AM64X LINUX BOOT PROCESS

FROM DEVICE INITIALIZATION TO KERNEL PROMPT

Agenda

- Short Overview
- Device Initialization Process
- Boot Architecture and Flow
- Linux Boot Flow
- Demo: Linux Boot on AM64x EVM
- Summary

Sitara overview

Scalable, cost-optimized portfolio with accelerators, analog integration, robust connectivity, security and functional safety designed for industrial markets

AS INSTRUMENTS

AM64x (17mm x 17mm) Cortex[®]-A53 based processors

Cores & Memory

- Dual Cortex-A53 up to 1GHz
- Dual or Quad Cortex-R5F up to 800MHz
- >2MB on-chip SRAM
- ECC on all critical memories
- 16b LPDDR4/DDR4 controller with inline ECC

Functional safety features

- 400MHz Cortex-M4F subsystem has freedom from interference to enable usage as a safety monitor
 - Dedicated Peripherals I2C, SPI, UART & GPIO
 - Tightly coupled memory of 256KB
- Diagnostic tool kit for entire SoC voltage, temp, clock, ECC monitors and Error signaling

• 2xPRU-ICSS-Gb

- Enables up to 2x Gb industrial Ethernet protocols
- 1x industrial Ethernet protocol + motor control current and position feedback

Peripheral / IO Highlight

- GPMC (32b parallel bus) and FSI (serial connection for use with TI's C2000 MCUs) offer low-latency interfaces to motor control front-end
- PCIe Gen2, USB3.0/2.0, and 2-port Gb Ethernet Switch CPSW provide highspeed (Gbps) connectivity options
- RS485 support on UART
- Octal/Quad-SPI with execution-in-place support
- Integrated analog
 - 8-channel, 12-bit ADC with 4 Msps
 - Simplified power solution, Integrated Voltage Monitors
- Package
 - 17.2 x 17.2mm, 0.8mm ball pitch

(1) PCIe and USB 3.0 share the same SERDES

Sitara built around a unified software platform

AM64x Boot Overview

Device Initialization Process

- **Preinitialization:** Power, clock, and control connections must be present, and the boot configuration pins must be held at the desired logical levels.
- **Power, clock, reset ramp sequence:** Specific sequence that is applied by the power-management chip(s)
- **ROM code:** Two ROM codes that operate together (DMSC ROM & R5 ROM). Responsible for finding, downloading, and executing the initial software (SBL/SPL)
- Initial software (SBL or SPL) : Software that loads, prepares, and passes control to application software or to a high-level operating system (HLOS)
 - Secondary Boot Loader (SBL) for RTOS or generic boot
 - Secondary Program Loader (SPL) for U-Boot
- High-Level Operating System (HLOS) or other SW applications that run on other core(s)

The first two steps above are hardware-oriented, but the specific flow is also related to the settings of the system configuration (Boot Mode) pins of the device.

AM64x Common Boot Architecture

Boot Flow Overview – Terminology

- **DMSC** Device Management & Security Controller:
 - Controller that runs the first set of instructions on AM6x device
 - Executes the DMSC ROM code after reset
- **Cortex-R5F** Boot Controller:
 - Cortex-R5F core that controls the rest of the boot flow of the device, after it has been released from reset by the DMSC
 - Executes the R5 ROM code after reset
- **R5 SBL** or **SPL** Secondary bootloader:
 - Code loaded by R5, via the selected boot method via Boot Mode pins, and authenticated by the DMSC
 - MCU R5 runs this code after the ROM execution to start the flow for booting all the other cores on the device
- **SYSFW** System Firmware (for DMSC):
 - DMSC "steady-state" firmware loaded by R5 and imported & authenticated by the DMSC. After the SYSFW image has been verified, the DMSC starts executing it.

AM64x Initial Boot Flow

DMSC ROM

- Security & device management
- ✓ PLL configuration (MCU SS)
 - IPC configuration

 \checkmark

- Controls reset release of R5 core
- X.509 certificate parsing
- DMSC firmware loading (w R5 SBL)

R5 ROM

- ✓ Public ROM & boot peripheral controller
- PLL configuration (boot peripheral-specific)
- Boot parameter table configuration for primary & backup boot modes from Boot Mode Pins
- Image copy from memory or peripheral
- R5 shutdown

Questions

Boot Mode Pins

TEXAS INSTRUMENTS

BOOTMODE PLL Config

BOOTMODE[15:0] **PIN** mapping:

						, -				-						
15	14	13	12	11	10	9	8	7	6	5	4	7	2	1	0	\mathbf{N}
Reserv ed	Reserv ed	Backup Boot Mode Config	Back	up Boot	Mode	Prim	ary Boot Config	Mode	F	Primary E	3oot Mode		F	PLL Conf	ig	

PLL Reference Clock Selection:

PLL Config Pins			Ref Clock (MHz)
B2	B1	B0	
0	0	0	19.2
0	0	1	20
0	1	0	24
0	1	1	25
1	0	0	26
1	0	1	27 ⁽¹⁾
1	1	0	Reserved
1	1	1	Reserved

BOOTMODE Primary Boot Mode

									-						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserv ed	Reserv ed	Backup Boot Mode Config	Back	up Boot I	Mode	Prima	ary Boot Config	Mode	F	Primary E	Boot Mod	e	F	LL Confi	g

Primary Boot	Mode Config						Primary Boot Mode	
B9	B8	B7	B6	B5	B4	B3		
Reserved	Reserved	Reserved	0	0	0	0	Reserved	
Speed	Iclk	Csel	0	0	0	1	OSPI	
Reserved	Iclk	Csel	0	0	1	0	QSPI	
Reserved	Mode	Csel	0	0	1	1	SPI	
Clkout	Delay	Link stat	0	1	0	0	Ethernet RGMII	
Clkout	Clk src	Reserved	0	1	0	1	Ethernet RMII	
Bus reset	Reserved	Addr	0	1	1	0	12C	
Reserved	Reserved	Reserved	0	1	1	1	UART	
Port	Reserved	Fs/raw	1	0	0	0	MMCSD card	
Reserved	Reserved	Reserved	1	0	0	1	eMMC	
Core Volt	Mode	Lane Swap	1	0	1	0	USB	
Reserved	Reserved	Reserved	1	0	1	1	GPMC NAND	
Reserved	Reserved	Reserved	1	1	0	0	GPMC NOR	
Reserved	Reserved	Clocking	1	1	0	1	PCle	
SFPD	Read Cmd	Mode	1	1	1	0	xSPI	
Reserved	Reserved	No/Dev	1	1	1	1	No-boot/Dev boot	

More information in Ch. 4 of TRM

BOOTMODE Primary Boot Mode - Configuration

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserv ed	Reserv ed	Backup Boot Mode Config	Back	up Boot I	Mode	Prim	ary Boot Config	Mode	F	rimary B	Soot Mod	e	F	LL Confi	g

	1	Primary Boot Mo	de Co	nfig							Primary Boot Mode
		B9	B8		B7		B6	B5	B4	B3	
Value D	escription		9	eserved	Value	De	scription	1		0	Reserved
				lclk						1	OSPI
0 M	MC Port 0	(8 bit width)		Iclk	0	File	esystem	Mode		0	QSPI
				Mode						1	SPI
1 M	WINC Port I	(4 bit width)	Ē	Delay	1	Raw Mode				0	Ethernet RGMII
		Clkout	C	lk src	Reserv	ed	0	1	0	1	Ethernet RMII
		Bus reset	Re	served	Addr		0	1	1	0	120
		Reserved	Re	served	Reserv	ed	U	1	1	1	UART
		Port	Reserved		Fs/raw		1	0	0	0	MMCSD card
		Reserved	Re	served	Reserv	ed	1	0	0	1	eMMC
		Core Volt	Ν	Mode	Lane Sw	/ap	1	0	1	0	USB
Nore		Reserved	Re	eserved	Reserv	ed	1	0	1	1	GPMC NAND
nformation		Reserved	Re	eserved	Reserv	ed	1	1	0	0	GPMC NOR
n Ch 1 of		Reserved	Re	eserved	Clockir	ng	1	1	0	1	PCle
		SFPD		ad Cmd	Mode		1	1	1	0	xSPI
KIM	-	Reserved	Re	eserved	No/De	v	1	1	1	1	No-boot/Dev boot

Boot Image Format

- All boot images need X.509 certificate appended with boot binary for both General Purpose (GP) and High Secure (HS) devices.
- The X.509 certificate is described in <u>RFC5280</u>. Section 4.1 describes the format.
- Boot ROM uses an extension of standard X.509 certificate.

R5-BL image format:

- R5 reset vector provides entry point of R5-BL binary
- Boot extensions of X.509 certificate contains destination address and boot core information.

DMSC SYSFW firmware image format:

- M3 reset vector should be the entry point of DMSC firmware binary
- Boot extensions of X.509 certificate should be updated for destination address and boot core.

DMSC SYSFW

Overview:

- Centralized control of SoC system functions including power management, resource management, and security services.
- DMSC firmware uses TI SCI protocol messages from all cores.

SYSFW Roles:

- Resource management:
 - Initial device setup
 - Resource allocation
- Power management:
 - Device power modes control
 - Clock/Reset control
 - PM services to OS (Idle, etc.)
 - Low power mode entry/exit
- Security:
 - Firewall management
 - Key management
 - Runtime secure services

Hand off from DMSC ROM to SYSFW:

- DMSC SYSFW loading: ٠
 - R5 ROM loads the DMSC SYSFW to OCRAM.
 - DMSC ROM check integrity and loads firmware to its _ internal memory and passes control to firmware.
- Board configuration for SYSFW module initialization: ٠
 - Base configuration initialization _
 - PM initialization
 - RM initialization _
 - Security initialization _
- Board configuration module enables one-time (per boot), • application-specific configuration.

R5 Boot Loader (SBL or SPL)

R5 Boot Loader Functions:

- Executes from internal memory (OC RAM) and small part of ATCM memory
- Initialization of MCU subsystem
- Enables MCU UART for debug logging
- Sends board configuration messages to initialize SYSFW
- Configures PinMux and configures DDR and remaining initialization
- Loads application image(s) for each of the core(s) into device memory
- Communicates with system firmware to setup the clocks for cores and releases them from reset
- Starts execution on slave cores at entry point of corresponding applications
- MCU core then starts executing from entry point for its own application and exits R5 Boot Loader

Linux Boot Flow

Boot Flow Overview – Terminology (Linux)

- **ATF** ARM Trusted Firmware:
 - ARMv8 secure firmware for the Cortex-A cores on the device.
 - Acts as the 'Secure Monitor' on A53 and handles A53 initialization as well as loading of the subsequent secure & non-secure images to be run on the A53 cores.
- **OPTEE** Open Portable Trusted Execution Environment:
 - An open-source TEE maintained by Linaro. Used as the Secure-world OS running on the A53 cores. Loaded as part of the ATF initialization sequence for the Cortex-A cores.
- **A53 SPL** U-Boot Secondary Program Loader:
 - The SPL is loaded by ATF as the first Non-secure code that is started on the A53
- U-boot Bootloader for A53 Linux and for SW on other R5 cores

	AM64x				
		D	MSC		
PMIC or Discrete Power		Secure ROM	SYSFW		
Boot Media					
tiboot3.bin		Main R5			
SYSFW		Public ROM	R5 SPL		
R5 SPL					

BOOTMODE pins

Power On	AM64x			
		DI	NSC	
Discrete		Secure ROM	SYSFW	
Power				
Boot Media				
tiboot3.bin		Mai	n R5	
SYSFW		Public ROM	R5 SPL	
R5 SPL				

Initial Boot Flow (mandatory)

1. System Power On

BOOTMODE pins

Initial Boot Flow (mandatory)

- 1. System Power On
- 2. PMIC releases SoC PoRz

BOOTMODE pins

Initial Boot Flow (mandatory)

- 1. System Power On
- 2. PMIC releases SoC PoRz
- 3. DMSC ROM Starts/Basic Init

BOOTMODE pins

Initial Boot Flow (mandatory)

- 1. System Power On
- 2. PMIC releases SoC PoRz
- 3. DMSC ROM Starts/Basic Init
- 4. Main R5 ROM starts / Boot Periph Init

BOOTMODE pins

Initial Boot Flow (mandatory)

- 1. System Power On
- 2. PMIC releases SoC PoRz
- 3. DMSC ROM Starts/Basic Init
- 4. Main R5 ROM starts / Boot Periph Init
- 5. Main R5 ROM loads & starts R5 SPL

Initial Boot Flow (mandatory)

- 1. System Power On
- 2. PMIC releases SoC PoRz
- 3. DMSC ROM Starts/Basic Init
- 4. Main R5 ROM starts / Boot Periph Init
- 5. Main R5 ROM loads & starts R5 SPL
- 6. DMSC ROM loads SYSFW

BOOTMODE pins

BOOTMODE pins

Initial Boot Flow (mandatory)

- 1. System Power On
- 2. PMIC releases SoC PoRz
- 3. DMSC ROM Starts/Basic Init
- 4. Main R5 ROM starts / Boot Periph Init
- 5. Main R5 ROM loads & starts R5 SPL
- 6. DMSC ROM loads SYSFW
- 7. DMSC starts SYSFW

Continued Boot

8. R5 SPL initialization sequence

Continued Boot

- 8. R5 SBL initialization sequence
- 9. R5 SBL load/start A53 ATF/OPTEE

Continued Boot

8. R5 SBL initialization sequence9. R5 SBL load/start A53 ATF/OPTEE10. R5 SBL load/start A53 SPL

Continued Boot

8. R5 SBL initialization sequence
9. R5 SBL load/start A53 ATF/OPTEE
10. R5 SBL load/start A53 SPL
11. A53 SPL load/start u-boot

Continued Boot

8. R5 SBL initialization sequence
9. R5 SBL load/start A53 ATF/OPTEE
10. R5 SBL load/start A53 SPL
11. A53 SPL load/start u-boot
12. A53 u-boot starts kernel

Booting Linux on AM64x EVM

BOOTMODE Switch on AM64x EVM

The following boot modes are supported on AM64x EVM (subject to change):

- 1. OSPI
- 2. MMC1 SD Card
- 3. MMC0 eMMC installed
- 4. USB host mode with bulk storage
- 5. USB device boot DFU
- 6. UART
- 7. No-Boot

BOOTMODE Switch on AM64x SK

The following boot modes are supported on AM64x SK (subject to change):

- 1. OSPI
- 2. MMC1 SD Card
- 4. USB host mode with bulk storage
- 5. USB device boot DFU
- 6. UART
- 7. Ethernet Planned in future
- 8. No-Boot

Booting Linux on AM64x EVM

Quick start guide on booting Linux on AM64x GP EVM and SK: <u>AM64x GPEVM Quick Start Guide</u> | <u>AM64x SK Quick Start Guide</u>

TRUMENTS

Backup

Reference

AM64x Software Development Kit (SDK)

- <u>https://www.ti.com/tool/PROCESSOR-SDK-AM64X</u>
- AM64x Linux SDK User Guide
 - <u>https://software-dl.ti.com/processor-sdk-</u> <u>linux/esd/AM64X/latest/exports/docs/devices/AM64X/index.html</u>

SYSFW User Guide:

<u>http://software-dl.ti.com/tisci/esd/latest/index.html</u>

AM64x EVM:

https://www.ti.com/tool/TMDS64GPEVM

AM64x SK board:

<u>https://www.ti.com/tool/SK-AM64</u>

