:0x0

Message Extended Frame ID(0:11Bit ID/1:29bit ID):0x0

Message Error State Indicator(0:Error Active/1:Error Passive):0x0

Message TimeStamp:0x0

Message Data Length Code:0xf

Message BRS:0x1

Message CAN FD format:0x1

Message Filter Index:0x0

Message Accept Non-matching Frame:0x0

Message DataByte0:0xaa

Message DataByte1:0xcb

Message DataByte2:0x62

Message DataByte3:0xc5

Message DataByte4:0xf2

Message DataByte5:0xf0

Message DataByte6:0x42

Message DataByte7:0xd0

Message DataByte8:0x5e

Message DataByte9:0x8

Message DataByte10:0xf0

Message DataByte11:0x26

Message DataByte12:0x97

Message DataByte13:0xb

Message DataByte14:0x26

Received Packet - 2

Sending Packet - 3

Message successfully transferred with payload Bytes:0xf

Message ID:0x100000

Message Remote Transmission Request:0x0

Message Extended Frame ID(0:11Bit ID/1:29bit ID):0x0

Message Error State Indicator(0:Error Active/1:Error Passive):0x0

Message Data Length Code:0xf

Message BRS:0x1

Message CAN FD format:0x1

Message Store Tx Events:0x1

Message Marker:0xaa

Message DataByte0:0xaa

Message DataByte1:0xe4

Message DataByte2:0xe6

Message DataByte3:0x81

Message DataByte4:0x1b

Message DataByte5:0x8a

Message DataByte6:0x71

Message DataByte7:0x39

Message DataByte8:0x78

Message DataByte9:0x7a

Message DataByte10:0xa7

Message DataByte11:0x22

Message DataByte12:0xdb

Message DataByte13:0x19

Message DataByte14:0x62

Message successfully received with payload Bytes:0xf

Received last message with following details:
Message ID:0x110008

Message Remote Transmission Request:0x0

Message Extended Frame ID(0:11Bit ID/1:29bit ID):0x0

Message Error State Indicator(0:Error Active/1:Error Passive):0x0

Message TimeStamp:0x0

Message Data Length Code:0xf

Message BRS:0x1

Message CAN FD format:0x1

Message Filter Index:0x0

Message Accept Non-matching Frame:0x0

Message DataByte0:0xaa

Message DataByte1:0xe4

Message DataByte2:0xe6

Message DataByte3:0x81

Message DataByte4:0x1b

Message DataByte5:0x8a

Message DataByte6:0x71

Message DataByte7:0x39

Message DataByte8:0x78

Message DataByte9:0x7a

Message DataByte10:0xa7

Message DataByte11:0x22

Message DataByte12:0xdb

Message DataByte13:0x19

Message DataByte14:0x62

Received Packet - 3

Sending Packet - 4

Message successfully transferred with payload Bytes:0xf

Message ID:0x100000

Message Remote Transmission Request:0x0

Message Extended Frame ID(0:11Bit ID/1:29bit ID):0x0

Message Error State Indicator(0:Error Active/1:Error Passive):0x0

Message Data Length Code:0xf

Message BRS:0x1

Message CAN FD format:0x1

Message Store Tx Events:0x1

Message Marker:0xaa

Message DataByte0:0xaa

Message DataByte1:0x18

Message DataByte2:0x13

Message DataByte3:0x56

Message DataByte4:0x19

Message DataByte5:0x54

Message DataByte6:0x55

Message DataByte7:0xc6

Message DataByte8:0x40

Message DataByte9:0x45

Message DataByte10:0xa0

Message DataByte11:0x5a

Message DataByte12:0x4e

Message DataByte13:0x51

Message DataByte14:0xdb

Message successfully received with payload Bytes:0xf

Received last message with following details:
Message ID:0x110008

Message Remote Transmission Request:0x0

Message Extended Frame ID(0:11Bit ID/1:29bit ID):0x0

Message Error State Indicator(0:Error Active/1:Error Passive):0x0

Message TimeStamp:0x0

Message Data Length Code:0xf

Message BRS:0x1

Message CAN FD format:0x1

Message Filter Index:0x0

Message Accept Non-matching Frame:0x0

Message DataByte0:0xaa

Message DataByte1:0x18

Message DataByte2:0x13

Message DataByte3:0x56

Message DataByte4:0x19

Message DataByte5:0x54

Message DataByte6:0x55

Message DataByte7:0xc6

Message DataByte8:0x40

Message DataByte9:0x45

Message DataByte10:0xa0

Message DataByte11:0x5a

Message DataByte12:0x4e

Message DataByte13:0x51

Message DataByte14:0xdb

Received Packet - 4

Sending Packet - 5

Message successfully transferred with payload Bytes:0xf

Message ID:0x100000

Message Remote Transmission Request:0x0

Message Extended Frame ID(0:11Bit ID/1:29bit ID):0x0

Message Error State Indicator(0:Error Active/1:Error Passive):0x0

Message Data Length Code:0xf

Message BRS:0x1

Message CAN FD format:0x1

Message Store Tx Events:0x1

Message Marker:0xaa

Message DataByte0:0xaa

Message DataByte1:0xf0

Message DataByte2:0x79

Message DataByte3:0x8a

Message DataByte4:0xaa

Message DataByte5:0x8b

Message DataByte6:0xe3

Message DataByte7:0x8f

Message DataByte8:0x5c

Message DataByte9:0xf6

Message DataByte10:0x1c

Message DataByte11:0xa0

Message DataByte12:0x41

Message DataByte13:0x4c

Message DataByte14:0xeb

Message successfully received with payload Bytes:0xf

Received last message with following details:
Message ID:0x110008

Message Remote Transmission Request:0x0

Message Extended Frame ID(0:11Bit ID/1:29bit ID):0x0

Message Error State Indicator(0:Error Active/1:Error Passive):0x0

Message TimeStamp:0x0

Message Data Length Code:0xf

Message BRS:0x1

Message CAN FD format:0x1

Message Filter Index:0x0

Message Accept Non-matching Frame:0x0

Message DataByte0:0xaa

Message DataByte1:0xf0

Message DataByte2:0x79

Message DataByte3:0x8a

Message DataByte4:0xaa

Message DataByte5:0x8b

Message DataByte6:0xe3

Message DataByte7:0x8f

Message DataByte8:0x5c

Message DataByte9:0xf6

Message DataByte10:0x1c

Message DataByte11:0xa0

Message DataByte12:0x41

Message DataByte13:0x4c

Message DataByte14:0xeb

Received Packet - 5

Transmitting Data on MCAN Port1 and Receiving on MCAN port 0

Sending Packet - 1

Message successfully transferred with payload Bytes:0xf
Receiving data on port0

Message successfully received with payload Bytes:0xf

Received last message with following details:
Message ID:0x110008

Message Remote Transmission Request:0x0

Message Extended Frame ID(0:11Bit ID/1:29bit ID):0x0

Message Error State Indicator(0:Error Active/1:Error Passive):0x0

Message TimeStamp:0x0

Message Data Length Code:0xf

Message BRS:0x1

Message CAN FD format:0x1

Message Filter Index:0x0

Message Accept Non-matching Frame:0x0

Message DataByte0:0xaa

Message DataByte1:0x1f

Message DataByte2:0x44

Message DataByte3:0x40

Message DataByte4:0x68

Message DataByte5:0x7a

Message DataByte6:0x5d

Message DataByte7:0xf5

Message DataByte8:0x3e

Message DataByte9:0xa5

Message DataByte10:0xb7

Message DataByte11:0xe3

Message DataByte12:0x36

Message DataByte13:0x3a

Message DataByte14:0x76

Received Packet - 1

Sending Packet - 2

Message successfully transferred with payload Bytes:0xf
Receiving data on port0

Message successfully received with payload Bytes:0xf

Received last message with following details:
Message ID:0x110008

Message Remote Transmission Request:0x0

Message Extended Frame ID(0:11Bit ID/1:29bit ID):0x0

Message Error State Indicator(0:Error Active/1:Error Passive):0x0

Message TimeStamp:0x0

Message Data Length Code:0xf

Message BRS:0x1

Message CAN FD format:0x1

Message Filter Index:0x0

Message Accept Non-matching Frame:0x0

Message DataByte0:0xaa

Message DataByte1:0xb0

Message DataByte2:0xbd

Message DataByte3:0x67

Message DataByte4:0x34

Message DataByte5:0x8c

Message DataByte6:0x9

Message DataByte7:0x6

Message DataByte8:0xab

Message DataByte9:0x4c

Message DataByte10:0x2b

Message DataByte11:0x13

Message DataByte12:0x4a

Message DataByte13:0xe1

Message DataByte14:0x7d

Received Packet - 2

Sending Packet - 3

Message successfully transferred with payload Bytes:0xf
Receiving data on port0

Message successfully received with payload Bytes:0xf

Received last message with following details:
Message ID:0x110008

Message Remote Transmission Request:0x0

Message Extended Frame ID(0:11Bit ID/1:29bit ID):0x0

Message Error State Indicator(0:Error Active/1:Error Passive):0x0

Message TimeStamp:0x0

Message Data Length Code:0xf

Message BRS:0x1

Message CAN FD format:0x1

Message Filter Index:0x0

Message Accept Non-matching Frame:0x0

Message DataByte0:0xaa

Message DataByte1:0xde

Message DataByte2:0x32

Message DataByte3:0xf2

Message DataByte4:0x26

Message DataByte5:0xb9

Message DataByte6:0x8e

Message DataByte7:0x4e

Message DataByte8:0x65

Message DataByte9:0x8d

Message DataByte10:0xd5

Message DataByte11:0xda

Message DataByte12:0xee

Message DataByte13:0x73

Message DataByte14:0x7e

Received Packet - 3

Sending Packet - 4

Message successfully transferred with payload Bytes:0xf
Receiving data on port0

Message successfully received with payload Bytes:0xf

Received last message with following details:
Message ID:0x110008

Message Remote Transmission Request:0x0

Message Extended Frame ID(0:11Bit ID/1:29bit ID):0x0

Message Error State Indicator(0:Error Active/1:Error Passive):0x0

Message TimeStamp:0x0

Message Data Length Code:0xf

Message BRS:0x1

Message CAN FD format:0x1

Message Filter Index:0x0

Message Accept Non-matching Frame:0x0

Message DataByte0:0xaa

Message DataByte1:0xe7

Message DataByte2:0x13

Message DataByte3:0xa0

Message DataByte4:0x99

Message DataByte5:0xe

Message DataByte6:0x63

Message DataByte7:0x95

Message DataByte8:0x3f

Message DataByte9:0x27

Message DataByte10:0xcf

Message DataByte11:0xb2

Message DataByte12:0xb0

Message DataByte13:0xc5

Message DataByte14:0xef

Received Packet - 4

Sending Packet - 5

Message successfully transferred with payload Bytes:0xf
Receiving data on port0

Message successfully received with payload Bytes:0xf

Received last message with following details:
Message ID:0x110008

Message Remote Transmission Request:0x0

Message Extended Frame ID(0:11Bit ID/1:29bit ID):0x0

Message Error State Indicator(0:Error Active/1:Error Passive):0x0

Message TimeStamp:0x0

Message Data Length Code:0xf

Message BRS:0x1

Message CAN FD format:0x1

Message Filter Index:0x0

Message Accept Non-matching Frame:0x0

Message DataByte0:0xaa

Message DataByte1:0xb1

Message DataByte2:0x1c

Message DataByte3:0xe5

Message DataByte4:0xef

Message DataByte5:0xaa

Message DataByte6:0x40

Message DataByte7:0x77

Message DataByte8:0xac

Message DataByte9:0x70

Message DataByte10:0x77

Message DataByte11:0x3

Message DataByte12:0xef

Message DataByte13:0xc5

Message DataByte14:0x70

Received Packet - 5

 MCAN diagnostic test completed.

3.3.2.26. McASP Audio Test

Veri�es McASP audio interface on the board. Audio samples are received through codec input
and sent back to codec audio output during the test. Codec control channel is veri�ed
through I2C interface and audio channel is veri�ed through McASP interface.

3.3.2.26.1. Test Accessories

Audio LINE IN cable.
Headphone.

3.3.2.26.2. Test Setup

Connect audio LINE IN cable to audio input port and headphone to audio output port on the
HW platform under test. Check below table for the details of audio ports used by the test on
di�erent platforms.

HW Platform Audio IN Port Audio OUT Port

evmK2G J32 J33

evmOMAPL137 P3 P5

3.3.2.26.3. Test Execution

Start playing audio at the audio source driving the audio input connected to input port
Select the menu option to run ‘mcasp_TEST’
Verify that the audio being played at input is looped back to audio headset/speaker
connected to output port
Verify that the audio plays without any noise on left and right channels.
Verify the test log on serial console

3.3.2.26.4. Test Log

Sample log for McASP audio test is shown below

* AUDIO Loopback Test *

Playing Audio on left channel

Playing Audio on right channel

Playing Audio on both left and right

Audio Loopback test completed

3.3.2.27. McASP AudioDC Test

This test veri�es the audio interface on the multi-channel audio daughter card for the
OMAPL137 EVM.

3.3.2.27.1. Test Accessories

4 Audio LINE IN cables
4 Headphones

3.3.2.27.2. Test Setup

Connect LINE IN cables to all the audio input ports (J5 to J8) on the audio daughter
card.
Connect headsets to all the audio output ports (J9 to J12) on the audio daughter card.

3.3.2.27.3. Test Execution

Start playing audio at the audio source driving the audio input connected to input
ports
Load and execute the McASP AudioDC test using CCS
Listen to the Audio played back through the Headphones
Verify that the audio plays without any noise on left and right channels.
Verify the test log on serial console

3.3.2.27.4. Test Log

Sample log for McASP AudioDC test is shown below

* Audio DC Loopback Test *

Starting Audio Loopback...
Check the Headset/Speaker Audio Output

Audio DC Loopback Test Completed!
Audio DC Loopback Test Passed!!

3.3.2.28. McSPI Test

This test veri�es reading the industrial input data through McSPI interface. Need to provide
input to industrial input channels while running the test.

Except for iceAMIC110, this test expects pins to be connected to the Industrial I/O header.
The Industrial I/O header, has two columns in parallel, one of which is the McSPI input and
the other being VDD. Thus, connecting any row with a jumper will yield a ‘1’ read on that
McSPI input. By connecting the �rst, second, third, and forth row with jumpers would yield
0x1, 0x2, 0x4, and 0x8 being read respectively.

3.3.2.28.1. Test Accessories

Wires to short pins on industrial I/O header.

3.3.2.28.2. Test Setup

Short the rows on industrial I/O header. Check below table for the details of industrial IO
header used by the test on di�erent platforms.

HW Platform Industrial I/O Header

idkAM571x J37

HW Platform Industrial I/O Header

idkAM572x J37

idkAM574x J37

idkAM437x J1

3.3.2.28.3. Test Execution

Select the menu option to run ‘mcspi_TEST’
Verify the test log on serial console
Con�rm the test result by pressing ‘y’ in case the input provided to industrial I/O
header is read properly, else press any other key to indicate failure.

3.3.2.28.4. Test Log

Sample log for McSPI test is shown below

* MCSPI Test *

Testing MCSPI...
Data transferred: aa
Data received: 20
Press 'y' to verify pass, 'r' to read again,
or any other character to indicate failure: y
User input: y

Test PASSED!

3.3.2.29. Memory (DDR) Test

This test veri�es the DDR memory of the HW platform under test. Address bus test is
performed with a test pattern and its compliment during the test.

3.3.2.29.1. Test Accessories

No additional accessories are required for running this test.

3.3.2.29.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.2.29.3. Test Execution

Select the menu option to run ‘mem_TEST’
Verify the test log on serial console

3.3.2.29.4. Test Log

Sample DDR test log is shown below

* DDR Memory Test *

Testing writing and reading memory
board_external_memory_test: Start address (0x80000000), end address (0xffffffff)
First test started
Writing to test area...
 Write up to 0x80000000 done
 Write up to 0x90000000 done
 Write up to 0xa0000000 done
 Write up to 0xb0000000 done
 Write up to 0xc0000000 done
 Write up to 0xd0000000 done
 Write up to 0xe0000000 done
 Write up to 0xf0000000 done
Write finished!
Checking values...
 Read up to 0x80000000 okay
 Read up to 0x90000000 okay
 Read up to 0xa0000000 okay
 Read up to 0xb0000000 okay
 Read up to 0xc0000000 okay
 Read up to 0xd0000000 okay
 Read up to 0xe0000000 okay
 Read up to 0xf0000000 okay
Second test started
Writing complementary values to test area...
 Write up to 0x80000000 done
 Write up to 0x90000000 done
 Write up to 0xa0000000 done
 Write up to 0xb0000000 done
 Write up to 0xc0000000 done
 Write up to 0xd0000000 done
 Write up to 0xe0000000 done
 Write up to 0xf0000000 done
Write finished!
Checking values...
 Read up to 0x80000000 okay
 Read up to 0x90000000 okay
 Read up to 0xa0000000 okay
 Read up to 0xb0000000 okay
 Read up to 0xc0000000 okay
 Read up to 0xd0000000 okay
 Read up to 0xe0000000 okay
 Read up to 0xf0000000 okay
Board memory test passed!

3.3.2.30. MMCSD Test

This test veri�es SD card interface on the platform under test. 16KB of data is written and
read during the test.

3.3.2.30.1. Test Accessories

SD card.

3.3.2.30.2. Test Setup

Insert the SD card into MMCSD slot of the board.

3.3.2.30.3. Test Execution

Select the menu option to run ‘mmcsd_TEST’
Verify the test log on serial console

3.3.2.30.4. Test Log

Sample log for SD card test is shown below

* MMCSD Test *

PASS: Read/Write Success for this pattern

3.3.2.31. Nand Test

This test veri�es NAND �ash memory on the HW platform under test. Reading the NAND
�ash information and NAND page write/read with di�erent test patterns is done during the
test.

3.3.2.31.1. Test Accessories

No additional accessories are required for running this test.

3.3.2.31.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.2.31.3. Test Execution

Select the menu option to run ‘nand_TEST’
Verify the test log on serial console

3.3.2.31.4. Test Log

Sample log for NAND test is shown below

 NAND Test

Running NAND Flash Chip Detect Test
Device Id - 0x0
Manufacturer Id - 0x0
Device Width - 16
Block Count - 2048
Page Count - 64
Page Size - 2048
Spare Area Size - 64
Column Address - 1024

NAND Flash Chip Detect Test Passed

Running NAND Flash Block Erase Test
NAND Flash Test: Erase Data Verification Passed

NAND Flash Block Erase Test Passed

Running NAND Flash Memory Access Test - Test Pattern 1
NAND Flash Test: Data Verification Passed

Running NAND Flash Memory Access Test - Test Pattern 2
NAND Flash Test: Data Verification Passed

NAND Flash Memory Access Test Passed

NAND Flash Test Passed!

NAND Flash Tests Completed!!

-----------------X-----------------

3.3.2.32. NOR Flash Test

This test veri�es the NOR �ash memory connected to SPI interface. One page of �ash is
written and read back for data veri�cation during the test.

3.3.2.32.1. Test Accessories

No additional accessories are required for running this test.

3.3.2.32.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.2.32.3. Test Execution

Select the menu option to run ‘nor�ash_TEST’
Verify the test log on serial console

3.3.2.32.4. Test Log

Sample log for NOR �ash test is shown below

* SPI FLASH Test *

Reading Flash Device ID...
Device ID 0 - 0x20
Device ID 1 - 0xba
Device ID 2 - 0x18
Flash Device ID Match!

Flash Device ID Read Passed!

Verifying Sector - 0
Data Read matches with Data written
SPI Flash Test Passed!

SPI NOR Flash Test Passed

3.3.2.33. OLED Display Test

This test veri�es the OLED display on the HW platform under test.

3.3.2.33.1. Test Accessories

No additional accessories are required for running this test.

3.3.2.33.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.2.33.3. Test Execution

Select the menu option to run ‘oled_TEST’
Verify the test log on serial console

3.3.2.33.4. Test Log

Sample log for OLED Display test is shown below

 OLED DISPLAY Test

Running Oled display Detect Test

Oled display Detection Successful!

Oled display Detect Test Passed!
OLED LCD Display test PASS

Oled display Test Passed!

Oled Tests Completed!!

-----------------X-----------------

3.3.2.34. OSPI Flash Test

This test veri�es the �ash memory connected to OSPI interface. One page of �ash is written
and read back for data veri�cation during the test.

3.3.2.34.1. Test Accessories

No additional accessories are required for running this test.

3.3.2.34.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.2.34.3. Test Execution

Select the menu option to run ‘ospi_TEST’
Verify the test log on serial console

3.3.2.34.4. Test Log

Sample log for OSPI �ash test is shown below

* OSPI FLASH Test *

OSPI NOR device ID: 0x5b1a, manufacturer ID: 0x2c

 Verifying the OSPI Flash first page...
OSPI NOR Flash first page verification Successful

 Verifying the OSPI Flash last page...
OSPI NOR Flash last page verification Successful

OSPI NOR Flash verification Successful

3.3.2.35. PCIe (2-lane) Test

This test veri�es the two-lane PCIe ports on the AM65x IDK kit. Two AM65x IDK kits are
required to run this test. Both the boards should be equipped with SD cards having the same
diagnostic test binaries.

 Note

Current version of test is exercising only one lane of the 2-lane PCIe card.

3.3.2.35.1. Test Accessories

Two AM65x IDK kits
PCIe two-lane cable

3.3.2.35.2. Test Setup

Connect PCIe ports on both the IDK kits with a two-lane PCIe cable.

3.3.2.35.3. Test Execution

Select the menu option to run ‘pcie_TEST’ on both the boards
Press ‘R’ on �rst board serial console to enable rootcomplex operation
Press ‘E’ on second board serial console to enable endpoint operation
Verify the test log on serial console.

3.3.2.35.4. Test Log

Sample log for 2-lane PCIe test is shown below

Sample log for board running in RC mode

**
* PCIe Test *
**
Enter: E for Endpoint or R for Root Complex
R
* RC mode *
This is PCIE RC
Link is up
link status reg =0x30130000
Link speed:Gen3
RC writes a pattern to EP
RC received data, loopback test passed

Sample log for board running in EP mode

**
* PCIe Test *
**
Enter: E for Endpoint or R for Root Complex
E
* EP mode *
This is PCIE EP
Link is up
link status reg =0x10130000
Link speed:Gen3
EP received data and will write back

3.3.2.36. PCIe (1-lane) Test

This test veri�es the one-lane PCIe ports on the AM65x EVM kit. Two AM65x EVM kits are
required to run this test. Both the boards should be equipped with SD cards having the same
diagnostic test binaries.

3.3.2.36.1. Test Accessories

Two AM65x EVM kits
PCIe one-lane cable

3.3.2.36.2. Test Setup

Connect PCIe ports on both the EVM kits with a one-lane PCIe cable.

3.3.2.36.3. Test Execution

Select the menu option to run ‘pcie_TEST’ on both the boards
Press ‘R’ on �rst board serial console to enable rootcomplex operation
Press ‘E’ on second board serial console to enable endpoint operation
Verify the test log on serial console.

3.3.2.36.4. Test Log

Sample log for 1-lane PCIe test is shown below

Sample log for board running in RC mode

**
* PCIe Test *
**
Enter: E for Endpoint or R for Root Complex
R
* RC mode *
This is PCIE RC
Link is up
link status reg =0x30130000
Link speed:Gen3
RC writes a pattern to EP
RC received data, loopback test passed

Sample log for board running in EP mode

**
* PCIe Test *
**
Enter: E for Endpoint or R for Root Complex
E
* EP mode *
This is PCIE EP
Link is up
link status reg =0x10130000
Link speed:Gen3
EP received data and will write back

3.3.2.37. PMIC Test

This test veri�es PMIC interface on the HW platform under test.

3.3.2.37.1. Test Accessories

No additional accessories are required for running this test.

3.3.2.37.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.2.37.3. Test Execution

Select the menu option to run ‘pmic_TEST’
Verify the test log on serial console

3.3.2.37.4. Test Log

Sample log for PMIC test is shown below

* PMIC Test *

Testing PMIC module...
PMIC ID = 0x51043990
Initial PMIC voltage = 0xff
Setting PMIC voltage to 0x44
done!
PMIC voltage after = 0x44
Setting PMIC voltage to original value
Final voltage value = 0xff
Test PASSED!

3.3.2.38. PWM Test

This test veri�es the PWM module to generate a pulse of 1KHz with di�erent duty cycles on
the HW platform under test.

3.3.2.38.1. Test Accessories

Oscilloscope to con�rm the PWM output

3.3.2.38.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.2.38.3. Test Execution

Select the menu option to run ‘pwm_TEST’
Verify the test log on serial console
Verify the PWM output to co�rm the duty cycle generated by the test

Refer below table for the PWM output signals generated by the test on di�erent platforms

HW Platform PWM Output Pin

evmK2G J12 pin 33

evmAM572x P17 pin 5

idkAM437x J16 pin 14

evmAM335x J5 pin 13

3.3.2.38.4. Test Log

Sample log for PWM test is shown below

* PWM Test *

Generating 1KHz PWM pulse with 25 Duty Cycle

Generating 1KHz PWM pulse with 50 Duty Cycle

Generating 1KHz PWM pulse with 75 Duty Cycle

PWM Test Completed!

3.3.2.39. QSPI Test

This test veri�es the QSPI �ash on the HW platform under test.

3.3.2.39.1. Test Accessories

No additional accessories are required for running this test.

3.3.2.39.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.2.39.3. Test Execution

Select the menu option to run ‘qspi_TEST’
Verify the test log on serial console

3.3.2.39.4. Test Log

Sample log for QSPI test is shown below

* QSPI Test *

Testing QSPI read/write...
Test PASSED!

3.3.2.40. Rotary Switch Test

This test veri�es reading the rotary switch inputs on HW platform under test.

3.3.2.40.1. Test Accessories

No additional accessories are required for running this test.

3.3.2.40.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.2.40.3. Test Execution

Select the menu option to run ‘rotarySwitch_TEST’
Verify the test log on serial console
Con�rm the test result by pressing ‘y’ in case rotary switch input is read properly, else
any other key to indicate failure.

3.3.2.40.4. Test Log

Sample log for rotary switch test is shown below

 ROTARY SWITCH Test

Running Rotary switch Detect Test

Rotary switch Detection Successful!

Rotary switch Detect Test Passed!

Running Rotary switch position Test

The rotary switch is at position 7

Rotary switch position Test Passed!

Press 'r' to run the test again,
or any other character to exit: y

Rotary switch Test Passed!

Rotary switch Tests Completed!!

-----------------X-----------------

3.3.2.41. RS485 UART Test

This test veri�es RS485 interface on platform under test. RS485 interface is connected to
PRU-ICSS port of the SoC. Test outputs a test string through RS485 UART interface and
receives user input as con�rmation. Test is executed on two boards for AM57xx IDK
platforms. RS485 to RS232 USB cable is used on AM65x IDK platform to run the test.

3.3.2.41.1. Test Accessories

Cable to connect RS485 ports on two boards (AM57x IDK) RS485 to RS232 USB cable (AM65x
IDK)

3.3.2.41.2. Test Setup

idkAM571x/idkAM572x:
Connect RS485 UART header (J39) between two boards

am65x_idk:

Connect RS485 to RS232 USB cable between RS485 UART port of the board and host
PC.

Setup serial console application on host PC with below con�gurations

Baud rate - 115200
Data length - 8 bit
Parity - None
Stop bits - 1
Flow control - None

3.3.2.41.3. Test Execution

idkAM571x/idkAM572x:
Select the menu option to run ‘rs485_TEST’
Follow the instructions on serial console to send data from one board and receive on
another board
Verify the test log on serial console

am65x_idk:

Select the menu option to run ‘rs485_TEST’
Verify the test log on serial console
Con�rm the test result on RS485 UART console

3.3.2.41.4. Test Log

Sample log for RS485 UART test (am65xx_idk) is shown below

Main test console log

* PRU-ICSS UART Test *

Check PRU UART console for the test logs

PRU-ICSS UART Test Passed!!

PRU-ICSS UART Test Completed!

RS485 UART console log

* PRU-ICSS UART Test *

Testing UART print to console at 115.2k baud rate
Press 'y' to verify pass: Test Passed

3.3.2.42. RTC Test

This test veri�es the on-chip RTC Timer on the HW platform under test.

3.3.2.42.1. Test Accessories

No additional accessories are required for running this test.

3.3.2.42.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.2.42.3. Test Execution

Select the menu option to run ‘rtc_TEST’
Verify the test log on serial console

3.3.2.42.4. Test Log

Sample log for RTC test is shown below

* RTC Test *

Current Date and Time:
10:23:52 21:6:16 Sunday
Test Passed!

3.3.2.43. Temperature Sensor Test

This test veri�es reading the ambient temperature from temperature sensor interface. Test
veri�es all the temperature sensor devices on the board.

3.3.2.43.1. Test Accessories

No additional accessories are required for running this test.

3.3.2.43.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.2.43.3. Test Execution

Select the menu option to run ‘temperature_TEST’
Verify the test log on serial console

3.3.2.43.4. Test Log

Sample log for temperature sensor test is shown below

* Temperature Sensor Test *

Running temperature sensor test...
Read temperature register value - 568

Temperature read from the temperature sensor
 slave address - 0x48 is 35 degree centigrade
Read temperature register value - 520

Temperature read from the temperature sensor
 slave address - 0x49 is 32 degree centigrade
Temperature sensor test Passed!

3.3.2.44. Timer Test

This test veri�es the on-chip timer module to generate 1msec tick on the HW platform under
test. Test waits for 2secs counting the timer interrupt.

3.3.2.44.1. Test Accessories

No additional accessories are required for running this test.

3.3.2.44.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.2.44.3. Test Execution

Select the menu option to run ‘timer_TEST’
Verify the test log on serial console
Verify the time that tests waits counting the timer interrupts
Press ‘y’ if the test waits for 2secs or press any key in case wait time is more or less
than 2secs

3.3.2.44.4. Test Log

Sample log for Timer test is shown below

* 1MSEC TIMER Test *

Timer Configured for 1msec interrupt
Enabling Timer Interrupts
Test waits till Timer generates 2000 (~2secs) interrupts

Press 'y' if timer ran for correct duration, else any other key:y

Test PASSED!

3.3.2.45. UART Test

This test veri�es the UART serial port by sending a test string to the UART serial console and
reading user input to con�rm the test result.

3.3.2.45.1. Test Accessories

UART serial cable. Di�erent platforms may need di�erent cable for verifying the serial port.
Refer to HW manual for more details.

3.3.2.45.2. Test Setup

Connect the UART serial cable between the board and host PC
Setup serial console application on host PC with below con�gurations

Baud rate - 115200
Data length - 8 bit
Parity - None
Stop bits - 1
Flow control - None

Four UART ports are veri�ed on am65xx_evm platform and three UART ports are
veri�ed on am65xx_idk platform. Need to make above setup on all serial consoles
connected to multiple ports on these platforms.

3.3.2.45.3. Test Execution

Select the menu option to run ‘uart_TEST’
Verify the test log on serial console. Verify the test log on all the serial consoles in case
the HW platform supports more than one serial port

3.3.2.45.4. Test Log

Sample UART test log is shown below

* UART Test *

Testing UART print to console at 115.2k baud rate
Press 'y' to verify pass: y
Received: y

Test PASSED!

3.3.2.46. UART2USB Test

This test veri�es the UART to USB serial port interface on K2G EVM.

3.3.2.46.1. Test Accessories

mini USB cable

3.3.2.46.2. Test Setup

Connect the UART serial cable between the board (J23) and host PC
Setup serial console application on host PC with below con�gurations

Baud rate - 115200
Data length - 8 bit
Parity - None
Stop bits - 1
Flow control - None

3.3.2.46.3. Test Execution

Select the menu option to run ‘uart2usb_TEST’
Verify the test log on serial console

3.3.2.46.4. Test Log

Sample log for UART2USB test is shown below

Log on the main test console

* UART2USB Test *

Check the messages on UART2USB console

Received: y
Test PASSED!

Log on the UART to USB test console

Testing UART print to console at 115.2k baud rate
Press 'y' to verify pass: y

3.3.2.47. USB Device Test

This test veri�es USB device mode operation of the HW platform under test. USB interface
functions as USB mass storage device during the test. On-board memory is used as storage
media which can be accessed from USB host PC after successful enumeration of the device.
USB interface operates at high-speed (USB 2.0) during the test.

3.3.2.47.1. Test Accessories

USB cable

3.3.2.47.2. Test Setup

Connect USB device port of the board to host PC. Check below table for the details of USB
device port used by the test on di�erent platforms.

HW Platform USB Device Port

am65xx_evm J3 on CP board

am65xx_idk J3 on CP board

3.3.2.47.3. Test Execution

Select the menu option to run ‘usbDevice_TEST’
Verify the test log on serial console
Check the USB device enumeration on the host PC
Verify the data write/read access to new drive displayed on the host PC

3.3.2.47.4. Test Log

Sample log for USB device test is shown below

* USB Device Test *

Running USB Device test...

USB device MSC Application!!

Passed RAMDISKUtilsInit function

Done configuring USB driver and its interrupts. Ready to use

3.3.2.48. USB Host Test

This test veri�es USB host mode operation of the HW platform under test. USB interface
functions as USB mass storage host during the test. USB device connected to the board will
be enumerated, a �le will be created, written with test data and read back to verify the data.
USB interface operates at high-speed (USB 2.0) during the test.

3.3.2.48.1. Test Accessories

USB OTG pen drive or normal USB pen drive with OTG cable

3.3.2.48.2. Test Setup

Connect USB pen drive to host port of the board. Check below table for the details of USB
host port used by the test on di�erent platforms.

HW Platform USB Host Port

am65xx_evm J3 on CP board

am65xx_idk J3 on CP board. J13 on SerDes board

3.3.2.48.3. Test Execution

Select the menu option to run ‘usbHost_TEST’
Test supports USB host port on CP board and SerDes board on AM65x IDK platform.
Choose the board under test in the serial console while running the test on
am65xx_idk
Verify the test log on serial console

3.3.2.48.4. Test Log

Sample log for USB host test on am65xx_evm is shown below

* USB Host Test *

USB Host MSC example!!

Creating a text file...
File already exist..!, deleting existing file and creating a new file

Successfully created text file!
Verifying data......
Data verified successfully

USB Host test Passed

Sample log for USB host test on am65xx_idk CP board is shown below

* USB Host Test *

USB Host MSC example!!

Select the options below on which application has to be run

1.CP board
2.Serdes Board
1
Creating a text file...
File already exist..!, deleting existing file and creating a new file

Successfully created text file!
Verifying data......
Data verified successfully

USB Host test Passed

Sample log for USB host test on am65xx_idk SerDes board is shown below

* USB Host Test *

USB Host MSC example!!

Select the options below on which application has to be run

1.CP board
2.Serdes Board
2
Creating a text file...
File already exist..!, deleting existing file and creating a new file

Successfully created text file!
Verifying data......
Data verified successfully

USB Host test Passed

3.3.3. Stress Tests

This section describes the test procedure and setup for diagnostic stress tests. Stress test
execution is done based on the type of interface as listed below

Memory interfaces: Whole memory is accessed during stress test
Communication interfaces (Ethernet, UART etc): Bulk data is sent during the stress test
Control interfaces (On-board I2C, SPI, GPIO control interfaces): Functional test is
repeated for 100 iterations

User con�rmation for pass/fail status is disabled during the stress test.

Enter the character ‘b’ to break the stress test before it completes 100 iterations for control
interfaces. There is no option to break the stress test before completion in case of memory
and communication interfaces.

Only partial logs are provided for stress tests for better readability.

3.3.3.1. Boot EEPROM Stress Test

This test veri�es Boot EEPROM memory. All the pages of the EEPROM are written with a test
pattern and read back for data veri�cation.

3.3.3.1.1. Test Accessories

No additional accessories are required for running this test.

3.3.3.1.2. Test Setup

Make sure pins 2-3 of J44 and J45 headers on AM65x CP board are shorted

3.3.3.1.3. Test Execution

Select the menu option to run ‘bootEepromStress_TEST’
Verify the test log on serial console

3.3.3.1.4. Test Log

Sample log for boot EEPROM stress test is shown below

* Boot EEPROM Stress Test *

Verifying the Boot EEPROM interface under stress conditions...

Verifying the page number - 0

Verifying the page number - 1

Verifying the page number - 2

Verifying the page number - 3

Verifying the page number - 4

Verifying the page number - 5

Verifying the page number - 6

Verifying the page number - 7

Verifying the page number - 8

Verifying the page number - 9

Verifying the page number - 10

Verifying the page number - 11

Verifying the page number - 12

Verifying the page number - 13

Verifying the page number - 14

Verifying the page number - 15

Verifying the page number - 16

Verifying the page number - 17

Verifying the page number - 18

Verifying the page number - 19

Verifying the page number - 20

...
...
...

Verifying the page number - 500

Verifying the page number - 501

Verifying the page number - 502

Verifying the page number - 503

Verifying the page number - 504

Verifying the page number - 505

Verifying the page number - 506

Verifying the page number - 507

Verifying the page number - 508

Verifying the page number - 509

Verifying the page number - 510

Verifying the page number - 511

Boot EEPROM memory verification Successful under stress conditions

Clearing the Boot EEPROM pages used for testing...

Clearing the Boot EEPROM pages successful...

3.3.3.2. Current Monitor Stress Test

Test reads the voltage and current values from di�erent current monitor devices available on
the board. All the current monitor devices available on the board are veri�ed during the test.
Test is repeated for 100 iterations.

3.3.3.2.1. Test Accessories

No additional accessories are required for running this test.

3.3.3.2.2. Test Setup

For iceK2G, this test expects J16 and J17 to be connected with jumper shunts. This enables
the current monitors to be used.

3.3.3.2.3. Test Execution

Select the menu option to run ‘currentMonitorStress_TEST’
Verify the test log on serial console

3.3.3.2.4. Test Log

Sample log for current monitor stress test is shown below

**
* Current Monitor Test *
**

Running Current Monitor Test in Stress Mode for 100 Number of Times...

Verifying Device VDD_CORE at Address - 0x40
Setting the configuration register...
Setting the calibration register...
Reading the Shunt Voltage register...
Shunt Voltage = 0mV
Reading the Bus Voltage register...
Bus Voltage = 1003mV
Reading the Power register...
Power = 915mW
Reading the Current register...
Current = 11mA

Verifying Device VDD_MCU at Address - 0x41
Setting the configuration register...
Setting the calibration register...
Reading the Shunt Voltage register...
Shunt Voltage = 4mV
Reading the Bus Voltage register...
Bus Voltage = 998mV
Reading the Power register...
Power = 21282mW
Reading the Current register...
Current = 425mA

Verifying Device VDD_MPU at Address - 0x42
Setting the configuration register...
Setting the calibration register...
Reading the Shunt Voltage register...
Shunt Voltage = 0mV
Reading the Bus Voltage register...
Bus Voltage = 1002mV
Reading the Power register...
Power = 503mW
Reading the Current register...
Current = 7mA

Verifying Device SoC_DVDD3V3 at Address - 0x43
Setting the configuration register...
Setting the calibration register...
Reading the Shunt Voltage register...
Shunt Voltage = 0mV
Reading the Bus Voltage register...
Bus Voltage = 3338mV
Reading the Power register...
Power = 2670mW
Reading the Current register...
Current = 18mA

Verifying Device SoC_DVDD1V8 at Address - 0x44
Setting the configuration register...
Setting the calibration register...
Reading the Shunt Voltage register...
Shunt Voltage = 0mV
Reading the Bus Voltage register...
Bus Voltage = 1800mV
Reading the Power register...
Power = 3204mW
Reading the Current register...
Current = 26mA

Verifying Device SoC_AVDD1V8 at Address - 0x45
Setting the configuration register...
Setting the calibration register...
Reading the Shunt Voltage register...
Shunt Voltage = 3mV
Reading the Bus Voltage register...
Bus Voltage = 1797mV
Reading the Power register...
Power = 15713mW
Reading the Current register...
Current = 70mA

Verifying Device SoC_VDDS_DDR at Address - 0x46
Setting the configuration register...
Setting the calibration register...
Reading the Shunt Voltage register...
Shunt Voltage = 0mV
Reading the Bus Voltage register...
Bus Voltage = 1197mV
Reading the Power register...
Power = 1388mW
Reading the Current register...
Current = 66mA

Verifying Device VDD_DDR at Address - 0x47
Setting the configuration register...
Setting the calibration register...
Reading the Shunt Voltage register...
Shunt Voltage = 0mV
Reading the Bus Voltage register...
Bus Voltage = 1198mV
Reading the Power register...
Power = 689mW
Reading the Current register...
Current = 10mA

Iteration : 1 Current Monitor Test Passed

...
...
...

Verifying Device VDD_CORE at Address - 0x40
Setting the configuration register...
Setting the calibration register...
Reading the Shunt Voltage register...
Shunt Voltage = 0mV
Reading the Bus Voltage register...
Bus Voltage = 1003mV
Reading the Power register...
Power = 915mW
Reading the Current register...
Current = 12mA

Verifying Device VDD_MCU at Address - 0x41
Setting the configuration register...
Setting the calibration register...
Reading the Shunt Voltage register...
Shunt Voltage = 4mV
Reading the Bus Voltage register...
Bus Voltage = 998mV
Reading the Power register...
Power = 21282mW
Reading the Current register...
Current = 425mA

Verifying Device VDD_MPU at Address - 0x42
Setting the configuration register...
Setting the calibration register...
Reading the Shunt Voltage register...
Shunt Voltage = 0mV
Reading the Bus Voltage register...
Bus Voltage = 1002mV
Reading the Power register...
Power = 503mW
Reading the Current register...
Current = 7mA

Verifying Device SoC_DVDD3V3 at Address - 0x43
Setting the configuration register...
Setting the calibration register...
Reading the Shunt Voltage register...
Shunt Voltage = 0mV
Reading the Bus Voltage register...
Bus Voltage = 3337mV
Reading the Power register...
Power = 2860mW
Reading the Current register...
Current = 18mA

Verifying Device SoC_DVDD1V8 at Address - 0x44
Setting the configuration register...
Setting the calibration register...
Reading the Shunt Voltage register...
Shunt Voltage = 0mV
Reading the Bus Voltage register...
Bus Voltage = 1800mV
Reading the Power register...
Power = 3204mW

Reading the Current register...
Current = 26mA

Verifying Device SoC_AVDD1V8 at Address - 0x45
Setting the configuration register...
Setting the calibration register...
Reading the Shunt Voltage register...
Shunt Voltage = 3mV
Reading the Bus Voltage register...
Bus Voltage = 1797mV
Reading the Power register...
Power = 15789mW
Reading the Current register...
Current = 70mA

Verifying Device SoC_VDDS_DDR at Address - 0x46
Setting the configuration register...
Setting the calibration register...
Reading the Shunt Voltage register...
Shunt Voltage = 0mV
Reading the Bus Voltage register...
Bus Voltage = 1198mV
Reading the Power register...
Power = 1388mW
Reading the Current register...
Current = 66mA

Verifying Device VDD_DDR at Address - 0x47
Setting the configuration register...
Setting the calibration register...
Reading the Shunt Voltage register...
Shunt Voltage = 0mV
Reading the Bus Voltage register...
Bus Voltage = 1198mV
Reading the Power register...
Power = 689mW
Reading the Current register...
Current = 10mA

Iteration : 100 Current Monitor Test Passed

Current Monitor Stress Test Status
===================================
Number of Times Executed - 100
Pass Count - 100
Fail Count - 0
Overall Status - PASS

3.3.3.3. EMAC Stress Test

This test veri�es the EMAC Ethernet port on HW platform under test. Ethernet link and data
transmit/receive are veri�ed during this test. Ethernet interface is con�gured for 100mbps
speed and 10240 packets are sent/received during the test.

3.3.3.3.1. Test Accessories

Ethernet loopback cables/plugs

3.3.3.3.2. Test Setup

Refer EMAC Test Setup section for more details

3.3.3.3.3. Test Execution

Select the menu option to run ‘emacStress_TEST’
Verify the test log on serial console

3.3.3.3.4. Test Log

Sample log for Ethernet stress test is shown below

**
* ETHERNET LOOPBACK STRESS Test *
**

Reading Ethernet PHY Register Dump...
Register Dump for PHY Addr - 0x0000
PHY Register 0x0000 - 0x1140
PHY Register 0x0001 - 0x7949
PHY Register 0x0002 - 0x2000
PHY Register 0x0003 - 0xa231
PHY Register 0x0004 - 0x01e1
PHY Register 0x0005 - 0xc1e1
PHY Register 0x0006 - 0x006f
PHY Register 0x0007 - 0x2001
PHY Register 0x0008 - 0x4806
PHY Register 0x0009 - 0x0300
PHY Register 0x000a - 0x0c00
PHY Register 0x000b - 0x0000
PHY Register 0x000c - 0x0000
PHY Register 0x000d - 0x401f
PHY Register 0x000e - 0x0006
PHY Register 0x000f - 0x3000
PHY Register(STRAP1) 0x006e - 0x0000
PHY Register(STRAP2) 0x006f - 0x0000
RGMII Control Register (RGMIICTL) Value - 0x00d3
 --- RGMII_RX_CLK_DELAY - 0x0001
 --- RGMII_TX_CLK_DELAY - 0x0001
RGMII Delay Control Register (RGMIIDCTL) Value - 0x0077
EMAC loopback test application initialization
main: emac_open success
Configuring Phy
Waiting for Link Status
Link is UP!!

Sending Packet: 1
Received Packet: 1
Sending Packet: 2
Received Packet: 2
Sending Packet: 3
Received Packet: 3
Sending Packet: 4
Received Packet: 4
Sending Packet: 5
Received Packet: 5
Sending Packet: 6
Received Packet: 6
Sending Packet: 7
Received Packet: 7
Sending Packet: 8
Received Packet: 8
Sending Packet: 9
Received Packet: 9
Sending Packet: 10
Received Packet: 10
Sending Packet: 11
Received Packet: 11
Sending Packet: 12
Received Packet: 12
Sending Packet: 13

Received Packet: 13
Sending Packet: 14
Received Packet: 14
Sending Packet: 15
Received Packet: 15
Sending Packet: 16
Received Packet: 16
Sending Packet: 17
Received Packet: 17
Sending Packet: 18
Received Packet: 18
Sending Packet: 19
Received Packet: 19
Sending Packet: 20
Received Packet: 20
Sending Packet: 21
Received Packet: 21
Sending Packet: 22
Received Packet: 22
Sending Packet: 23
Received Packet: 23
Sending Packet: 24
Received Packet: 24
Sending Packet: 25
Received Packet: 25
Sending Packet: 26
Received Packet: 26
Sending Packet: 27
Received Packet: 27
Sending Packet: 28
Received Packet: 28
Sending Packet: 29
Received Packet: 29
Sending Packet: 30
Received Packet: 30
Sending Packet: 31
Received Packet: 31
Sending Packet: 32
Received Packet: 32
Sending Packet: 33
Received Packet: 33
Sending Packet: 34
Received Packet: 34
Sending Packet: 35
Received Packet: 35
Sending Packet: 36
Received Packet: 36
Sending Packet: 37
Received Packet: 37
Sending Packet: 38
Received Packet: 38
Sending Packet: 39
Received Packet: 39
Sending Packet: 40
Received Packet: 40
Sending Packet: 41
Received Packet: 41
Sending Packet: 42
Received Packet: 42
Sending Packet: 43
Received Packet: 43

Sending Packet: 44
Received Packet: 44
Sending Packet: 45
Received Packet: 45
Sending Packet: 46
Received Packet: 46
Sending Packet: 47
Received Packet: 47
Sending Packet: 48
Received Packet: 48
Sending Packet: 49
Received Packet: 49
Sending Packet: 50
Received Packet: 50
Sending Packet: 51
Received Packet: 51
Sending Packet: 52
Received Packet: 52
Sending Packet: 53
Received Packet: 53
Sending Packet: 54
Received Packet: 54
Sending Packet: 55
Received Packet: 55
Sending Packet: 56
Received Packet: 56
Sending Packet: 57
Received Packet: 57
Sending Packet: 58
Received Packet: 58
Sending Packet: 59
Received Packet: 59
Sending Packet: 60
Received Packet: 60
Sending Packet: 61
Received Packet: 61
Sending Packet: 62
Received Packet: 62
Sending Packet: 63
Received Packet: 63
Sending Packet: 64
Received Packet: 64

...
...
...

Sending Packet: 10200
Received Packet: 10200
Sending Packet: 10201
Received Packet: 10201
Sending Packet: 10202
Received Packet: 10202
Sending Packet: 10203
Received Packet: 10203
Sending Packet: 10204
Received Packet: 10204
Sending Packet: 10205
Received Packet: 10205
Sending Packet: 10206
Received Packet: 10206

Sending Packet: 10207
Received Packet: 10207
Sending Packet: 10208
Received Packet: 10208
Sending Packet: 10209
Received Packet: 10209
Sending Packet: 10210
Received Packet: 10210
Sending Packet: 10211
Received Packet: 10211
Sending Packet: 10212
Received Packet: 10212
Sending Packet: 10213
Received Packet: 10213
Sending Packet: 10214
Received Packet: 10214
Sending Packet: 10215
Received Packet: 10215
Sending Packet: 10216
Received Packet: 10216
Sending Packet: 10217
Received Packet: 10217
Sending Packet: 10218
Received Packet: 10218
Sending Packet: 10219
Received Packet: 10219
Sending Packet: 10220
Received Packet: 10220
Sending Packet: 10221
Received Packet: 10221
Sending Packet: 10222
Received Packet: 10222
Sending Packet: 10223
Received Packet: 10223
Sending Packet: 10224
Received Packet: 10224
Sending Packet: 10225
Received Packet: 10225
Sending Packet: 10226
Received Packet: 10226
Sending Packet: 10227
Received Packet: 10227
Sending Packet: 10228
Received Packet: 10228
Sending Packet: 10229
Received Packet: 10229
Sending Packet: 10230
Received Packet: 10230
Sending Packet: 10231
Received Packet: 10231
Sending Packet: 10232
Received Packet: 10232
Sending Packet: 10233
Received Packet: 10233
Sending Packet: 10234
Received Packet: 10234
Sending Packet: 10235
Received Packet: 10235
Sending Packet: 10236
Received Packet: 10236
Sending Packet: 10237

Received Packet: 10237
Sending Packet: 10238
Received Packet: 10238
Sending Packet: 10239
Received Packet: 10239
Sending Packet: 10240
Received Packet: 10240

Packets sent: 10240, Packets received: 10240

Ethernet Loopback test passed
All tests completed

3.3.3.4. eMMC Stress Test

This test veri�es eMMC memory interface on the HW platform under test. Whole memory of
eMMC is written and read during the test.

3.3.3.4.1. Test Accessories

No additional accessories are required for running this test.

3.3.3.4.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.3.4.3. Test Execution

Select the menu option to run ‘emmcStress_TEST’
Verify the test log on serial console

3.3.3.4.4. Test Log

Sample log for eMMC stress test is shown below

* eMMC Stress Test *

PASS: Read/Write Success for this block-0x300000

PASS: Read/Write Success for this block-0x301000

PASS: Read/Write Success for this block-0x302000

PASS: Read/Write Success for this block-0x303000

PASS: Read/Write Success for this block-0x304000

PASS: Read/Write Success for this block-0x305000

PASS: Read/Write Success for this block-0x306000

PASS: Read/Write Success for this block-0x307000

PASS: Read/Write Success for this block-0x308000

PASS: Read/Write Success for this block-0x309000

PASS: Read/Write Success for this block-0x30a000

PASS: Read/Write Success for this block-0x30b000

PASS: Read/Write Success for this block-0x30c000

PASS: Read/Write Success for this block-0x30d000

PASS: Read/Write Success for this block-0x30e000

PASS: Read/Write Success for this block-0x30f000

...
...
...

PASS: Read/Write Success for this block-0x1d55000

PASS: Read/Write Success for this block-0x1d56000

PASS: Read/Write Success for this block-0x1d57000

PASS: Read/Write Success for this block-0x1d58000

PASS: Read/Write Success for this block-0x1d59000

PASS: Read/Write Success for this block-0x1d5a000

PASS: Read/Write Success for this block-0x1d5b000

PASS: Read/Write Success for this pattern

3.3.3.5. External RTC Stress Test

This test veri�es setting the time, date and running the clock for on-board RTC interface. RTC
con�guration is done through I2C interface. Time and date are read for 100 times for every
5secs during the test to demonstrate operation of the RTC clock.

3.3.3.5.1. Test Accessories

No additional accessories are required for running this test.

3.3.3.5.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.3.5.3. Test Execution

Select the menu option to run ‘extRtcStress_TEST’
Verify the test log on serial console

3.3.3.5.4. Test Log

Sample log for external RTC stress test is shown below

* RTC Test *

Running RTC Test in Stress Mode for 100 Number of Times...
Enter 'b' in Serial Console to Terminate the Test

Running RTC Test...

Setting Time...

Setting Date...

Reading Time...

Reading Date...

Displaying time: 11:59:53 PM
Displaying Day: Sunday
Displaying Date: 31/12/18

Displaying time: 11:59:57 PM
Displaying Day: Sunday
Displaying Date: 31/12/18

Displaying time: 12:0:2 AM
Displaying Day: Monday
Displaying Date: 1/1/19

Displaying time: 12:0:7 AM
Displaying Day: Monday
Displaying Date: 1/1/19

Displaying time: 12:0:12 AM
Displaying Day: Monday
Displaying Date: 1/1/19

Displaying time: 12:0:17 AM
Displaying Day: Monday
Displaying Date: 1/1/19
If the time and date increment, press 'y' to indicate pass or any other character to indicate failure

Iteration : 1 RTC Test Passed

Running RTC Test...

Setting Time...

Setting Date...

Reading Time...

Reading Date...

Displaying time: 11:59:53 PM
Displaying Day: Sunday
Displaying Date: 31/12/18

Displaying time: 11:59:58 PM
Displaying Day: Sunday
Displaying Date: 31/12/18

Displaying time: 12:0:3 AM
Displaying Day: Monday
Displaying Date: 1/1/19

Displaying time: 12:0:8 AM
Displaying Day: Monday
Displaying Date: 1/1/19

Displaying time: 12:0:14 AM
Displaying Day: Monday
Displaying Date: 1/1/19

Displaying time: 12:0:19 AM
Displaying Day: Monday
Displaying Date: 1/1/19
If the time and date increment, press 'y' to indicate pass or any other character to indicate failure

Iteration : 2 RTC Test Passed

...
...
...

Running RTC Test...

Setting Time...

Setting Date...

Reading Time...

Reading Date...

Displaying time: 11:59:53 PM
Displaying Day: Sunday
Displaying Date: 31/12/18

Displaying time: 11:59:58 PM
Displaying Day: Sunday
Displaying Date: 31/12/18

Displaying time: 12:0:3 AM
Displaying Day: Monday
Displaying Date: 1/1/19

Displaying time: 12:0:8 AM
Displaying Day: Monday
Displaying Date: 1/1/19

Displaying time: 12:0:13 AM
Displaying Day: Monday
Displaying Date: 1/1/19

Displaying time: 12:0:18 AM

Displaying Day: Monday
Displaying Date: 1/1/19
If the time and date increment, press 'y' to indicate pass or any other character to indicate failure

Iteration : 100 RTC Test Passed
RTC Stress Test Status
===================================
Number of Times Executed - 100
Pass Count - 100
Fail Count - 0
Overall Status - PASS

RTC Test Passed

3.3.3.6. ICSSG EMAC Stress Test

This port to port Ethernet test veri�es the PRU-ICSS gigabit Ethernet interface on the board
under test. During the test, Ethernet interface is con�gured for 1000mbps speed with one
port of an ICSS instance is connected to another port. 10240 packets are sent from one port
and received by another port. Both the ports are veri�ed for transmit and receive. All the
ICSSG EMAC ports available on the board veri�ed during the test.

3.3.3.6.1. Test Accessories

Ethernet cables

3.3.3.6.2. Test Setup

Refer ICSSG EMAC Test Setup section for more details

3.3.3.6.3. Test Execution

Select the menu option to run ‘icssgEmacStress_TEST’
Verify the test log on serial console

3.3.3.6.4. Test Log

Sample log for ICSGG Ethernet stress test is shown below

**
* ICSSG EMAC STRESS TEST *
**

Performing UDMA driver init...

Reading Ethernet PHY Register Dump...

Register Dump for PHY Addr - 0x0000
PHY Register 0x0000 - 0x1140
PHY Register 0x0001 - 0x796d
PHY Register 0x0002 - 0x2000
PHY Register 0x0003 - 0xa231
PHY Register 0x0004 - 0x01e1
PHY Register 0x0005 - 0xc1e1
PHY Register 0x0006 - 0x006f
PHY Register 0x0007 - 0x2001
PHY Register 0x0008 - 0x4806
PHY Register 0x0009 - 0x1b00
PHY Register 0x000a - 0x7c00
PHY Register 0x000b - 0x0000
PHY Register 0x000c - 0x0000
PHY Register 0x000d - 0x401f
PHY Register 0x000e - 0x0006
PHY Register 0x000f - 0x3000
PHY Configuration Register(CFG4) 0x0031 - 0xbf02
PHY Register(STRAP1) 0x006e - 0x0000
PHY Register(STRAP2) 0x006f - 0x0000
RGMII Control Register (RGMIICTL) Value - 0x00d3
 --- RGMII_RX_CLK_DELAY - 0x0001
 --- RGMII_TX_CLK_DELAY - 0x0001
RGMII Delay Control Register (RGMIIDCTL) Value - 0x0077

Register Dump for PHY Addr - 0x0003
PHY Register 0x0000 - 0x1140
PHY Register 0x0001 - 0x796d
PHY Register 0x0002 - 0x2000
PHY Register 0x0003 - 0xa231
PHY Register 0x0004 - 0x01e1
PHY Register 0x0005 - 0xc1e1
PHY Register 0x0006 - 0x006f
PHY Register 0x0007 - 0x2001
PHY Register 0x0008 - 0x4806
PHY Register 0x0009 - 0x1300
PHY Register 0x000a - 0x3c00
PHY Register 0x000b - 0x0000
PHY Register 0x000c - 0x0000
PHY Register 0x000d - 0x401f
PHY Register 0x000e - 0x0006
PHY Register 0x000f - 0x3000
PHY Configuration Register(CFG4) 0x0031 - 0xbd02
PHY Register(STRAP1) 0x006e - 0x0003
PHY Register(STRAP2) 0x006f - 0x0000
RGMII Control Register (RGMIICTL) Value - 0x00d3
 --- RGMII_RX_CLK_DELAY - 0x0001
 --- RGMII_TX_CLK_DELAY - 0x0001

RGMII Delay Control Register (RGMIIDCTL) Value - 0x0077

Register Dump for PHY Addr - 0x0000
PHY Register 0x0000 - 0x1140
PHY Register 0x0001 - 0x796d
PHY Register 0x0002 - 0x2000
PHY Register 0x0003 - 0xa231
PHY Register 0x0004 - 0x01e1
PHY Register 0x0005 - 0xc1e1
PHY Register 0x0006 - 0x006f
PHY Register 0x0007 - 0x2001
PHY Register 0x0008 - 0x4806
PHY Register 0x0009 - 0x1b00
PHY Register 0x000a - 0x3c00
PHY Register 0x000b - 0x0000
PHY Register 0x000c - 0x0000
PHY Register 0x000d - 0x401f
PHY Register 0x000e - 0x0006
PHY Register 0x000f - 0x3000
PHY Configuration Register(CFG4) 0x0031 - 0xbd02
PHY Register(STRAP1) 0x006e - 0x0000
PHY Register(STRAP2) 0x006f - 0x0000
RGMII Control Register (RGMIICTL) Value - 0x00d3
 --- RGMII_RX_CLK_DELAY - 0x0001
 --- RGMII_TX_CLK_DELAY - 0x0001
RGMII Delay Control Register (RGMIIDCTL) Value - 0x0077

Register Dump for PHY Addr - 0x0003
PHY Register 0x0000 - 0x1140
PHY Register 0x0001 - 0x796d
PHY Register 0x0002 - 0x2000
PHY Register 0x0003 - 0xa231
PHY Register 0x0004 - 0x01e1
PHY Register 0x0005 - 0xc1e1
PHY Register 0x0006 - 0x006f
PHY Register 0x0007 - 0x2001
PHY Register 0x0008 - 0x4806
PHY Register 0x0009 - 0x1300
PHY Register 0x000a - 0x3c00
PHY Register 0x000b - 0x0000
PHY Register 0x000c - 0x0000
PHY Register 0x000d - 0x401f
PHY Register 0x000e - 0x0006
PHY Register 0x000f - 0x3000
PHY Configuration Register(CFG4) 0x0031 - 0xbe02
PHY Register(STRAP1) 0x006e - 0x0003
PHY Register(STRAP2) 0x006f - 0x0000
RGMII Control Register (RGMIICTL) Value - 0x00d3
 --- RGMII_RX_CLK_DELAY - 0x0001
 --- RGMII_TX_CLK_DELAY - 0x0001
RGMII Delay Control Register (RGMIIDCTL) Value - 0x0077

Register Dump for PHY Addr - 0x0000
PHY Register 0x0000 - 0x1140
PHY Register 0x0001 - 0x796d
PHY Register 0x0002 - 0x2000
PHY Register 0x0003 - 0xa231
PHY Register 0x0004 - 0x01e1

PHY Register 0x0005 - 0xc1e1
PHY Register 0x0006 - 0x006f
PHY Register 0x0007 - 0x2001
PHY Register 0x0008 - 0x4806
PHY Register 0x0009 - 0x1b00
PHY Register 0x000a - 0x7c00
PHY Register 0x000b - 0x0000
PHY Register 0x000c - 0x0000
PHY Register 0x000d - 0x401f
PHY Register 0x000e - 0x0006
PHY Register 0x000f - 0x3000
PHY Configuration Register(CFG4) 0x0031 - 0xbc02
PHY Register(STRAP1) 0x006e - 0x0000
PHY Register(STRAP2) 0x006f - 0x0000
RGMII Control Register (RGMIICTL) Value - 0x00d3
 --- RGMII_RX_CLK_DELAY - 0x0001
 --- RGMII_TX_CLK_DELAY - 0x0001
RGMII Delay Control Register (RGMIIDCTL) Value - 0x0077

Register Dump for PHY Addr - 0x0003
PHY Register 0x0000 - 0x1140
PHY Register 0x0001 - 0x796d
PHY Register 0x0002 - 0x2000
PHY Register 0x0003 - 0xa231
PHY Register 0x0004 - 0x01e1
PHY Register 0x0005 - 0xc1e1
PHY Register 0x0006 - 0x006f
PHY Register 0x0007 - 0x2001
PHY Register 0x0008 - 0x4806
PHY Register 0x0009 - 0x1300
PHY Register 0x000a - 0x3c00
PHY Register 0x000b - 0x0000
PHY Register 0x000c - 0x0000
PHY Register 0x000d - 0x401f
PHY Register 0x000e - 0x0006
PHY Register 0x000f - 0x3000
PHY Configuration Register(CFG4) 0x0031 - 0xbc02
PHY Register(STRAP1) 0x006e - 0x0003
PHY Register(STRAP2) 0x006f - 0x0000
RGMII Control Register (RGMIICTL) Value - 0x00d3
 --- RGMII_RX_CLK_DELAY - 0x0001
 --- RGMII_TX_CLK_DELAY - 0x0001
RGMII Delay Control Register (RGMIIDCTL) Value - 0x0077
port 0: FW is ready
Port 0: Config FW Complete
port 1: FW is ready
Port 1: Config FW Complete
port 2: FW is ready
Port 2: Config FW Complete
port 3: FW is ready
Port 3: Config FW Complete
port 4: FW is ready
Port 4: Config FW Complete
port 5: FW is ready
Port 5: Config FW Complete

EMAC loopback test application initialization
main: emac_open success

Waiting for LINK UP, Make sure to plugin loopback cable
PRU_ICSS port 0 LINK IS UP!

EMAC loopback test application initialization
main: emac_open success

Waiting for LINK UP, Make sure to plugin loopback cable
PRU_ICSS port 1 LINK IS UP!

EMAC loopback test application initialization
main: emac_open success

Waiting for LINK UP, Make sure to plugin loopback cable
PRU_ICSS port 2 LINK IS UP!

EMAC loopback test application initialization
main: emac_open success

Waiting for LINK UP, Make sure to plugin loopback cable
PRU_ICSS port 3 LINK IS UP!

EMAC loopback test application initialization
main: emac_open success

Waiting for LINK UP, Make sure to plugin loopback cable
PRU_ICSS port 4 LINK IS UP!

EMAC loopback test application initialization
main: emac_open success

Waiting for LINK UP, Make sure to plugin loopback cable
PRU_ICSS port 5 LINK IS UP!

Sending Packets on Port - 0
Receiving Packets on Port - 1

Sending Packet: 1
Received Packet: 1
Sending Packet: 2
Received Packet: 2
Sending Packet: 3
Received Packet: 3
Sending Packet: 4
Received Packet: 4
Sending Packet: 5
Received Packet: 5
Sending Packet: 6
Received Packet: 6
Sending Packet: 7
Received Packet: 7
Sending Packet: 8
Received Packet: 8
Sending Packet: 9
Received Packet: 9
Sending Packet: 10

Received Packet: 10
Sending Packet: 11
Received Packet: 11
Sending Packet: 12
Received Packet: 12
Sending Packet: 13
Received Packet: 13
Sending Packet: 14
Received Packet: 14
Sending Packet: 15
Received Packet: 15
Sending Packet: 16
Received Packet: 16

...
...
...

Sending Packet: 10236
Received Packet: 10236
Sending Packet: 10237
Received Packet: 10237
Sending Packet: 10238
Received Packet: 10238
Sending Packet: 10239
Received Packet: 10239
Sending Packet: 10240
Received Packet: 10240

Packets Sent: 10240, Packets Received: 10240
Port 0 Send to Port 1 Receive Test Passed!

Sending Packets on Port - 1
Receiving Packets on Port - 0
Sending Packet: 1
Received Packet: 1
Sending Packet: 2
Received Packet: 2
Sending Packet: 3
Received Packet: 3
Sending Packet: 4
Received Packet: 4
Sending Packet: 5
Received Packet: 5
Sending Packet: 6
Received Packet: 6
Sending Packet: 7
Received Packet: 7
Sending Packet: 8
Received Packet: 8
Sending Packet: 9
Received Packet: 9
Sending Packet: 10
Received Packet: 10
Sending Packet: 11
Received Packet: 11
Sending Packet: 12
Received Packet: 12
Sending Packet: 13
Received Packet: 13
Sending Packet: 14

Received Packet: 14
Sending Packet: 15
Received Packet: 15
Sending Packet: 16
Received Packet: 16

...
...
...

Sending Packet: 10236
Received Packet: 10236
Sending Packet: 10237
Received Packet: 10237
Sending Packet: 10238
Received Packet: 10238
Sending Packet: 10239
Received Packet: 10239
Sending Packet: 10240
Received Packet: 10240

Packets Sent: 10240, Packets Received: 10240
Port 1 Send to Port 0 Receive Test Passed!

Sending Packets on Port - 2
Receiving Packets on Port - 3

Sending Packet: 1
Received Packet: 1
Sending Packet: 2
Received Packet: 2
Sending Packet: 3
Received Packet: 3
Sending Packet: 4
Received Packet: 4
Sending Packet: 5
Received Packet: 5
Sending Packet: 6
Received Packet: 6
Sending Packet: 7
Received Packet: 7
Sending Packet: 8
Received Packet: 8
Sending Packet: 9
Received Packet: 9
Sending Packet: 10
Received Packet: 10
Sending Packet: 11
Received Packet: 11
Sending Packet: 12
Received Packet: 12
Sending Packet: 13
Received Packet: 13
Sending Packet: 14
Received Packet: 14
Sending Packet: 15
Received Packet: 15
Sending Packet: 16
Received Packet: 16

...

...

...

Sending Packet: 10236
Received Packet: 10236
Sending Packet: 10237
Received Packet: 10237
Sending Packet: 10238
Received Packet: 10238
Sending Packet: 10239
Received Packet: 10239
Sending Packet: 10240
Received Packet: 10240

Packets Sent: 10240, Packets Received: 10240
Port 2 Send to Port 3 Receive Test Passed!

Sending Packets on Port - 3
Receiving Packets on Port - 2
Sending Packet: 1
Received Packet: 1
Sending Packet: 2
Received Packet: 2
Sending Packet: 3
Received Packet: 3
Sending Packet: 4
Received Packet: 4
Sending Packet: 5
Received Packet: 5
Sending Packet: 6
Received Packet: 6
Sending Packet: 7
Received Packet: 7
Sending Packet: 8
Received Packet: 8
Sending Packet: 9
Received Packet: 9
Sending Packet: 10
Received Packet: 10
Sending Packet: 11
Received Packet: 11
Sending Packet: 12
Received Packet: 12
Sending Packet: 13
Received Packet: 13
Sending Packet: 14
Received Packet: 14
Sending Packet: 15
Received Packet: 15
Sending Packet: 16
Received Packet: 16

...
...
...

Sending Packet: 10236
Received Packet: 10236
Sending Packet: 10237
Received Packet: 10237
Sending Packet: 10238

Received Packet: 10238
Sending Packet: 10239
Received Packet: 10239
Sending Packet: 10240
Received Packet: 10240

Packets Sent: 10240, Packets Received: 10240
Port 2 Send to Port 3 Receive Test Passed!

...
...
...

Sending Packets on Port - 5
Receiving Packets on Port - 4
Sending Packet: 1
Received Packet: 1
Sending Packet: 2
Received Packet: 2
Sending Packet: 3
Received Packet: 3
Sending Packet: 4
Received Packet: 4
Sending Packet: 5
Received Packet: 5
Sending Packet: 6
Received Packet: 6
Sending Packet: 7
Received Packet: 7
Sending Packet: 8
Received Packet: 8
Sending Packet: 9
Received Packet: 9
Sending Packet: 10
Received Packet: 10
Sending Packet: 11
Received Packet: 11
Sending Packet: 12
Received Packet: 12
Sending Packet: 13
Received Packet: 13
Sending Packet: 14
Received Packet: 14
Sending Packet: 15
Received Packet: 15
Sending Packet: 16
Received Packet: 16

...
...
...

Sending Packet: 10236
Received Packet: 10236
Sending Packet: 10237
Received Packet: 10237
Sending Packet: 10238
Received Packet: 10238
Sending Packet: 10239
Received Packet: 10239
Sending Packet: 10240

Received Packet: 10240

Packets Sent: 10240, Packets Received: 10240
Port 5 Send to Port 4 Receive Test Passed!

ICSSG Ethernet Port to Port Test Passed!
All Tests Completed

3.3.3.7. ICSS LED Stress Test

This test veri�es LEDs connected to PRU-ICSS ports. All the LEDs are turned ON and OFF for 3
times during the test. Test is repeated for 100 iterations.

3.3.3.7.1. Test Accessories

No additional accessories are required for running this test.

3.3.3.7.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.3.7.3. Test Execution

Select the menu option to run ‘icssgLedStress_TEST’
Verify the test log on serial console

3.3.3.7.4. Test Log

Sample log for ICSS LED stress test is shown below

Running ICSSG LED Test in Stress Mode for 100 Number of Times...
Enter 'b' in Serial Console to Terminate the Test

**
* ICSS LED Test *
**

Testing ICSSG PRG0 and PRG1 LED's
Blinking LEDs...
Press 'y' to verify pass, 'r' to blink again,
or any other character to indicate failure: Received: y

Test PASSED!

Iteration : 1 ICSSG LED Test Passed

**
* ICSS LED Test *
**

Testing ICSSG PRG0 and PRG1 LED's
Blinking LEDs...
Press 'y' to verify pass, 'r' to blink again,
or any other character to indicate failure: Received: y

Test PASSED!

Iteration : 2 ICSSG LED Test Passed

**
* ICSS LED Test *
**

Testing ICSSG PRG0 and PRG1 LED's
Blinking LEDs...
Press 'y' to verify pass, 'r' to blink again,
or any other character to indicate failure: Received: y

Test PASSED!

Iteration : 3 ICSSG LED Test Passed

**
* ICSS LED Test *
**

Testing ICSSG PRG0 and PRG1 LED's
Blinking LEDs...
Press 'y' to verify pass, 'r' to blink again,
or any other character to indicate failure: Received: y

Test PASSED!

Iteration : 4 ICSSG LED Test Passed

**
* ICSS LED Test *
**

Testing ICSSG PRG0 and PRG1 LED's
Blinking LEDs...
Press 'y' to verify pass, 'r' to blink again,
or any other character to indicate failure: Received: y

Test PASSED!

Iteration : 5 ICSSG LED Test Passed

...
...
...

**
* ICSS LED Test *
**

Testing ICSSG PRG0 and PRG1 LED's
Blinking LEDs...
Press 'y' to verify pass, 'r' to blink again,
or any other character to indicate failure: Received: y

Test PASSED!

Iteration : 99 ICSSG LED Test Passed

**
* ICSS LED Test *
**

Testing ICSSG PRG0 and PRG1 LED's
Blinking LEDs...
Press 'y' to verify pass, 'r' to blink again,
or any other character to indicate failure: Received: y

Test PASSED!

Iteration : 100 ICSSG LED Test Passed

ICSSG LED Stress Test Status
===================================
Number of Times Executed - 100
Pass Count - 100
Fail Count - 0
Overall Status - PASS

3.3.3.8. Industrial LED Stress Test

This test veri�es industrial LEDs connected to I2C interface on the HW platform under test. All
the LEDs are turned ON and OFF for 3 times during the test. Test is repeated for 100
iterations.

3.3.3.8.1. Test Accessories

No additional accessories are required for running this test.

3.3.3.8.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.3.8.3. Test Execution

Select the menu option to run ‘ledIndustrialStress_TEST’
Con�rm that all the industrial LEDs on the board are toggling during the test
Verify the test log on serial console

3.3.3.8.4. Test Log

Sample log for industrial LED stress test is shown below

* Industrial LED Test *

Running Industrial Test in Stress Mode for 100 Number of Times...
Enter 'b' in Serial Console to Terminate the Test

Running Industrial Test...
Verifying LED's connected to I2C IO Expander slave device...

Testing Industrial LEDs
Cycling LEDs 3 times
Press 'y' to verify pass, 'r' to cycle leds again,
or any other character to indicate failure: Received: y

Test PASSED!

Testing Industrial LEDs on AM65xx IDK Board
Cycling LEDs 3 times
Press 'y' to verify pass, 'r' to cycle leds again,
or any other character to indicate failure: Received: y

Test PASSED!

Iteration : 1 Industrial Test Passed

Running Industrial Test...
Verifying LED's connected to I2C IO Expander slave device...

Testing Industrial LEDs
Cycling LEDs 3 times
Press 'y' to verify pass, 'r' to cycle leds again,
or any other character to indicate failure: Received: y

Test PASSED!

Testing Industrial LEDs on AM65xx IDK Board
Cycling LEDs 3 times
Press 'y' to verify pass, 'r' to cycle leds again,
or any other character to indicate failure: Received: y

Test PASSED!

Iteration : 2 Industrial Test Passed

Running Industrial Test...
Verifying LED's connected to I2C IO Expander slave device...

Testing Industrial LEDs
Cycling LEDs 3 times
Press 'y' to verify pass, 'r' to cycle leds again,
or any other character to indicate failure: Received: y

Test PASSED!

Testing Industrial LEDs on AM65xx IDK Board
Cycling LEDs 3 times
Press 'y' to verify pass, 'r' to cycle leds again,
or any other character to indicate failure: Received: y

Test PASSED!

Iteration : 3 Industrial Test Passed

Running Industrial Test...
Verifying LED's connected to I2C IO Expander slave device...

Testing Industrial LEDs
Cycling LEDs 3 times
Press 'y' to verify pass, 'r' to cycle leds again,
or any other character to indicate failure: Received: y

Test PASSED!

Testing Industrial LEDs on AM65xx IDK Board
Cycling LEDs 3 times
Press 'y' to verify pass, 'r' to cycle leds again,
or any other character to indicate failure: Received: y

Test PASSED!

Iteration : 4 Industrial Test Passed

...
...
...

Running Industrial Test...
Verifying LED's connected to I2C IO Expander slave device...

Testing Industrial LEDs
Cycling LEDs 3 times
Press 'y' to verify pass, 'r' to cycle leds again,
or any other character to indicate failure: Received: y

Test PASSED!

Testing Industrial LEDs on AM65xx IDK Board
Cycling LEDs 3 times
Press 'y' to verify pass, 'r' to cycle leds again,
or any other character to indicate failure: Received: y

Test PASSED!

Iteration : 99 Industrial Test Passed

Running Industrial Test...
Verifying LED's connected to I2C IO Expander slave device...

Testing Industrial LEDs
Cycling LEDs 3 times
Press 'y' to verify pass, 'r' to cycle leds again,
or any other character to indicate failure: Received: y

Test PASSED!

Testing Industrial LEDs on AM65xx IDK Board
Cycling LEDs 3 times
Press 'y' to verify pass, 'r' to cycle leds again,
or any other character to indicate failure: Received: y

Test PASSED!

Iteration : 100 Industrial Test Passed

Industrial Stress Test Status
===================================
Number of Times Executed - 100
Pass Count - 100
Fail Count - 0
Overall Status - PASS

3.3.3.9. LED Stress Test

This test veri�es general purpose user LEDs on the HW platform under test. All the LEDs are
turned ON and OFF for 3 times during the test. Test is repeated for 100 iterations.

3.3.3.9.1. Test Accessories

No additional accessories are required for running this test.

3.3.3.9.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.3.9.3. Test Execution

Select the menu option to run ‘ledStress_TEST’
Con�rm that all the general purpose user LEDs on the board are toggling during the
test
Verify the test log on serial console

3.3.3.9.4. Test Log

Sample log for LED stress test is shown below

Running LED Test in Stress Mode for 100 Number of Times...
Enter 'b' in Serial Console to Terminate the Test

* LED Test *

Testing LED
Blinking LEDs...
Press 'y' to verify pass, 'r' to blink again,
or any other character to indicate failure: Received: y

Test PASSED!

Iteration : 1 LED Test Passed

* LED Test *

Testing LED
Blinking LEDs...
Press 'y' to verify pass, 'r' to blink again,
or any other character to indicate failure: Received: y

Test PASSED!

Iteration : 2 LED Test Passed

* LED Test *

Testing LED
Blinking LEDs...
Press 'y' to verify pass, 'r' to blink again,
or any other character to indicate failure: Received: y

Test PASSED!

Iteration : 3 LED Test Passed

* LED Test *

Testing LED
Blinking LEDs...
Press 'y' to verify pass, 'r' to blink again,
or any other character to indicate failure: Received: y

Test PASSED!

Iteration : 4 LED Test Passed

...
...
...

* LED Test *

Testing LED
Blinking LEDs...
Press 'y' to verify pass, 'r' to blink again,
or any other character to indicate failure: Received: y

Test PASSED!

Iteration : 99 LED Test Passed

* LED Test *

Testing LED
Blinking LEDs...
Press 'y' to verify pass, 'r' to blink again,
or any other character to indicate failure: Received: y

Test PASSED!

Iteration : 100 LED Test Passed

LED Stress Test Status
===================================
Number of Times Executed - 100
Pass Count - 100
Fail Count - 0
Overall Status - PASS

3.3.3.10. Memory (DDR) Stress Test

This test veri�es the DDR memory of the HW platform under test. Address bus test is
performed with a test pattern and its compliment during the test. Walking 1s and walking 0s
test is executed additionally as part of stress test.

3.3.3.10.1. Test Accessories

No additional accessories are required for running this test.

3.3.3.10.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.3.10.3. Test Execution

Select the menu option to run ‘memStress_TEST’
Verify the test log on serial console

3.3.3.10.4. Test Log

Sample DDR stress test log is shown below

* DDR Memory Test *

Testing writing and reading memory
board_external_memory_test: Start address (0x80000000), end address (0xffffffff)
First test started
Writing to test area...
 Write up to 0x80000000 done
 Write up to 0x90000000 done
 Write up to 0xa0000000 done
 Write up to 0xb0000000 done
 Write up to 0xc0000000 done
 Write up to 0xd0000000 done
 Write up to 0xe0000000 done
 Write up to 0xf0000000 done
Write finished!
Checking values...
 Read up to 0x80000000 okay
 Read up to 0x90000000 okay
 Read up to 0xa0000000 okay
 Read up to 0xb0000000 okay
 Read up to 0xc0000000 okay
 Read up to 0xd0000000 okay
 Read up to 0xe0000000 okay
 Read up to 0xf0000000 okay
Second test started
Writing complementary values to test area...
 Write up to 0x80000000 done
 Write up to 0x90000000 done
 Write up to 0xa0000000 done
 Write up to 0xb0000000 done
 Write up to 0xc0000000 done
 Write up to 0xd0000000 done
 Write up to 0xe0000000 done
 Write up to 0xf0000000 done
Write finished!
Checking values...
 Read up to 0x80000000 okay
 Read up to 0x90000000 okay
 Read up to 0xa0000000 okay
 Read up to 0xb0000000 okay
 Read up to 0xc0000000 okay
 Read up to 0xd0000000 okay
 Read up to 0xe0000000 okay
 Read up to 0xf0000000 okay
Board memory test passed!
 walking1s test verified up to 0x80000000 done
 walking1s test verified up to 0x90000000 done
 walking1s test verified up to 0xa0000000 done
 walking1s test verified up to 0xb0000000 done
 walking1s test verified up to 0xc0000000 done
 walking1s test verified up to 0xd0000000 done
 walking1s test verified up to 0xe0000000 done
 walking1s test verified up to 0xf0000000 done
walking1s test passed!
 walking0s test verified up to 0x80000000 done
 walking0s test verified up to 0x90000000 done
 walking0s test verified up to 0xa0000000 done
 walking0s test verified up to 0xb0000000 done

 walking0s test verified up to 0xc0000000 done
 walking0s test verified up to 0xd0000000 done
 walking0s test verified up to 0xe0000000 done
 walking0s test verified up to 0xf0000000 done
walking0s test passed!
Memory test passed!

3.3.3.11. MMCSD Stress Test

This test veri�es SD card interface on the platform under test. Whole memory of SD card
starting from 1.5GB o�set is written and read during the test.

3.3.3.11.1. Test Accessories

SD card.

3.3.3.11.2. Test Setup

Insert the SD card into MMCSD slot of the board.

3.3.3.11.3. Test Execution

Select the menu option to run ‘mmcsdStress_TEST’
Verify the test log on serial console

3.3.3.11.4. Test Log

Sample log for SD card stress test is shown below

* MMCSD Stress Test *

PASS: Read/Write Success for this block-0x300000

PASS: Read/Write Success for this block-0x301000

PASS: Read/Write Success for this block-0x302000

PASS: Read/Write Success for this block-0x303000

PASS: Read/Write Success for this block-0x304000

PASS: Read/Write Success for this block-0x305000

PASS: Read/Write Success for this block-0x306000

PASS: Read/Write Success for this block-0x307000

PASS: Read/Write Success for this block-0x308000

PASS: Read/Write Success for this block-0x309000

PASS: Read/Write Success for this block-0x30a000

PASS: Read/Write Success for this block-0x30b000

PASS: Read/Write Success for this block-0x30c000

PASS: Read/Write Success for this block-0x30d000

PASS: Read/Write Success for this block-0x30e000

PASS: Read/Write Success for this block-0x30f000

PASS: Read/Write Success for this block-0x310000

...
...
...

PASS: Read/Write Success for this block-0x5fa000

PASS: Read/Write Success for this block-0x5fb000

PASS: Read/Write Success for this block-0x5fc000

PASS: Read/Write Success for this block-0x5fd000

PASS: Read/Write Success for this block-0x5fe000

PASS: Read/Write Success for this block-0x5ff000

PASS: Read/Write Success for this pattern

3.3.3.12. NOR Flash Stress Test

This test veri�es the NOR �ash memory connected to SPI interface. Whole memory of �ash is
written and read back for data veri�cation during the test.

3.3.3.12.1. Test Accessories

No additional accessories are required for running this test.

3.3.3.12.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.3.12.3. Test Execution

Select the menu option to run ‘nor�ashStress_TEST’
Verify the test log on serial console

3.3.3.12.4. Test Log

Sample log for NOR �ash stress test is shown below

**
* SPI FlASH Stress Test *
**
Reading Flash Device ID...
Device ID 0 - 0x20
Device ID 1 - 0xba
Device ID 2 - 0x18
Flash Device ID Match!

Flash Device ID Read Passed!

Verifying Sector - 0
Data Read matches with Data written
SPI Flash Test Passed!

Verifying Sector - 1
Data Read matches with Data written
SPI Flash Test Passed!

Verifying Sector - 2
Data Read matches with Data written
SPI Flash Test Passed!

Verifying Sector - 3
Data Read matches with Data written
SPI Flash Test Passed!

Verifying Sector - 4
Data Read matches with Data written
SPI Flash Test Passed!

Verifying Sector - 5
Data Read matches with Data written
SPI Flash Test Passed!

Verifying Sector - 6
Data Read matches with Data written
SPI Flash Test Passed!

Verifying Sector - 7
Data Read matches with Data written
SPI Flash Test Passed!

Verifying Sector - 8
Data Read matches with Data written
SPI Flash Test Passed!

Verifying Sector - 9
Data Read matches with Data written
SPI Flash Test Passed!

Verifying Sector - 10
Data Read matches with Data written
SPI Flash Test Passed!

Verifying Sector - 11
Data Read matches with Data written
SPI Flash Test Passed!

Verifying Sector - 12

Data Read matches with Data written
SPI Flash Test Passed!

Verifying Sector - 13
Data Read matches with Data written
SPI Flash Test Passed!

Verifying Sector - 14
Data Read matches with Data written
SPI Flash Test Passed!

Verifying Sector - 15
Data Read matches with Data written
SPI Flash Test Passed!

Verifying Sector - 16
Data Read matches with Data written
SPI Flash Test Passed!

...
...
...

Verifying Sector - 250
Data Read matches with Data written
SPI Flash Test Passed!

Verifying Sector - 251
Data Read matches with Data written
SPI Flash Test Passed!

Verifying Sector - 252
Data Read matches with Data written
SPI Flash Test Passed!

Verifying Sector - 253
Data Read matches with Data written
SPI Flash Test Passed!

Verifying Sector - 254
Data Read matches with Data written
SPI Flash Test Passed!

Verifying Sector - 255
Data Read matches with Data written
SPI Flash Test Passed!

SPI NOR Flash Test Passed

3.3.3.13. OSPI Flash Stress Test

This test veri�es the �ash memory connected to OSPI interface. Whole memory of OSPI �ash
is written and read back for data veri�cation during the test.

3.3.3.13.1. Test Accessories

No additional accessories are required for running this test.

3.3.3.13.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.3.13.3. Test Execution

Select the menu option to run ‘ospiStress_TEST’
Verify the test log on serial console

3.3.3.13.4. Test Log

Sample log for OSPI �ash stress test is shown below

**
* OSPI FLASH Stress Test *
**

OSPI NOR device ID: 0x5b1a, manufacturer ID: 0x2c

Verifying the OSPI Flash ...

OSPI Flash Stress Test Iteration - 1

Verified upto Page - 0x0

Verified upto Page - 0x1000

Verified upto Page - 0x2000

Verified upto Page - 0x3000

Verified upto Page - 0x4000

Verified upto Page - 0x5000

Verified upto Page - 0x6000

Verified upto Page - 0x7000

Verified upto Page - 0x8000

Verified upto Page - 0x9000

Verified upto Page - 0xa000

Verified upto Page - 0xb000

Verified upto Page - 0xc000

Verified upto Page - 0xd000

Verified upto Page - 0xe000

Verified upto Page - 0xf000

...
...
...

Verified upto Page - 0x3ffd000

Verified upto Page - 0x3ffe000

Verified upto Page - 0x3fff000

OSPI NOR Flash verification Successful

3.3.3.14. Temperature Sensor Stress Test

This test veri�es reading the ambient temperature from temperature sensor interface. Test
veri�es all the temperature sensor devices on the board. Test is repeated for 100 iterations.

3.3.3.14.1. Test Accessories

No additional accessories are required for running this test.

3.3.3.14.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.3.14.3. Test Execution

Select the menu option to run ‘temperatureStress_TEST’
Verify the test log on serial console

3.3.3.14.4. Test Log

Sample log for temperature sensor stress test is shown below

* Temperature Sensor Test *

Running Temperature Sensor Test in Stress Mode for 100 Number of Times...
Enter 'b' in Serial Console to Terminate the Test

Running Temperature Sensor Test...
Running temperature sensor test...
Read temperature register value - 680

Temperature read from the temperature sensor
 slave address - 0x48 is 42 degree centigrade
Read temperature register value - 616

Temperature read from the temperature sensor
 slave address - 0x49 is 38 degree centigrade
Temperature sensor test Passed!

Iteration : 1 Temperature Sensor Test Passed

Running Temperature Sensor Test...
Running temperature sensor test...
Read temperature register value - 680

Temperature read from the temperature sensor
 slave address - 0x48 is 42 degree centigrade
Read temperature register value - 616

Temperature read from the temperature sensor
 slave address - 0x49 is 38 degree centigrade
Temperature sensor test Passed!

Iteration : 2 Temperature Sensor Test Passed

Running Temperature Sensor Test...
Running temperature sensor test...
Read temperature register value - 680

Temperature read from the temperature sensor
 slave address - 0x48 is 42 degree centigrade
Read temperature register value - 616

Temperature read from the temperature sensor
 slave address - 0x49 is 38 degree centigrade
Temperature sensor test Passed!

Iteration : 3 Temperature Sensor Test Passed

Running Temperature Sensor Test...
Running temperature sensor test...
Read temperature register value - 680

Temperature read from the temperature sensor
 slave address - 0x48 is 42 degree centigrade
Read temperature register value - 616

Temperature read from the temperature sensor
 slave address - 0x49 is 38 degree centigrade
Temperature sensor test Passed!

Iteration : 4 Temperature Sensor Test Passed

...
...
...

Running Temperature Sensor Test...
Running temperature sensor test...
Read temperature register value - 680

Temperature read from the temperature sensor
 slave address - 0x48 is 42 degree centigrade
Read temperature register value - 616

Temperature read from the temperature sensor
 slave address - 0x49 is 38 degree centigrade
Temperature sensor test Passed!

Iteration : 99 Temperature Sensor Test Passed

Running Temperature Sensor Test...
Running temperature sensor test...
Read temperature register value - 680

Temperature read from the temperature sensor
 slave address - 0x48 is 42 degree centigrade
Read temperature register value - 616

Temperature read from the temperature sensor
 slave address - 0x49 is 38 degree centigrade
Temperature sensor test Passed!

Iteration : 100 Temperature Sensor Test Passed

Temperature Sensor Stress Test Status
===================================
Number of Times Executed - 100
Pass Count - 100
Fail Count - 0
Overall Status - PASS

Temperature Sensor Test Passed

3.3.3.15. USB Host Stress Test

This test veri�es USB host mode operation of the HW platform under test. USB interface
functions as USB mass storage host during the test. USB device connected to the board will
be enumerated, a �le will be created, written with test data and read back to verify the data.
USB interface operates at high-speed (USB 2.0) during the test. Test is repeated for 100
iterations.

3.3.3.15.1. Test Accessories

USB OTG pen drive or normal pen drive with OTG cable

3.3.3.15.2. Test Setup

Refer USB Host Test Setup section for more details

3.3.3.15.3. Test Execution

Select the menu option to run ‘usbHostStress_TEST’
Test supports USB host port on CP board and SerDes board on AM65x IDK platform.
Choose the board under test in the serial console while running the test on
am65xx_idk
Verify the test log on serial console

3.3.3.15.4. Test Log

Sample log for USB host stress test on am65xx_evm is shown below

* USB Host Test *

USB Host MSC example!!

Running USB Host Test in Stress Mode for 100 Number of Times...
Creating a text file...
File already exist..!, deleting existing file and creating a new file

Successfully created text file!
Verifying data......
Data verified successfully

Iteration : 1 USB Host Test Passed
Creating a text file...
File already exist..!, deleting existing file and creating a new file

Successfully created text file!
Verifying data......
Data verified successfully

Iteration : 2 USB Host Test Passed
Creating a text file...
File already exist..!, deleting existing file and creating a new file

Successfully created text file!
Verifying data......
Data verified successfully

Iteration : 3 USB Host Test Passed
Creating a text file...
File already exist..!, deleting existing file and creating a new file

Successfully created text file!
Verifying data......
Data verified successfully

Iteration : 4 USB Host Test Passed
Creating a text file...
File already exist..!, deleting existing file and creating a new file

Successfully created text file!
Verifying data......
Data verified successfully

Iteration : 5 USB Host Test Passed

...
...
...

Creating a text file...
File already exist..!, deleting existing file and creating a new file

Successfully created text file!
Verifying data......
Data verified successfully

Iteration : 99 USB Host Test Passed
Creating a text file...
File already exist..!, deleting existing file and creating a new file

Successfully created text file!
Verifying data......
Data verified successfully

Iteration : 100 USB Host Test Passed

USB Host Stress Test Status
===================================
Number of Times Executed - 100
Pass Count - 100
Fail Count - 0
Overall Status - PASS

USB Host test Passed

Sample log for USB host stress test on am65xx_idk board is shown below

* USB Host Test *

USB Host MSC example!!

Select the options below on which application has to be run

1.CP board
2.Serdes Board
1

Running USB Host Test in Stress Mode for 100 Number of Times...
Enter 'b' in Serial Console to Terminate the Test

Creating a text file...
File already exist..!, deleting existing file and creating a new file

Successfully created text file!
Verifying data......
Data verified successfully

Iteration : 1 USB Host Test Passed
Creating a text file...
File already exist..!, deleting existing file and creating a new file

Successfully created text file!
Verifying data......
Data verified successfully

Iteration : 2 USB Host Test Passed
Creating a text file...
File already exist..!, deleting existing file and creating a new file

Successfully created text file!
Verifying data......
Data verified successfully

Iteration : 3 USB Host Test Passed
Creating a text file...
File already exist..!, deleting existing file and creating a new file

Successfully created text file!
Verifying data......
Data verified successfully

Iteration : 4 USB Host Test Passed

Creating a text file...
File already exist..!, deleting existing file and creating a new file

Successfully created text file!
Verifying data......
Data verified successfully

Iteration : 5 USB Host Test Passed

...
...
...

Creating a text file...
File already exist..!, deleting existing file and creating a new file

Successfully created text file!
Verifying data......
Data verified successfully

Iteration : 99 USB Host Test Passed
Creating a text file...
File already exist..!, deleting existing file and creating a new file

Successfully created text file!
Verifying data......
Data verified successfully

Iteration : 100 USB Host Test Passed

USB Host Stress Test Status
===================================
Number of Times Executed - 100
Pass Count - 100
Fail Count - 0
Overall Status - PASS

3.3.3.16. MCAN Stress Test

Veri�es MCAN ports on the HW platform with two MCAN ports connected with each other.
10240 packets sent from one port and received on another port. Both the ports are veri�ed
for Tx and Rx.

3.3.3.16.1. Test Accessories

MCAN port to port loopback cable

3.3.3.16.2. Test Setup

Refer MCAN Test Setup section for more details

3.3.3.16.3. Test Execution

Select the menu option to run ‘mcanStress_TEST’
Verify the test log on serial console

3.3.3.16.4. Test Log

Sample log for MCAN stress test is shown below

* MCAN Stress Test *

MCANSS Revision ID:
scheme:0x1
Business Unit:0x2
Module ID:0x8e0
RTL Revision:0x5
Major Revision:0x1
Custom Revision:0x0
Minor Revision:0x1
CAN-FD operation is enabled through E-Fuse.
Endianess Value:0x87654321
Successfully configured MCAN0
MCANSS Revision ID:
scheme:0x1
Business Unit:0x2
Module ID:0x8e0
RTL Revision:0x5
Major Revision:0x1
Custom Revision:0x0
Minor Revision:0x1
CAN-FD operation is enabled through E-Fuse.
Endianess Value:0x87654321
Successfully configured MCAN1

Transmitting Data on MCAN Port0 and Receiving on MCAN port 1

Sending Packet - 1

Message successfully transferred with payload Bytes:0xf

Message ID:0x100000

Message Remote Transmission Request:0x0

Message Extended Frame ID(0:11Bit ID/1:29bit ID):0x0

Message Error State Indicator(0:Error Active/1:Error Passive):0x0

Message Data Length Code:0xf

Message BRS:0x1

Message CAN FD format:0x1

Message Store Tx Events:0x1

Message Marker:0xaa

Message DataByte0:0xaa

Message DataByte1:0x30

Message DataByte2:0xb9

Message DataByte3:0xd6

Message DataByte4:0xfb

Message DataByte5:0x4b

Message DataByte6:0x87

Message DataByte7:0x27

Message DataByte8:0x97

Message DataByte9:0x58

Message DataByte10:0x0

Message DataByte11:0xc0

Message DataByte12:0xd4

Message DataByte13:0xe

Message DataByte14:0x3

Message successfully received with payload Bytes:0xf

Received last message with following details:
Message ID:0x100008

Message Remote Transmission Request:0x0

Message Extended Frame ID(0:11Bit ID/1:29bit ID):0x0

Message Error State Indicator(0:Error Active/1:Error Passive):0x0

Message TimeStamp:0x0

Message Data Length Code:0xf

Message BRS:0x1

Message CAN FD format:0x1

Message Filter Index:0x0

Message Accept Non-matching Frame:0x0

Message DataByte0:0xaa

Message DataByte1:0x30

Message DataByte2:0xb9

Message DataByte3:0xd6

Message DataByte4:0xfb

Message DataByte5:0x4b

Message DataByte6:0x87

Message DataByte7:0x27

Message DataByte8:0x97

Message DataByte9:0x58

Message DataByte10:0x0

Message DataByte11:0xc0

Message DataByte12:0xd4

Message DataByte13:0xe

Message DataByte14:0x3

Received Packet - 1

...
...
...

Sending Packet - 10240

Message successfully transferred with payload Bytes:0xf

Message ID:0x100000

Message Remote Transmission Request:0x0

Message Extended Frame ID(0:11Bit ID/1:29bit ID):0x0

Message Error State Indicator(0:Error Active/1:Error Passive):0x0

Message Data Length Code:0xf

Message BRS:0x1

Message CAN FD format:0x1

Message Store Tx Events:0x1

Message Marker:0xaa

Message DataByte0:0xaa

Message DataByte1:0x59

Message DataByte2:0x2a

Message DataByte3:0x5b

Message DataByte4:0x4b

Message DataByte5:0x9e

Message DataByte6:0xd1

Message DataByte7:0x77

Message DataByte8:0x9d

Message DataByte9:0x46

Message DataByte10:0x6d

Message DataByte11:0x74

Message DataByte12:0xd7

Message DataByte13:0xc2

Message DataByte14:0x8d

Message successfully received with payload Bytes:0xf

Received last message with following details:
Message ID:0x110008

Message Remote Transmission Request:0x0

Message Extended Frame ID(0:11Bit ID/1:29bit ID):0x0

Message Error State Indicator(0:Error Active/1:Error Passive):0x0

Message TimeStamp:0x0

Message Data Length Code:0xf

Message BRS:0x1

Message CAN FD format:0x1

Message Filter Index:0x0

Message Accept Non-matching Frame:0x0

Message DataByte0:0xaa

Message DataByte1:0x59

Message DataByte2:0x2a

Message DataByte3:0x5b

Message DataByte4:0x4b

Message DataByte5:0x9e

Message DataByte6:0xd1

Message DataByte7:0x77

Message DataByte8:0x9d

Message DataByte9:0x46

Message DataByte10:0x6d

Message DataByte11:0x74

Message DataByte12:0xd7

Message DataByte13:0xc2

Message DataByte14:0x8d

Received Packet - 10240

Transmitting Data on MCAN Port1 and Receiving on MCAN port 0

Sending Packet - 1

Message successfully transferred with payload Bytes:0xf
Receiving data on port0

Message successfully received with payload Bytes:0xf

Received last message with following details:
Message ID:0x110008

Message Remote Transmission Request:0x0

Message Extended Frame ID(0:11Bit ID/1:29bit ID):0x0

Message Error State Indicator(0:Error Active/1:Error Passive):0x0

Message TimeStamp:0x0

Message Data Length Code:0xf

Message BRS:0x1

Message CAN FD format:0x1

Message Filter Index:0x0

Message Accept Non-matching Frame:0x0

Message DataByte0:0xaa

Message DataByte1:0x1f

Message DataByte2:0x44

Message DataByte3:0x40

Message DataByte4:0x68

Message DataByte5:0x7a

Message DataByte6:0x5d

Message DataByte7:0xf5

Message DataByte8:0x3e

Message DataByte9:0xa5

Message DataByte10:0xb7

Message DataByte11:0xe3

Message DataByte12:0x36

Message DataByte13:0x3a

Message DataByte14:0x76

Received Packet - 1

...
...
...

Sending Packet - 10240

Message successfully transferred with payload Bytes:0xf

Message ID:0x100000

Message Remote Transmission Request:0x0

Message Extended Frame ID(0:11Bit ID/1:29bit ID):0x0

Message Error State Indicator(0:Error Active/1:Error Passive):0x0

Message Data Length Code:0xf

Message BRS:0x1

Message CAN FD format:0x1

Message Store Tx Events:0x1

Message Marker:0xaa

Message DataByte0:0xaa

Message DataByte1:0xbd

Message DataByte2:0x97

Message DataByte3:0xca

Message DataByte4:0x10

Message DataByte5:0xd5

Message DataByte6:0x2c

Message DataByte7:0x14

Message DataByte8:0x6e

Message DataByte9:0xcc

Message DataByte10:0x69

Message DataByte11:0x21

Message DataByte12:0xb8

Message DataByte13:0x94

Message DataByte14:0xf6
Receiving data on port0

Message successfully received with payload Bytes:0xf

Received last message with following details:
Message ID:0x110008

Message Remote Transmission Request:0x0

Message Extended Frame ID(0:11Bit ID/1:29bit ID):0x0

Message Error State Indicator(0:Error Active/1:Error Passive):0x0

Message TimeStamp:0x0

Message Data Length Code:0xf

Message BRS:0x1

Message CAN FD format:0x1

Message Filter Index:0x0

Message Accept Non-matching Frame:0x0

Message DataByte0:0xaa

Message DataByte1:0xbd

Message DataByte2:0x97

Message DataByte3:0xca

Message DataByte4:0x10

Message DataByte5:0xd5

Message DataByte6:0x2c

Message DataByte7:0x14

Message DataByte8:0x6e

Message DataByte9:0xcc

Message DataByte10:0x69

Message DataByte11:0x21

Message DataByte12:0xb8

Message DataByte13:0x94

Message DataByte14:0xf6

Received Packet - 10240

 MCAN diagnostic test completed.
Finished running mcanStress_TEST, result passed!

3.3.3.17. UART Stress Test

This test veri�es the UART serial port by sending 10MB of data to the serial console. Data is
received by the teraterm script on host PC and looped back to the board. Data is recieved by
the test running on the board and veri�ed to con�rm data match.

 Note

This test does not support SD boot execution and need to run from CCS over JTAG.
Automation script is provided for teraterm application but the test should be functional
with any utility that can receive the data over COM port and send it back on the same
COM port.

3.3.3.17.1. Test Accessories

UART serial cable.
JTAG connection (on board or external as supported)

Di�erent platforms may need di�erent cable for accessing the serial port. Refer to HW
manual for more details.

3.3.3.17.2. Test Setup

Connect the UART serial cable between the board UART port and host PC
Connect the JTAG port of the board to host PC
Setup serial console application on host PC with below con�gurations

Baud rate - 115200
Data length - 8 bit
Parity - None
Stop bits - 1
Flow control - None

Four UART ports are veri�ed on am65xx_evm platform and three UART ports are
veri�ed on am65xx_idk platform. Need to make above setup on all serial consoles
connected to multiple ports on these platforms.

3.3.3.17.3. Test Execution

Power ON the board and clear any data on the serial consoles
Run the TTL script from all the Teraterm consoles by selecting menu ‘Control->Macro’
and select the script �le “am65xx_uart_stress_test_script.ttl”
Open CCS, launch the target con�g �le for the platform under test and connect to the
target
Load and run the UART diagnostic stress test binary
(uartStress_diagExample_<BOARD>_<TARGET>.x<CORE>fg) on the <CORE> being used
for the test.
Test script shall start displaying the messages on Teraterm consoles.
Test shall take few hours to complete and displays �nal result on the console.

3.3.3.17.4. Test Log

Sample UART stress test log is shown below

0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~
0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~
0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~

....
....
....

0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~
0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~
0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~
0123456789:

UART Stress Test Passed

3.3.3.18. RS485 UART Stress Test

This test veri�es the RS485 UART serial port by sending 10MB of data to the serial console.
Data is received by the teraterm script on host PC and looped back to the board. Data is
recieved by the test running on the board and veri�ed to con�rm data match.

 Note

This test does not support SD boot execution and need to run from CCS over JTAG.
Automation script is provided for teraterm application but the test should be functional
with any utility that can receive the data over COM port and send it back on the same
COM port.

3.3.3.18.1. Test Accessories

UART serial cable. RS485 to RS232 USB cable is used on AM65x IDK platform to run the
test.
JTAG connection (on board or external as supported)

Di�erent platforms may need di�erent cable for accessing the serial port. Refer to HW
manual for more details.

3.3.3.18.2. Test Setup

Connect the UART serial cable between the board RS485 UART port and host PC
Connect the JTAG port of the board to host PC
Setup serial console application on host PC with below con�gurations

Baud rate - 115200
Data length - 8 bit
Parity - None
Stop bits - 1
Flow control - None

3.3.3.18.3. Test Execution

Power ON the board and clear any data on the serial console
Run the TTL script from the Teraterm console by selecting menu ‘Control->Macro’ and
select the script �le “am65xx_uart_stress_test_script.ttl”
Open CCS, launch the target con�g �le for the platform under test and connect to the
target
Load and run the UART diagnostic stress test binary
(rs485_uartStress_diagExample_<BOARD>_<TARGET>.x<CORE>fg) on the <CORE>
being used for the test.
Test script shall start displaying the messages on Teraterm console.
Test shall take few hours to complete and displays �nal result on the console.

3.3.3.18.4. Test Log

Sample RS485 UART stress test log is shown below

0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~
0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~
0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~

....
....
....

0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~
0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~
0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~
0123456789:

PRU-ICSS UART Stress Test Passed

3.3.3.19. Power On Self Test (POST)

This test runs automatically when diagnostic tests are booted. Veri�es the basic memories on
the board and displays the test results. It also displays the board ID content programmed
onto the Board ID EEPROM. After the diag boot, POST waits for 5 secs during which entering
character ‘b’ in the serial console skips the POST execution. After the POST is executed,
default diagnostic menu shall be displayed.

3.3.3.19.1. Test Accessories

No additional accessories are required for running this test.

3.3.3.19.2. Test Setup

No speci�c test setup is needed. Use the default HW setup recommended in HW user
manual.

3.3.3.19.3. Test Execution

Test runs automatically. No execution steps needed.

3.3.3.19.4. Test Log

Sample log for LED stress test is shown below

DIAGNOSTIC TEST FRAMEWORK
Version - 01.00.00.01
Build Date - Apr 6 2019, Time - 03:47:24

Command options:
 help - displays this help menu again
 run - run a diagnostic application
 status - prints the test status

Running Power On Self Tests...
Press 'b' to Skip the Test
Parsing bootEepromCompliance_TEST
Running bootEepromCompliance_TEST

* Boot EEPROM Test *

Running Boot EEPROM test

Detecting the Boot EEPROM device...

Boot EEPROM device detection successful

Boot EEPROM boundary verification test...

Verifying the Boot EEPROM first page...

Verifying the Boot EEPROM last page...

Boot EEPROM boundary verification test successful

Boot EEPROM test Passed

Finished running bootEepromCompliance_TEST, result passed!
Parsing memCompliance_TEST
Running memCompliance_TEST

* DDR Memory Test *

Testing writing and reading memory
board_external_memory_test: Start address (0x80000000), end address (0xffffffff)
Address Bus Test Started
Writing to test area...
 Writing Memory 0x80000000
 Writing Memory 0x80000004
 Writing Memory 0x80000008
 Writing Memory 0x80000010
 Writing Memory 0x80000020
 Writing Memory 0x80000040
 Writing Memory 0x80000080
 Writing Memory 0x80000100
 Writing Memory 0x80000200
 Writing Memory 0x80000400
 Writing Memory 0x80000800
 Writing Memory 0x80001000

 Writing Memory 0x80002000
 Writing Memory 0x80004000
 Writing Memory 0x80008000
 Writing Memory 0x80010000
 Writing Memory 0x80020000
 Writing Memory 0x80040000
 Writing Memory 0x80080000
 Writing Memory 0x80100000
 Writing Memory 0x80200000
 Writing Memory 0x80400000
 Writing Memory 0x80800000
 Writing Memory 0x81000000
 Writing Memory 0x82000000
 Writing Memory 0x84000000
 Writing Memory 0x88000000
 Writing Memory 0x90000000
 Writing Memory 0xa0000000
 Writing Memory 0xc0000000
Write finished!
Checking values...
 Reading Memory 0x80000000
 Reading Memory 0x80000004
 Reading Memory 0x80000008
 Reading Memory 0x80000010
 Reading Memory 0x80000020
 Reading Memory 0x80000040
 Reading Memory 0x80000080
 Reading Memory 0x80000100
 Reading Memory 0x80000200
 Reading Memory 0x80000400
 Reading Memory 0x80000800
 Reading Memory 0x80001000
 Reading Memory 0x80002000
 Reading Memory 0x80004000
 Reading Memory 0x80008000
 Reading Memory 0x80010000
 Reading Memory 0x80020000
 Reading Memory 0x80040000
 Reading Memory 0x80080000
 Reading Memory 0x80100000
 Reading Memory 0x80200000
 Reading Memory 0x80400000
 Reading Memory 0x80800000
 Reading Memory 0x81000000
 Reading Memory 0x82000000
 Reading Memory 0x84000000
 Reading Memory 0x88000000
 Reading Memory 0x90000000
 Reading Memory 0xa0000000
 Reading Memory 0xc0000000
Board memory test passed!
Memory test passed!

Finished running memCompliance_TEST, result passed!
Parsing emmcCompliance_TEST
Running emmcCompliance_TEST

* eMMC Test *

PASS: Read/Write Success for this block-0x300000

PASS: Read/Write Success for this pattern

Finished running emmcCompliance_TEST, result passed!
Parsing norflashCompliance_TEST
Running norflashCompliance_TEST

* SPI FlASH Test *

Reading Flash Device ID...
Device ID 0 - 0x20
Device ID 1 - 0xba
Device ID 2 - 0x18
Flash Device ID Match!

Flash Device ID Read Passed!

Verifying Sector - 0
Data Read matches with Data written
SPI Flash Test Passed!

SPI NOR Flash Test Passed

Finished running norflashCompliance_TEST, result passed!
Parsing ospiCompliance_TEST
Running ospiCompliance_TEST

* OSPI FLASH Test *

OSPI NOR device ID: 0x5b1a, manufacturer ID: 0x2c

 Verifying the OSPI Flash first page...
OSPI NOR Flash first page verification Successful

OSPI NOR Flash verification Successful

OSPI Flash Test Passed!

Finished running ospiCompliance_TEST, result passed!
Parsing ledCompliance_TEST
Running ledCompliance_TEST

* LED Test *

Testing LED
Blinking LEDs...
Received: y

Test PASSED!

LED Test Passed

Finished running ledCompliance_TEST, result passed!
Parsing bootSwitchCompliance_TEST
Running bootSwitchCompliance_TEST

* Boot Switch Test *

Boot Switch SW3 Value - OFF ON ON OFF OFF OFF OFF OFF OFF OFF
Boot Switch SW2 Value - OFF OFF ON OFF OFF OFF OFF OFF OFF
Boot Switch SW4 Value - OFF OFF

Test Passed

Finished running bootSwitchCompliance_TEST, result passed!
Parsing eepromCompliance_TEST
Running eepromCompliance_TEST

* EEPROM Test *

CP Board:
Displaying Header Fields
========================
 Header ID: 0xee3355aa

Displaying Board Info Fields
============================
 Board Name: AM6-COMPROCEVM
 Design Revision: E3
 PROC Number: 0062
 Variant: 03
PCB Revision: E3
Schematic and BOM Revision: E3
Software Revision: 01
Vendor ID: 01
Build Week: 30
Build Year: 18
Board ID: 4P0081
Serial Number: 0017
Displaying DDR Fields
===================== DDR Control Word: 5850

Displaying MAC Info Fields
==========================
 MAC Control Word: 08
 MAC ADDR0: 70-ff-76-1d-4c-40
 MAC ADDR1: 70-ff-76-1d-4c-41
Test Passed
Finished running eepromCompliance_TEST, result passed!

Power On Self Test Result
All Tests Passed

3.3.3.20. Compliance Tests

Diagnostic tests include support for CE compliance verication for some of the platforms.
Compliance tests can be executed by selecting the menu option ‘0’ from the diagnostic test
menu. These tests are intended for use by board vendor.

3.4. Power-On Self Test

Overview

The Power-On Self Test (POST) boot is designed to execute a series of platform/EVM factory
tests on reset and indicate a PASS/FAIL condition using the LEDs and write test result to
UART. A PASS result indicates that the EVM can be booted. POST is supported on
K2H/K2E/K2L/C66x devices, this functionality is provided on other devices (e.g., AM57x) by
Diagnostics.

POST will perform the following functional tests:

External memory read/write test
NAND read test
NOR read test
EEPROM read test
UART write test
LED test

Additionally, POST provides the following useful information:

FPGA version
Board serial number
EFUSE MAC ID
Indication of whether SA is available on SOC
PLL Reset Type status register

Compilation

The recommended rule-of-thumb to compiling projects in the Processor SDK RTOS package is
to use the make�les provided. The make�les are usable after setting up your
shell/terminal/command prompt environment with the setupenv.bat or setupenv.sh script
located in

[SDK Install Path]/processor_sdk_rtos_<platform>_<version>

Refer to Processor SDK RTOS Building the SDK guide on how to setup your environment for
building within any of the Processor SDK RTOS packages.

file:///C:/share_folder/Processor-SDK-doc-builds/update-board-porting-instructions/processor-sdk-rtos/esd/docs/06_03_00/rtos/index_overview.html#building-the-sdk

To compile the POST application:

cd [SDK Install Path]/pdk_<platform>_<version>/packages/ti/boot/post/<platform>/build
make all

This will create the .out executable that can be loaded via CCS

Flashing POST Image

To �ash a bootable image of POST, please refer to the SDK RTOS Flashing Bootable Images
guide.

C66x LED Code

For C66x, the on-board LEDs can also provide diagnostic information on POST routines. Refer
to the following table:

Test Result LED1 LED2 LED3 LED4

Test in progress on on on on

All tests passed o� o� o� o�

External memory test failed blink o� o� o�

I2C EEPROM read failed o� blink o� o�

EMIF16 NAND read failed o� o� blink o�

SPI NOR read failed o� o� o� blink

UART write failed blink blink o� o�

PLL initialization failed o� o� blink blink

NAND initialization failed blink blink blink o�

NOR initialization failed o� blink blink blink

EMAC loopback failed on blink blink blink

Other failures blink blink blink blink

3.5. Board Utils

3.5.1. Uni�ash

file:///C:/share_folder/Processor-SDK-doc-builds/update-board-porting-instructions/processor-sdk-rtos/esd/docs/06_03_00/rtos/index_how_to_guides.html#flash-bootable-images-c66x-k2h-k2e-k2l-only

3.5.1.1. Introduction

Uni�ash is an Uni�ed Flashing tool which provides utilities for �ashing the application
software images to non-removable �ash devices on TI hardware platforms.

Uni�ash for TI processors platform includes two components

Flash Programmer
Host utility

Flash porgrammer runs on target platform which takes care of receiving the images from
Uni�ash host utility and programming them onto �ash devices. Flash programmer
communicates with Uni�ash host utility over the UART interface.

Flash programmer which is part of the Uni�ash release can be found at - “<Uni�ash
Root>/processors/FlashWriter/<Board Name>”

Host utility runs on host machine which provides Command-line Interface (CLI) to
communicate with �ash programmer. Windows and Linux are the supported OS platforms
for running Uni�ash host utility. Host utility uses UART or JTAG interface to download the
�ash programmer to the target platform. All data transfers between Uni�ash host utility and
Flash programmer happens over UART interface.

Refer to Uni�ash Documentation for more details on Uni�ash tool.

3.5.1.2. Supported Platforms

Below table shows the platforms supported by Uni�ash and �ash devices supported on each
platform. Download mode indicates the mode of communication for downloading �ash
programmer to target platform.

SOC SOC Core PLATFORM

FLASH DEVICE DOWNLOA

SPI QSPI OSPI EMMC UART

J

U

AM335x Cortex-A8

AM335x GP EVM X X X

AM335x ICEv2 X X

AMIC110 ICE X X X

AM437x Cortex-A9 AM437x IDK X X

AM571x Cortex-A15 AM571x IDK X X

AM572x Cortex-A15 AM572x IDK X X

http://processors.wiki.ti.com/index.php/Category:CCS_UniFlash

where,

X : Supported

 Note

For the platforms which support both UART and JTAG mode, UART is the recommended
mode for downloading �ash programmer. JTAG mode is supported along with UART for
debug purpose.

3.5.1.3. Getting Started with Uni�ash

3.5.1.3.1. Downloads

Latest version of Uni�ash can be downloaded here

3.5.1.3.2. Command Options

Uni�ash CLI supports set of commands and con�guration �ags which are provided through
dslite script. Run the help command as described below to see all the options supported by
Uni�ash.

For Windows

cd <Path to Uniflash Root Folder>
dslite.bat --mode processors -h

For Linux

SOC SOC Core PLATFORM

FLASH DEVICE DOWNLOA

SPI QSPI OSPI EMMC UART

J

U

AM574x Cortex-A15 AM574x IDK X X

K2G Cortex-A15
K2G GP EVM X X

K2G ICE X X

AM65XX Cortex-R5
AM65xx EVM X X X

AM65xx IDK X X X

J721E Cortex-R5 J721E EVM X X X X

http://www.ti.com/tool/download/UNIFLASH

cd <Path to Uniflash Root Folder>
sudo ./dslite.sh --mode processors -h

This will display help menu. Following is the sample output for help command.

For more details and examples, please refer to the UniFlash Quick Start guide.

 --
 ProcessorSDKSerialFlash CLI Tool
 Copyright (C) 2017-2019 Texas Instruments Incorporated - http://www.ti.com/
 Version 1.2.0.0
 --

 Displaying Help..

 Usage:
 dslite.bat --mode processors -c <COM_Port> -f <Path_to_the_file_to_be_transfered> -d
<Device_Type> -i <Image_Type> -e <erase_length> -o <Offset>

 Device_Type:
 0 - NAND
 1 - SPI
 2 - QSPI
 3 - OSPI
 4 - eMMC
 5 - HyperFlash
 6 - UFS

 Image_Type:
 0 - Flash
 1 - MLO
 2 - Uboot
 3 - UImage
 4 - Firmware
 5 - Custom Image

 erase_length:Length in Bytes

 Note: File Path should not be specified for Flash Erase command

 Note

O�set option(-o) expects hexadecimal value by default. The o�set value can be provided
with or without “0x”

3.5.1.3.3. Uni�ash Execution Steps

Uni�ash provides two modes of communication for downloading the �ash programmer -
UART and JTAG. In JTAG mode Uni�ash commnad-line interface is supported for most of the
platforms. Manual loading of the �ash programmer through CCS is required for few cases.
Below diagram shows the execution steps for �ashing the application images based on the
Uni�ash supported mode for downloading the �ash programmer.

Check the Supported Platforms for details of the mode of communication supported for
downloading the �ash programmer on each platform.

file:///C:/share_folder/Processor-SDK-doc-builds/update-board-porting-instructions/processor-sdk-rtos/esd/docs/06_03_00/_images/Uniflash_Execution_Steps.png

3.5.1.4. Downloading Flash Programmer

3.5.1.4.1. UART Load

Follow below steps for downloading the �ash programer over UART

Confgure boot mode of the target platform to UART boot.
Connect UART serial port of the target platform to host PC
Power cycle the target platform
Open a serial console application (Minicom, TeraTerm etc) on host PC and con�gure it
for 115200 baud 8n1.
Make a note of the COM port number on which character ‘C’ is getting printed. This
COM port number shall be used in all the command inputs to Uni�ash host utility.
Close all the serial console applications on host PC.
If the host PC is running Windows OS, disconnect the serial console cable from the
board and reconnet before proceeding to next steps.
Run below commands on the Host PC from Uni�ash root folder

For Windows

cd <Path to Uniflash Root Folder>
dslite.bat --mode processors -c <COM Port> -f <Flash Programmer Binary with Full Path> -i 0
Example:
dslite.bat --mode processors -c COM10 -f <Uniflash
Root>\processors\FlashWriter\am65xx_evm\uart_am65xx_evm_flash_programmer.tiimage -i 0

For Linux

cd <Path to Uniflash Root Folder>
sudo ./dslite.sh --mode processors -c <COM Port> -f <Flash Programmer Binary with Full Path> -i 0
Example:
sudo ./dslite.sh --mode processors -c /dev/ttyUSB1 -f <Uniflash
Root>/processors/FlashWriter/am65xx_evm/uart_am65xx_evm_flash_programmer.tiimage -i 0

 Note

Specifying the image type with -i option is mandatory while downloading the �ash
programmer.

Uni�ash CLI shows the progress of �le transfer on the command console. Following is the
sample output for downloading Flash programmer over UART.

C:\ti\uniflash_5.2.0>dslite.bat --mode processors -c COM10 -f
C:\ti\uniflash_5.2.0\processors\FlashWriter\am65xx_evm\uart_am65xx_evm_flash_programmer.tiimage -i 0
Executing the following command:
> C:\ti\uniflash_5.2.0\processors\ProcessorSDKSerialFlash.exe -c COM10 -f
C:\ti\uniflash_5.2.0\processors\FlashWriter\am65xx_evm\uart_am65xx_evm_flash_programmer.tiimage -i 0

For more details and examples, please refer to the UniFlash Quick Start guide.

--
ProcessorSDKSerialFlash CLI Tool
Copyright (C) 2017-2019 Texas Instruments Incorporated - http://www.ti.com/
Version 1.2.0.0
--
Downloading Flash Programmer..

Enabling SysFw transfer!!!

Transferring File of size 182621 bytes
File Transfer complete!
Header Transfer complete
Transferring System Firmware..
Transferring File of size 263083 bytes
File Transfer complete!

- After successful download of the �ash programmer, Program the �ash device or Erase
the �ash device by following the steps described in the corresponding secions.

3.5.1.4.2. JTAG Load

3.5.1.4.2.1. Uni�ash CLI JTAG Load

Follow below steps for downloading the �ash programer over JTAG using Uni�ash CLI

Confgure boot mode of the target platform to ‘No Boot’ or ‘JTAG mode’
Connect UART serial port of the target platform to host PC
Power cycle the target platform
Prepare the CCS target con�guration �le for the platform under test and JTAG
emulator being used.
Connect the JTAG port of the board to host PC running CCS.
Run below commands on the Host PC from Uni�ash root folder

For Windows

cd <Path to Uniflash Root Folder>
dslite.bat --mode load --config=<CCS Target Config file (ccxml) with Full Path>
-f <Flash Programmer Binary with Full Path> -n <Core ID to be Connected to JTAG on the Target
Platform>
Example:
dslite.bat --mode load --config=C:\Users\username\ti\CCSTargetConfigurations\idkAM574x.ccxml -f
C:\ti\uniflash_5.2.0\processors\FlashWriter\idkAM574x\uart_idkAM574x_flash_programmer.out -n 8

For Linux

cd <Path to Uniflash Root Folder>
sudo ./dslite.sh --mode load --config=<CCS Target Config file (ccxml) with Full Path>
-f <Flash Programmer Binary with Full Path> -n <Core ID to be Connected to JTAG on the Target
Platform>
Example:
sudo ./dslite.sh --mode load --config=/home/ti/CCSTargetConfigurations/idkAM574x.ccxml -f
/home/user/ti/uniflash_5.2.0/processors/FlashWriter/idkAM574x/uart_idkAM574x_flash_programmer.out -n
8

Uni�ash CLI shows the progress of �le transfer on the command console. Following is the
sample output on Windows.

C:\ti\uniflash_5.2.0>dslite.bat --mode load --
config=C:\Users\username\ti\CCSTargetConfigurations\idkAM574x.ccxml -f
C:\ti\uniflash_5.2.0\processors\FlashWriter\idkAM574x\uart_idkAM574x_flash_programmer.out -n 8
Executing the following command:
> "C:\ti\uniflash_5.2.0\deskdb\content\TICloudAgent\win\ccs_base\DebugServer\bin\DSLite" load --
config=C:\Users\username\ti\CCSTargetConfigurations\idkAM574x.ccxml -f
.\processors\FlashWriter\idkAM574x\uart_idkAM574x_flash_programmer.out -n 8

For more details and examples, please refer to the UniFlash Quick Start guide.

DSLite version 9.2.0.1723
Configuring Debugger (may take a few minutes on first launch)...
 Initializing Register Database...
 Initializing: IcePick_D
 Executing Startup Scripts: IcePick_D
 Initializing: ARM9_ICONT1
 Executing Startup Scripts: ARM9_ICONT1
 Initializing: ARM9_ICONT2
 Executing Startup Scripts: ARM9_ICONT2
 Initializing: CS_DAP_IPU_1_C0
 Executing Startup Scripts: CS_DAP_IPU_1_C0
 Initializing: Cortex_M4_IPU1_C0
 Executing Startup Scripts: Cortex_M4_IPU1_C0
GEL: Cortex_M4_IPU1_C0: GEL Output: --->>> AM574x Cortex M4 Startup Sequence In Progress... <<<---
GEL: Cortex_M4_IPU1_C0: GEL Output: --->>> AM574x Cortex M4 Startup Sequence DONE! <<<---
. . .
. . .
. . .
GEL: CortexA15_0: GEL Output: --->>> IVAHD Initialization is DONE! ... <<<---
GEL: CortexA15_0: GEL Output: --->>> PRUSS 1 and 2 Initialization is in progress ... <<<---
GEL: CortexA15_0: GEL Output: --->>> PRUSS 1 and 2 Initialization is in complete ... <<<---
Loading Program: .\processors\FlashWriter\idkAM574x\uart_idkAM574x_flash_programmer.out
 Preparing ...
 .text: 0 of 72000 at 0x40330074
 .text: 32752 of 72000 at 0x40330074: 15%
 .text: 65504 of 72000 at 0x40330074: 30%
 Finished: 30%
 Setting PC to entry point.: 30%
Running...
Success

Open serial console application (Ex: Minicom, TeraTerm) on host PC and con�gure it
for 115200 baud 8n1.
Make a note of the COM port number on which character ‘C’ is getting printed. This
COM port number shall be used in all the command inputs to Uni�ash host utility.
Close all the serial console applications on host PC.
If the host PC is running Windows OS, disconnect the serial console cable from the
board and reconnet before proceeding to next steps.
After successful download of the �ash programmer, Program the �ash device or Erase
the �ash device by following the steps described in the corresponding secions.

3.5.1.4.2.2. Manual JTAG Load

Follow below steps for downloading the �ash programer over JTAG manually

Confgure boot mode of the target platform to ‘No Boot’ or ‘JTAG mode’
Connect UART serial port of the target platform to host PC
Setup the CCS target con�guration �le for the platform under test and JTAG emulator
being used.

 Note

Refer the Platform Speci�c Information for more details on additional setup needed for
CCS target con�guration.

Connect the JTAG port of the board to host PC running CCS.
Power ON the board
Launch the target con�guration �le from CCS
Connect to the target SoC core on which �ash programmer is supported.
Load and run the �ash programmer binary
Open a serial console application (Minicom, TeraTerm etc) on host PC and con�gure it
for 115200 baud 8n1.
Make a note of the COM port number on which character ‘C’ is getting printed. This
COM port number shall be used in all the command inputs to Uni�ash host utility.
Close all the serial console applications on host PC.
If the host PC is running Windows OS, disconnect the serial console cable from the
board and reconnet before proceeding to next steps.
After successful download of the �ash programmer, Program the �ash device or Erase
the �ash device by following the steps described in the corresponding secions.

3.5.1.5. Programming the Flash Device

Download the �ash programmer using the steps described in section Downloading Flash
Programmer before start programming application binaries to �ash device.

Once the Flash Programmer is loaded and executed, use the following commands to
program binaries onto the Flash Device.

For Windows

For Linux

Refer to Uni�ash Command Options for more details on command parameters.

Uni�ash CLI shows the progress of �le transfer on the command console.

 Note

Multiple images like bootloader, system �rmware and application etc should be �ashed to
get the application booting from the boot device. Refer to the FAQ section for additional
references.

Following is the sample output for �ashing RTOS application images on AM65xx platform.

cd <Path to Uniflash Root Folder>
dslite.bat --mode processors -c <COM Port> -f <Path to the binary to be flashed> -d <Flash Device
Type> -o <offset>
Example:
dslite.bat --mode processors -c COM10 -f
C:\ti\pdk_am65xx_<ver>\packages\ti\boot\sbl\binary\am65xx_evm\ospi\bin\sbl_ospi_img_mcu1_0_release.tiima
 -d 3 -o 0

cd <Path to Uniflash Root Folder>
sudo ./dslite.sh --mode processors -c <COM Port> -f <Path to the binary to be flashed> -d <Flash
Device Type> -o <offset>
Example:
sudo ./dslite.sh --mode processors -c /dev/ttyUSB1 -f
/home/user/ti/pdk_am65xx_<ver>/packages/ti/boot/sbl/binary/am65xx_evm/ospi/bin/sbl_ospi_img_mcu1_0_relea
 -d 3 -o 0

C:\ti\uniflash_5.2.0>dslite.bat --mode processors -c COM10 -f
C:\ti\pdk_am65xx_1_0_6\packages\ti\boot\sbl\binary\am65xx_evm\ospi\bin\sbl_ospi_img_mcu1_0_release.tiima
 -d 3 -o 0
Executing the following command:
> C:\ti\uniflash_5.2.0\processors\ProcessorSDKSerialFlash.exe -c COM10 -f
C:\ti\pdk_am65xx_1_0_6\packages\ti\boot\sbl\binary\am65xx_evm\ospi\bin\sbl_ospi_img_mcu1_0_release.tiima
 -d 3 -o 0

For more details and examples, please refer to the UniFlash Quick Start guide.

--
ProcessorSDKSerialFlash CLI Tool
Copyright (C) 2017-2019 Texas Instruments Incorporated - http://www.ti.com/
Version 1.2.0.0
--
Transferring the Image to Flash Programmer..

Transferring Header Information..
Header Transfer Complete!

Flashing Image of size 155614 bytes
Flash Programming Success!

C:\ti\uniflash_5.2.0\dslite --mode processors -c COM10 -f
C:\ti\pdk_am65xx_1_0_6\packages\ti\drv\sciclient\soc\V0\sysfw.bin -d 3 -o 40000
Executing the following command:
> C:\ti\uniflash_5.2.0\processors\ProcessorSDKSerialFlash.exe -c COM10 -f
C:\ti\pdk_am65xx_1_0_6\packages\ti\drv\sciclient\soc\V0\sysfw.bin -d 3 -o 40000

For more details and examples, please refer to the UniFlash Quick Start guide.

--
ProcessorSDKSerialFlash CLI Tool
Copyright (C) 2017-2019 Texas Instruments Incorporated - http://www.ti.com/
Version 1.2.0.0
--
Transferring the Image to Flash Programmer..

Transferring Header Information..
Header Transfer Complete!

Flashing Image of size 263083 bytes
Flash Programming Success!

C:\ti\uniflash_5.2.0\dslite --mode processors -c COM10 -f
C:\ti\pdk_am65xx_1_0_6\packages\ti\board\bin\am65xx_evm\sd\armv8\led_TEST -d 3 -o A0000
> C:\ti\uniflash_5.2.0\processors\ProcessorSDKSerialFlash.exe -c COM10 -f
C:\ti\pdk_am65xx_1_0_6\packages\ti\board\bin\am65xx_evm\sd\armv8\led_TEST -d 3 -o A0000

For more details and examples, please refer to the UniFlash Quick Start guide.

--
ProcessorSDKSerialFlash CLI Tool
Copyright (C) 2017-2019 Texas Instruments Incorporated - http://www.ti.com/
Version 1.2.0.0

3.5.1.6. Erasing the Flash Device

Download the �ash programmer using the steps described in section Downloading Flash
Programmer before start executing erase command.

Once the Flash programmer is loaded and executed, use the following commands to erase
the Flash Device on the target platform

For Windows

cd <Path to Uniflash Root Folder>
dslite.bat --mode processors -c <COM Port> -e <Erase Length in Bytes> -d <Flash Device Type> -o
<Erase Offset>
Example:
dslite.bat --mode processors -c COM10 -e 10000 -d 3 -o 20000

For Linux

cd <Path to Uniflash Root Folder>
sudo ./dslite.sh --mode processors -c <COM Port> -e <Erase Length in Bytes> -d <Device Type> -o
<Erase Offset>
Example:
sudo ./dslite.sh --mode processors -c /dev/ttyUSB1 -e 10000 -d 3 -o 20000

The application will output the status to the console on the Host PC. Following is the sample
output on Windows.

--
Transferring the Image to Flash Programmer..

Transferring Header Information..
Header Transfer Complete!

Flashing Image of size 72360 bytes
Flash Programming Success!

C:\ti\uniflash_5.2.0>dslite.bat --mode processors -c COM10 -e 10000 -d 3 -o 0
Executing the following command:
> C:\ti\uniflash_5.2.0\processors\ProcessorSDKSerialFlash.exe -c COM10 -e 10000 -d 3 -o 0

For more details and examples, please refer to the UniFlash Quick Start guide.

--
ProcessorSDKSerialFlash CLI Tool
Copyright (C) 2017-2019 Texas Instruments Incorporated - http://www.ti.com/
Version 1.2.0.0
--
Erasing Flash....

Transferring Header information..
Header Transfer Complete!!
Flash Erase Success!

3.5.1.7. Platform Speci�c Information

3.5.1.7.1. AM335x

Make sure the Pro�le Selection switch on AM335x GP EVM is set to Pro�le#2 while
programming SPI �ash

3.5.1.7.2. AM65xx/J721E

Flash programmer requires system �rmware while downloading the �ash programmer
through UART on AM65xx and J721E platforms. Uni�ash host CLI loads the system
�rmware automatically while loading the �ash programmer on these platforms. Flash
programmer and system �rmware binary (sysfw.bin) should be kept in the same folder
for succesful downloading of �ash programmer and system �rmware.
System �rmware should be loaded through CCS script while loading the �ash
programmer through JTAG. Refer the EVM CCS Setup Documentation section below for
details of setting up the CCS target con�guration with system �rmware download.

AM65xx
J721E

3.5.1.7.3. J721E

Set the dip switch SW3.1 on CP board to OFF while running the �ash programmer for
OSPI �ashing on J721E EVM

3.5.1.8. Uni�ash FAQ

How do I con�rm my HW setup is proper for image download over UART?

file:///C:/share_folder/Processor-SDK-doc-builds/update-board-porting-instructions/processor-sdk-rtos/esd/docs/06_03_00/rtos/index_how_to_guides.html#advanced-am65x-debug-setup-with-dmsc-firmware-load
http://software-dl.ti.com/jacinto7/esd/processor-sdk-rtos-jacinto7/latest/exports/docs/psdk_rtos_auto/docs/user_guide/ccs_setup_j721e.html

Board should be con�gured for UART boot mode for downloading the images over UART.
RoM bootloader sends a character ‘C’ at regular intervals on serial port in UART boot
mode. Connect a serial console application on host PC to the UART port used for booting
and veirfy the character ‘C’ is getting displayed, which con�rms the HW setup needed for
image download over UART is proper.

How do I verify which COM number to be used for Uni�ash image download?
There may be multiple UART ports supported on the board but Uni�ash image download
happens on one speci�c UART port which is meant for UART boot. RoM bootloader and
Uni�ash �ash programmer sends a character ‘C’ at regular intervals on the UART port
used for image download. COM port number to be used for image download can be
identi�ed by checking for the character ‘C’ displayed on host PC.

I am running Uni�ash on Windows host and Uni�ash CLI is not able to open COM port.
What could be the reason?

Some of the serial console application like TeraTerm on Windows changes the COM port
settings which causes the COM port open failure from Uni�ash. Disconnect the UART
cable and reconnet before running the Uni�ash commands everytime a serial console
application is used to access the COM port on Windows.

Should the �ash device be erased using Uni�ash erase command before �ashing the
images?

No, Uni�ash Erase command is provided to explicity erase the images on the �ash device.
Uni�ash �ash programmer erases the �ash by default before �ashing the images.

What all the images that need to be �ashed to get my application boot?
It depends on the SoC �amily and OS being used by the application. In general, a
secondary bootloader, any con�guration �les needed for system con�guration and an
application image are the minimum images that need to be �ashed for booting to
happen. Refer below documentation for more details

RTOS
Linux

3.5.1.9. Rebuilding Board-utils

Use the following commands to rebuild Uni�ash and Apploader supported as part of
board utils
For Windows

cd <pdk_install_path>/packages
pdksetupenv.bat
cd ti\board\utils
gmake clean
gmake

For Linux

file:///C:/share_folder/Processor-SDK-doc-builds/update-board-porting-instructions/processor-sdk-rtos/esd/docs/06_03_00/rtos/index_Foundational_Components.html#boot
http://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components_U-Boot.html#u-boot

cd <pdk_install_path>/packages
./pdksetupenv.sh
cd ti/board/utils
make clean
make

Uni�ash binaries will be created under the folder
<pdk_install_path>/packages/ti/board/utils/uni�ash/bin/<board_name>/
Apploader binaries will be created under the folder
<pdk_install_path>/packages/ti/board/utils/uartAppLoader/bin/<board_name>/

3.5.2. UART Apploader

UART AppLoader is a standalone application to download the application images over UART.
Check the link UART AppLoader for more details on UART AppLoader.

For technical support please post your questions at http://e2e.ti.com.

file:///C:/share_folder/Processor-SDK-doc-builds/update-board-porting-instructions/processor-sdk-rtos/esd/docs/06_03_00/rtos/index_Foundational_Components.html#uart-apploader
http://e2e.ti.com/

