/* This is the stack that is used by code running within main()
* In case of NORTOS,
* - This means all the code outside of ISR uses this stack
* In case of FreeRTOS
* - This means all the code until vTaskStartScheduler() is called in main()
* uses this stack.
* - After vTaskStartScheduler() each task created in FreeRTOS has its own stack
*/
--stack_size=32768//0x00400
/*--stack_size=0x400*/
/* This is the heap size for malloc() API in NORTOS and FreeRTOS
* This is also the heap used by pvPortMalloc in FreeRTOS
*/
/* --heap_size=32768 */
--heap_size=98304//0x20000
-e_vectors /* This is the entry of the application, _vector MUST be plabed starting address 0x0 */

/* This is the size of stack when R5 is in IRQ mode
* In NORTOS,
* - Here interrupt nesting is disabled as of now
* - This is the stack used by ISRs registered as type IRQ
* In FreeRTOS,
* - Here interrupt nesting is enabled
* - This is stack that is used initally when a IRQ is received
* - But then the mode is switched to SVC mode and SVC stack is used for all user ISR callbacks
* - Hence in FreeRTOS, IRQ stack size is less and SVC stack size is more
*/
__IRQ_STACK_SIZE = 256;
/* This is the size of stack when R5 is in IRQ mode
* - In both NORTOS and FreeRTOS nesting is disabled for FIQ
*/
__FIQ_STACK_SIZE = 256;
__SVC_STACK_SIZE = 4096; /* This is the size of stack when R5 is in SVC mode */
__ABORT_STACK_SIZE = 256; /* This is the size of stack when R5 is in ABORT mode */
__UNDEFINED_STACK_SIZE = 256; /* This is the size of stack when R5 is in UNDEF mode */

SECTIONS
{
 /* This has the R5F entry point and vector table, this MUST be at 0x0 */
 .vectors:{} palign(8) > R5F_VECS

 /* This has the R5F boot code until MPU is enabled, this MUST be at a address < 0x80000000
 * i.e this cannot be placed in DDR
 */
 /* Sections needed for C++ projects */
 GROUP {
 .ARM.exidx: {} palign(8) /* Needed for C++ exception handling */
 .init_array: {} palign(8) /* Contains function pointers called before main */
 .fini_array: {} palign(8) /* Contains function pointers called after main */
 } > DDR_1
 GROUP {
 .text.hwi: palign(8)
 .text.cache: palign(8)
 .text.mpu: palign(8)
 .text.boot: palign(8)
 .text:abort: palign(8)
 } > R5F_TCMA

 /* This is rest of code. This can be placed in DDR if DDR is available and needed */
 GROUP {
 .text: {} palign(8) /* This is where code resides */
 .rodata: {} palign(8) /* This is where const's go */
 } > DDR_1

 GROUP {
 /* This is the resource table used by linux to know where the IPC "VRINGs" are located */
 .resource_table: {} palign(4096)
 } > DDR_0

 /* This is rest of initialized data. This can be placed in DDR if DDR is available and needed */
 GROUP {
 .data: {} palign(8) /* This is where initialized globals and static go */
 } > DDR_1		//MSRAM

 /* This is rest of uninitialized data. This can be placed in DDR if DDR is available and needed */
 GROUP {
 .stack: {} palign(8) FILL(0x00000000) /* This is where the main() stack goes */
 } >DDR_1//R5F_TCMA

 GROUP {
 .threadstack: {} palign(8) FILL(0x00000000) /* This is where the EIP thread stacks go */
 } > DDR_1	//R5F_TCMB0 DDR1

 GROUP {
 .bss: {} palign(8) FILL(0x00000000) /* This is where uninitialized globals go */
 RUN_START(__BSS_START)
 RUN_END(__BSS_END)
 .sysmem: {} palign(8) /* This is where the malloc heap goes */
 RUN_START(__HEAP_START)
 RUN_END(__HEAP_END)
 .fbtlthreadstack: {} palign(8) FILL(0x00000000) /* This is where the FBTL thread stacks go */
 } > DDR_1		//MSRAM

 /* This is where the stacks for different R5F modes go */
 GROUP {
 .irqstack: {. = . + __IRQ_STACK_SIZE;} align(8)
 RUN_START(__IRQ_STACK_START)
 RUN_END(__IRQ_STACK_END)
 .fiqstack: {. = . + __FIQ_STACK_SIZE;} align(8)
 RUN_START(__FIQ_STACK_START)
 RUN_END(__FIQ_STACK_END)
 .svcstack: {. = . + __SVC_STACK_SIZE;} align(8)
 RUN_START(__SVC_STACK_START)
 RUN_END(__SVC_STACK_END)
 .abortstack: {. = . + __ABORT_STACK_SIZE;} align(8)
 RUN_START(__ABORT_STACK_START)
 RUN_END(__ABORT_STACK_END)
 .undefinedstack: {. = . + __UNDEFINED_STACK_SIZE;} align(8)
 RUN_START(__UNDEFINED_STACK_START)
 RUN_END(__UNDEFINED_STACK_END)
 } > DDR_1

 /* Packet buffer memory used by ICCS */
 .bss.icss_emac_pktbuf_mem (NOLOAD): {} palign(8) FILL(0x00000000) > ICSS_PKT_BUF_MEM
 /* General purpose user shared memory, used in some examples */
 .bss.user_shared_mem (NOLOAD) : {} > USER_SHM_MEM
 /* this is used when Debug log's to shared memory are enabled, else this is not used */
 .bss.log_shared_mem (NOLOAD) : {} > LOG_SHM_MEM
 /* this is used only when IPC RPMessage is enabled, else this is not used */
 .bss.ipc_vring_mem (NOLOAD) : {} > RTOS_NORTOS_IPC_SHM_MEM
}

/*
NOTE: Below memory is reserved for DMSC usage
- During Boot till security handoff is complete
 0x701E0000 - 0x701FFFFF (128KB)
- After "Security Handoff" is complete (i.e at run time)
 0x701FC000 - 0x701FFFFF (16KB)

Security handoff is complete when this message is sent to the DMSC,
 TISCI_MSG_SEC_HANDOVER

This should be sent once all cores are loaded and all application
specific firewall calls are setup.
*/

MEMORY
{
 R5F_VECS : ORIGIN = 0x00000000 , LENGTH = 0x00000040
 R5F_TCMA : ORIGIN = 0x00000040 , LENGTH = 0x00007FC0
 R5F_TCMB0 : ORIGIN = 0x41010000 , LENGTH = 0x00008000

 /* when using multi-core application's i.e more than one R5F/M4F active, make sure
 * this memory does not overlap with other R5F's
 */
 MSRAM : ORIGIN = 0x70080000 , LENGTH = 0x40000

	/* This section can be used to put XIP section of the application in flash, make sure this does not overlap with
 * other CPUs. Also make sure to add a MPU entry for this section and mark it as cached and code executable
 */
 FLASH : ORIGIN = 0x60100000 , LENGTH = 0x80000

 /* shared memories that is used between ICCS and this core. MARK as non-cache or cache+sharable */
 ICSS_PKT_BUF_MEM : ORIGIN = 0xA3100000, LENGTH = 0x00010000

 //LINUX_IPC_SHM_MEM : ORIGIN = 0xA0000000 , LENGTH = 0x100000

 DDR_0 : ORIGIN = 0xA0100000 , LENGTH = 0x100000
 DDR_1 : ORIGIN = 0xA0200000 , LENGTH = 0xE00000
		//1MB
/* shared memory segments */
 /* On R5F,
 * - make sure there is a MPU entry which maps below regions as non-cache
 */
 USER_SHM_MEM : ORIGIN = 0xA5800000, LENGTH = 0x80
 LOG_SHM_MEM : ORIGIN = 0xA5800000 + 0x80, LENGTH = 0x00004000 - 0x80
 RTOS_NORTOS_IPC_SHM_MEM : ORIGIN = 0xA5000000, LENGTH = 0x00800000
}
