AM64X SOFTWARE DEVELOPMENT OVERVIEW

RUNNING ALL CORES ON THE **DEVICE FOR** FULL **ENTITLEMENT**

Agenda

- Short Overview
- MCU+ SDK Development
- Demo
- Linux Development
- Summary

Sitara overview

Scalable, cost-optimized portfolio with accelerators, analog integration, robust connectivity, security and functional safety designed for industrial markets

	SoCs			
Single-core to quad-core Arm Cortex-A53 , A9 and A8	Compute	allial lin	Control	Single-core to quad-core Arm Cortex-R5F with optional Lock-Step support
	Functional Safety & Security		Analog	High-level integration of high-performance ADC, DAC, comparators and PWM
Power-optimized neural network accelerators, audio DSP, and GPU	Deep Learning & Accelerators	ē! c	Connect	USB, PCIe, Ethernet Switch, Industrial Protocols, CAN-FD, and more
Open source device enablement for Mainline Linux, RTOS and Bare Metal 3P software support	Unified Software Platform		n	Simplified tools (SysConfig) and libraries (DSPLIB, TIDL,) to accelerate development and performance entitlement
Power-optimized design	SIL2 functional safety with common software development	-40 to 125 temperature r	range	HiRel DSP

AM64x (17mm x 17mm) Cortex®-A53 based processors

Cores & Memory

- Dual Cortex-A53 up to 1GHz
- Dual or Quad Cortex-R5F up to 800MHz
- >2MB on-chip SRAM
- ECC on all critical memories
- 16b LPDDR4/DDR4 controller with inline ECC

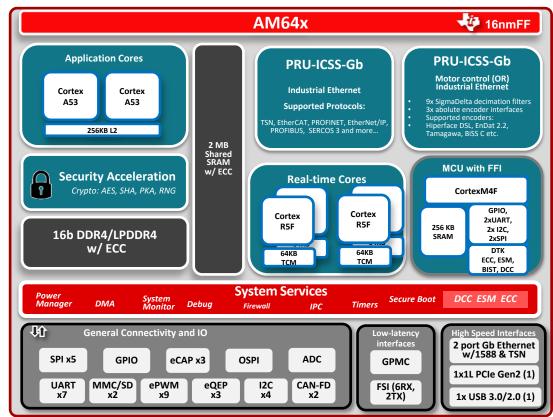
Functional safety features

- 400MHz Cortex-M4F subsystem has freedom from interference to enable usage as a safety monitor
 - · Dedicated Peripherals I2C, SPI, UART & GPIO
 - Tightly coupled memory of 256KB
- Diagnostic tool kit for entire SoC voltage, temp, clock, ECC monitors and Error signaling

2xPRU-ICSS-Gb

- Enables up to 2x Gb industrial Ethernet protocols
- 1x industrial Ethernet protocol + motor control current and position feedback

Peripheral / IO Highlight


- GPMC (32b parallel bus) and FSI (serial connection for use with TI's C2000 MCUs) offer low-latency interfaces to motor control front-end
- PCIe Gen2, USB3.0/2.0, and 2-port Gb Ethernet Switch CPSW provide highspeed (Gbps) connectivity options
- RS485 support on UART
- Octal/Quad-SPI with execution-in-place support

Integrated analog

- 8-channel, 12-bit ADC with 4 Msps
- Simplified power solution, Integrated Voltage Monitors

Package

17.2 x 17.2mm, 0.8mm ball pitch

AM243x (17mm x 17mm) Cortex®-R5F based processors

Cores & Memory

- Dual Cortex-A53 up to 1GHz
- Dual or Quad Cortex-R5F up to 800MHz
- >2MB on-chip SRAM
- ECC on all critical memories
- 16b LPDDR4/DDR4 controller with inline ECC

Functional safety features

- 400MHz Cortex-M4F subsystem has freedom from interference to enable usage as a safety monitor
 - Dedicated Peripherals I2C, SPI, UART & GPIO
 - · Tightly coupled memory of 256KB
- Diagnostic tool kit for entire SoC voltage, temp, clock, ECC monitors and Error signaling

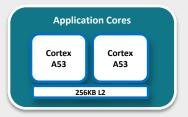
2xPRU-ICSS-Gb

- Enables up to 2x Gb industrial Ethernet protocols
- 1x industrial Ethernet protocol + motor control current and position feedback

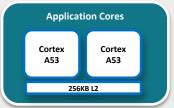
· Peripheral / IO Highlight

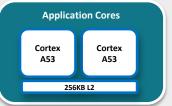
- GPMC (32b parallel bus) and FSI (serial connection for use with TI's C2000 MCUs) offer low-latency interfaces to motor control front-end
- PCIe Gen2, USB3.0/2.0, and 2-port Gb Ethernet Switch CPSW provide highspeed (Gbps) connectivity options
- RS485 support on UART
- Octal/Quad-SPI with execution-in-place support

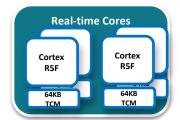
Integrated analog


- 8-channel. 12-bit ADC with 4 Msps
- Simplified power solution, Integrated Voltage Monitors

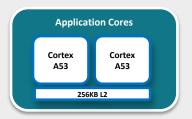
Package


- 17.2 x 17.2mm, 0.8mm ball pitch

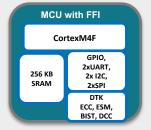




- Dual / Single Arm® Cortex®-A53 (only on AM64x devices)
 - Up to 1 GHz, ARMv8-A instructions set
 - Dual core cluster with shared 256KB L2. Each core has 32KB L1 I\$ and D\$
 - AArch64 for 64b support and new architecture features
 - Backward compatible with code for previous Arm processors (AArch32)
 - Integrated Neon™ processing engine and VFPv4 compatible hardware
 - Hardware virtualization support



- Dual / Single Arm® Cortex®-A53 (only on AM64x devices)
 - Up to 1 GHz, ARMv8-A instructions set
 - Dual core cluster with shared 256KB L2. Each core has 32KB L1 I\$ and D\$
 - AArch64 for 64b support and new architecture features
 - Backward compatible with code for previous Arm processors (AArch32)
 - Integrated Neon[™] processing engine and VFPv4 compatible hardware
 - Hardware virtualization support


- 2x- or 4x- Arm[®] Cortex[®]- R5Fs (AM64x and AM243x)
 - Up to 800MHz, ARMv7-R instruction set
 - 2x dual clusters with total of 256KB TCM. Each core has 32KB I\$ and 32KB D\$
 - No Lock-step operation, only split mode. Optimized for real time operations
 - Integrated Neon[™] processing engine and VFPv3 compatible hardware
 - Multi-processing extensions for multiprocessing functionality
 - Vectored Interrupt Manager (VIM)

- Dual / Single Arm® Cortex®-A53 (only on AM64x devices)
 - Up to 1 GHz, ARMv8-A instructions set
 - Dual core cluster with shared 256KB L2. Each core has 32KB L1 I\$ and D\$
 - AArch64 for 64b support and new architecture features
 - Backward compatible with code for previous Arm processors (AArch32)
 - Integrated Neon™ processing engine and VFPv4 compatible hardware
 - Hardware virtualization support

- 2x- or 4x- Arm® Cortex®- R5Fs (AM64x and AM243x)
 - Up to 800MHz, ARMv7-R instruction set
 - 2x dual clusters with total of 256KB TCM. Each core has 32KB I\$ and 32KB D\$
 - No Lock-step operation, only split mode. Optimized for real time operations
 - Integrated Neon™ processing engine and VFPv3 compatible hardware
 - Multi-processing extensions for multiprocessing functionality
 - Vectored Interrupt Manager (VIM)

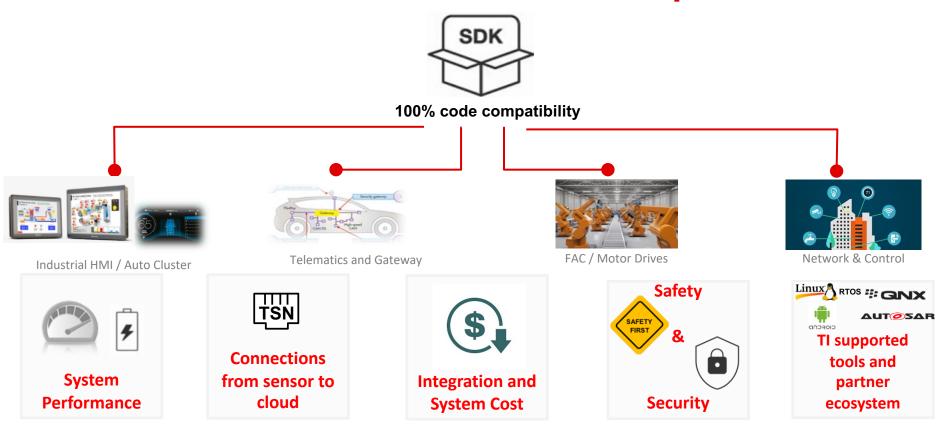
- 1x- Arm® Cortex®- M4F (AM64x and AM243x)
 - Up to 400MHz, ARMv7-R instruction set
 - Integrated Full precision floating point unit (FPU)
 - 256KB of local SRAM, 192KB I-code and 64KB D-code
 - Ability to execute code from unified memory (I-code/D-code) or external memory via System bus. SoC integration includes Region Address Translation (RAT) to enable contiguous memory
 - Nested Vector Interrupt Controller (NVIC)

- 2x PRU_ICSSG Industrial Communication Subsystems (AM64x and AM243x)
 - 2x general-purpose PRU cores with 12KB program RAM, 2 KB data RAM per CPU, MAC, CRC16/32 HW accelerator
 - 2x auxiliary Real-time transfer units with 8KB program RAM, 2KB data RAM, MAC, CRC16/32 HW accelerator
 - 2x transmit real-time transfer units with 6KB program RAM, 2KB data RAM, MAC, CRC16/32 HW accelerator
 - 64KB shared RAM
 - Two MDIO ports
 - Two PRU_ICSSG support 2x (each) RGMII or MII_RT. One PRU_ICSSG supports 2x SGMII, RGMII, or MII_RT
 - Two Industrial Ethernet Peripheral and industrial Ethernet timers (IEP)
 - 1 x 16550-compatible UART
 - Capable of supporting master and/or slave modes of protocols such as:
 - TSN, Profinet IRT, Ethernet/IP with DLR, Profibus, EtherCAT, POWERLINK, Sercos 3, Hiperface DSL, BiSS C, EnDat 2.2, HSR/PRP, and more
 - Capable of supporting operation as standard Gb Ethernet
 - SD interface upgraded to support Manchester encoding
 - Load sharing of PRU's with concurrent Sigma Delta and EnDAT interface
 - Reset isolation interface

PRU-ICSS-Gb

Industrial Ethernet
Supported Protocols:

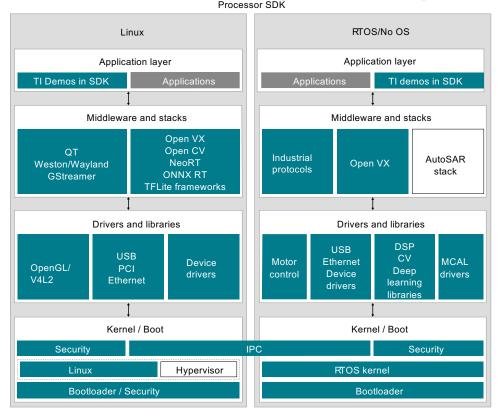
TSN, EtherCAT, PROFINET, EtherNet/IP PROFIBUS, SERCOS 3 and more...


PRU-ICSS-Gb

Motor control (OR) Industrial Ethernet

9x SigmaDelta decimation filters 3x abolute encoder interfaces Supported encoders: Hiperface DSL, EnDat 2.2, Tamagawa. BiSS C etc.

Sitara built around a unified software platform

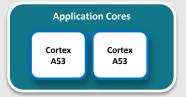


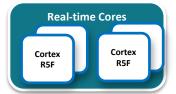
Processor SDK common development experience

Linux features:

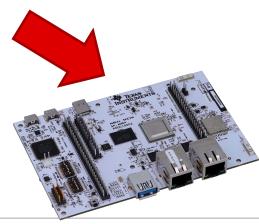
- Updated to the latest Long Term support (LTS) Linux kernel, boot loader and Yocto file system on an annual basis
- •Robust, commercialgrade ARM® GNU compiler collection (GCC) toolchain
- Yocto Project™ OE Core compatible file systems support enables tailored Linux application support
- •RT-Linux releases include a fully pre-emptible kernel for real-time applications

RTOS/No OS features:

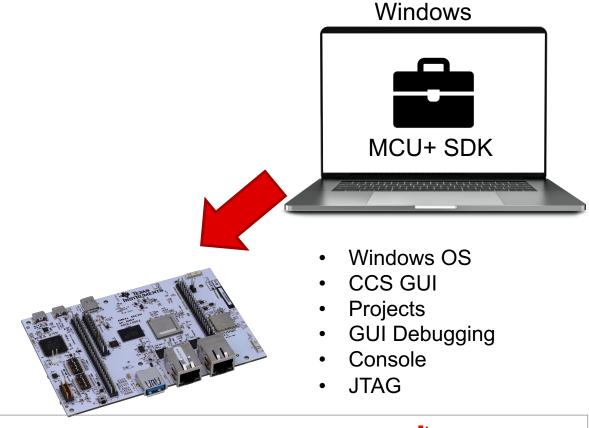

- •Robust real-time RTOS kernel (Free RTOS)
- •Includes network communications support, examples, and drivers
- Driver libraries can be used with or without an RTOS kernel
- Free and available as open source
- Available for AM64x and AM243x

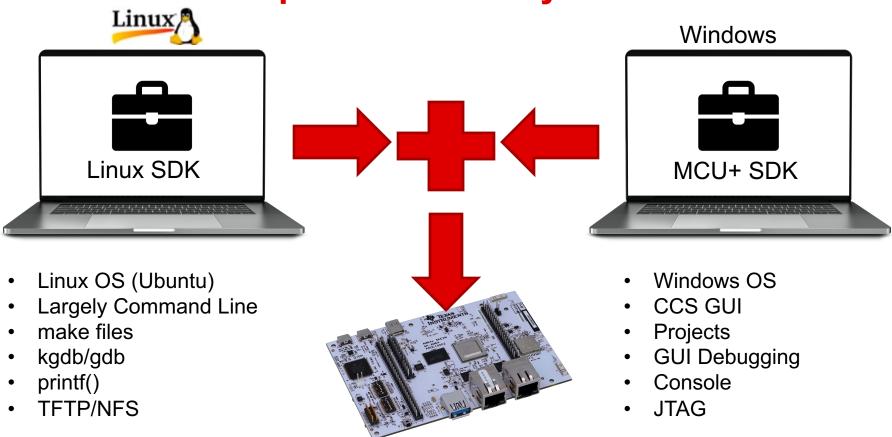


Software Enablement



- Processor SDK for Linux
- Other HLOS commercial offerings
- Bootloader: U-Boot
- Load other cores via remoteproc
- MCU+ SDK
- No RTOS and RTOS capability, CCS IDE
- Bootloader: SBL or load via Linux
- MCU+ SDK
- No RTOS and RTOS capability, CCS IDE
- Bootloader: SBL or load via Linux
- PRU Software Support Package
- No RTOS, bare metal code only, CCS IDE
- Bootloader: SBL or load via Linux


Linux (Kernel) Development Overview


- Linux OS (Ubuntu)
- Largely Command Line
- make files
- kgdb/gdb
- printf()
- TFTP/NFS

no RTOS/RTOS Development Overview

Software Development Summary

MCU+ SDK | Benefits for the end user

MCU Simplicity

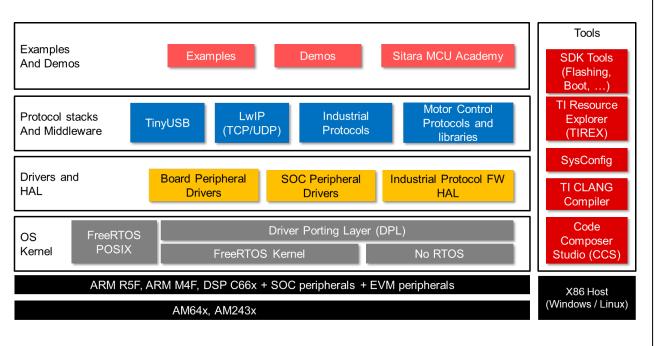
- •Simple drivers with GUI configuration tool
- •110+ examples to run and debug with CCS
- Multi-Core Bootloader examples included

MCU Optimized

- Low Latency Drivers
- Low Memory Usage
- No-OS or FreeRTOS

Tools

- SysConfig Tool
- •MCU+ Academy & TI Resource Explorer
- •TI ARM CLANG compiler
- •CCS + FreeRTOS live debugging
- Board flashing tools



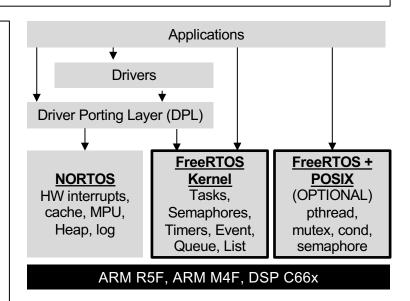
Libraries

- •TinyUSB, LwIP, TSN
- Industrial Networking Stacks Integrated
- Motor Position Encoders and Control Algorithms
- Inter-Processor
 Communication (IPC)

Sitara MCU | MCU+ SDK Overview

- Simplified and easy to use MCU+ SDK for MCU+ applications on R5F, M4F and C66
- Open Source OS and middleware stacks – FreeRTOS, LwIP, tinyUSB
- Simplified, low memory, low latency optimized drivers
- SysConfig for easy system configuration like pinmux, clock, driver setup
- Pre-integrated industrial protocols and motor control protocols
- Lots of examples and a step by step "MCU Academy" to quickly get started
- Interfacing with other OS like Linux (on A53) to expand to more applications and end equipments

OS Environment | FreeRTOS



Overview

- Well established RTOS with 15+ years of deployments and partnerships with leading semiconductor vendors
- MIT open source license, allows customer to deploy in production and also protect their IP

FreeRTOS Kernel [LINK]

- Primary RTOS for MCU+ SDK on R5F, M4F, C66 CPUs
- Pre-integrated with all device drivers, middleware (LwIP, TinyUSB), industrial protocols
- RTOS aware debugging and state viewer integrated with CCS IDE
- Deterministic and sub-micro second task switch and interrupt latency
- < 20 KB RTOS Kernel size
- Driver porting layer (DPL) allows switching to NO RTOS and/or other RTOS, like SafeRTOS
- Optional POSIX threading layer to allow application level portability

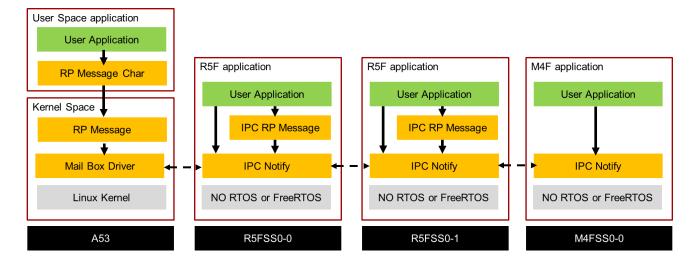
Middleware | Inter Processor Communication (IPC)

 Inter - Processor Communication enables multiple different CPUs on the SOC to collaborate to realize the system use-case

IPC Notify

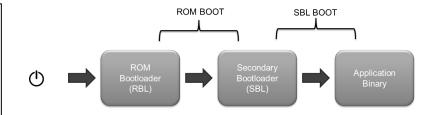
- Low level API, < 1us latency, ~ 6KB code size
- Allows to interrupt other CPUs using SOC HW mechanisms

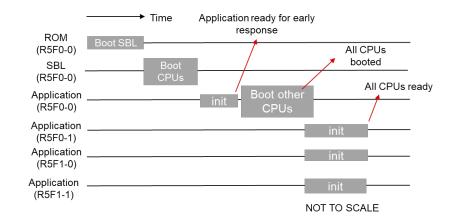
IPC RPMessage


- Higher level abstracted API, < 5us latency, ~12KB code size
- Allows to exchange message packets with logical endpoints
- Used to talk to Linux when present on the SOC

Spinlock

HW mechanism to implement mutual exclusion across multiple CPUs


Shared memory

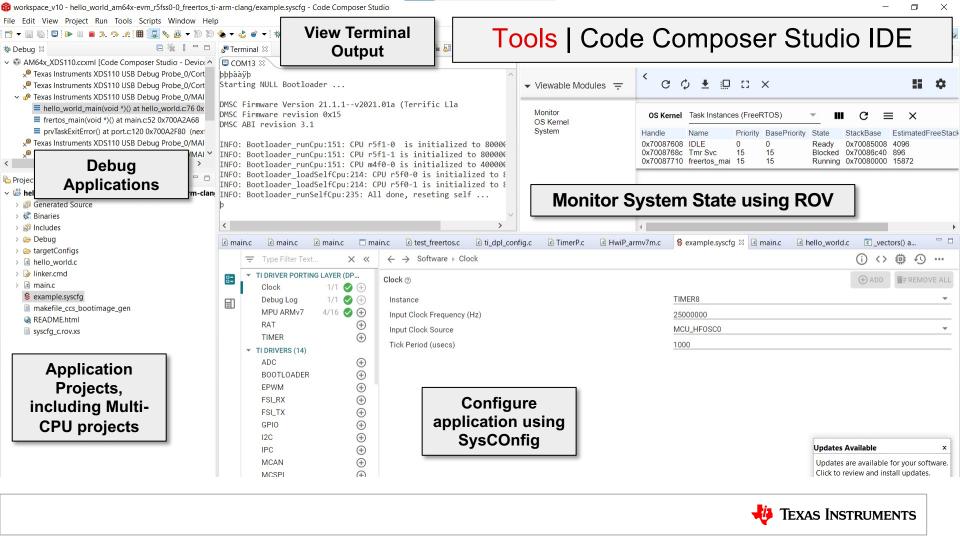

 Shared memory architecture allows to keep data in shared memory and only pass pointer to data in IPC message, avoids memory copy overheads.

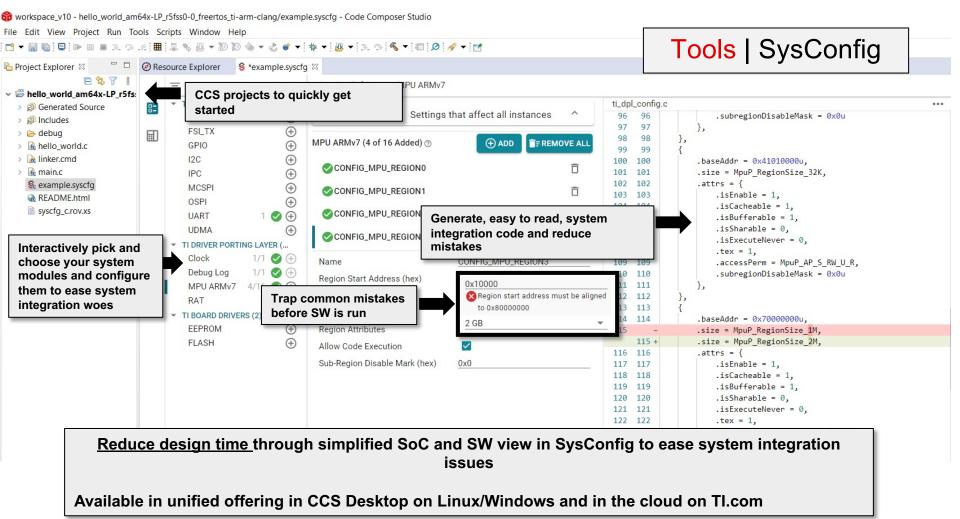
Boot | Boot Flow and Bootloader

- SOC ROM boots a secondary bootloader (SBL). SBL included in MCU+ SDK
- Boot modes supported by SBL
 - UART
 - OSPI
 - MMC/SD COMING SOON !!
- Features
 - Ability to boot all MCU CPUs on the SOC
 - Optionally, do multi-stage booting, to reduce boot time for "early response" functions
 - Post build tools to convert compiler generated applications into format suitable for flashing and booting
 - Flashing tool to flash application binaries over UART

Sitara MCU | Debug and trace tools

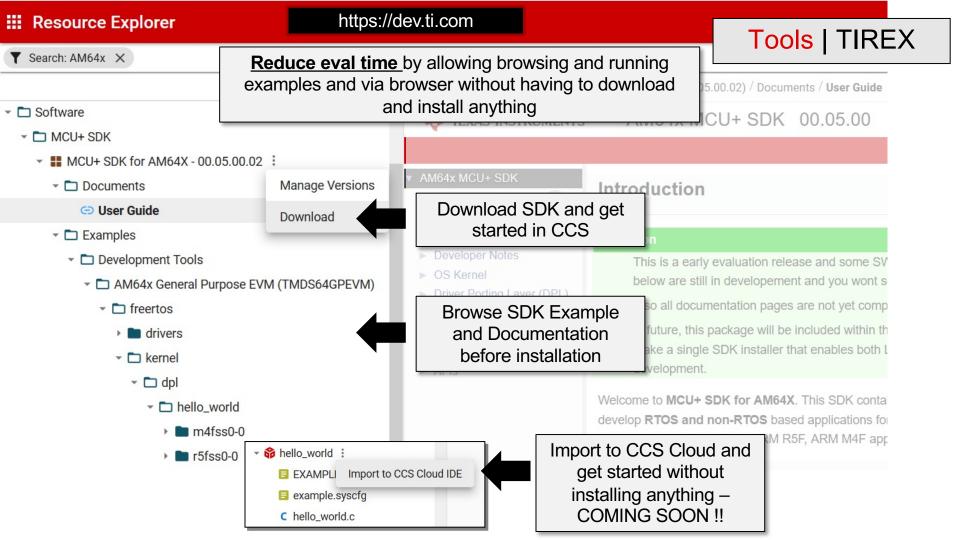
- Code composer studio from TI (free download)
 - Eclipse based IDE
 - C6x, R5F, M4F debug and trace via JTAG
 - single step, breakpoint, watch point, disassembly
 - FreeRTOS aware (Real-time Object View ROV)
 - Powerful scripting via Debug Server Scripting (DSS)
 - Access to system memory and peripheral registers through Debug Access Port
 - Multicore debugging
 - Multiprocessor debugging


- TRACE32 from Lauterbach
 - Support C6x, ARMv7 (R5F, M4F)
 - OS aware debugging FreeRTOS, AutoSAR
 - Powerful script language
 - Easy high-level and assembler debugging
 - Support for CoreSight components like Debug Access Port, Trace Funnel, Trace Port Interface Unit, Embedded Trace Buffer, Cross Trigger Interface, Cross Trigger Matrix, System Trace Port, Trace Memory Controller
 - Real-time access to system memory and peripheral registers through Debug Access Port without halting the core
 - Multicore debugging
 - Multiprocessor debugging
 - Safety tool kit and certifications making them useable for ISO 26262 and DO-178C



http://www.ti.com/tool/download/CCSTUDIO

www.lauterbach.com/ Search for CHIP = TI



Tools | SysConfig Features and Benefits

Feature	Benefit to end user	
SW Driver Configuration	Quickly add a peripheral to your project, interactive config without needing to refer TRM or API guide. Only include features and modules that are needed, saving code size and complexity.	
Integrated Pinmux Configuration	No need for separate pinmux tool, resolve pin conflicts interactively and without running on EVM	
Clock enable and clock frequency setup depending on SW driver that is selected	Hides DMSC / SYSFW APIs call complexity from end user. Only modules that are needed get enabled.	
MPU / MMU / RAT configuration	Easily set memory access controls for the CPU without needing to read TRM	
Debug log configuration to select UART, CCS or shared memory output	Target logs to console of interrest, quickly enable/disable log and log "zones"	
IPC configuration	Tune shared memory usage and IPC type (low latency vs normal latency)	
Board peripheral configuration (FLASH, EEPROM, LED, ETHPHY)	Pick and choose board level peripherals and quickly start using them in your project	
Multi-core validation	Resolve resource conflicts including across multiple R5F and M4F before running on EVM	

Tools | MCU+ Academy

Easy-to-use training modules for Sitara MCU developers

- AM243x EVM Quick Start Guide
- SDK Setup Guide with LED Blink Example
- Learn MCU+ SDK Fundamentals
 - Projects and files structure
 - SysConfig Tool
 - Adding Drivers
 - Linker file, Multicore example
 - Debugging, Flashing tools
- Learn Advanced Topics
 - Benchmarking (CMSIS with Cycle Counter)
 - Multicore communication
 - Direct Memory Access

MCU+ Academy

The MCU+ Academy is a great resource for developers to learn about the Sitara™ MCU Platform.

R5F development using CCS

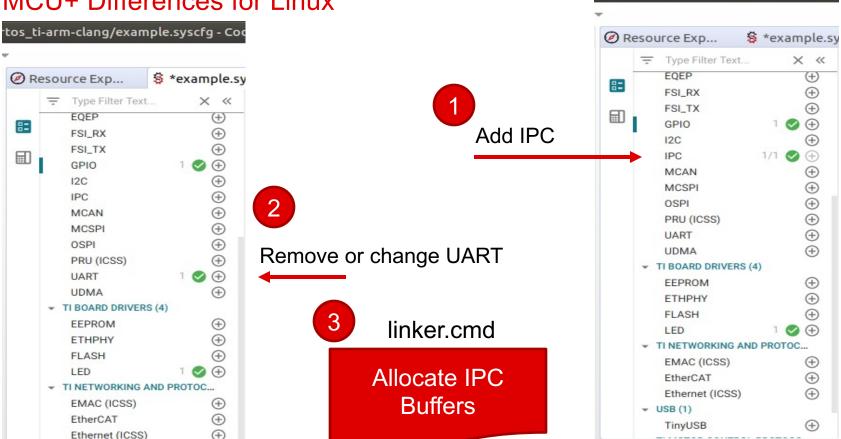
- Start from template CCS projects in AM64x MCU+ SDK:
 - <mcu_plus_sdk_am64x_x_x_x_x>\examples\empty\am64x-evm
- Make sure to go through the <u>EVM set up</u> in the <u>Documentation</u>
- MCU+ Academy:
 - Made for AM243x but applicable to AM64x in principle

- Files that are specific for AM243x should be renamed for AM64x, e.g., library names referenced in part 4 should replace "am243x" with "am64x".

Demo

- noRTOS Blink LED with R50_0
- Run Linux with A53 Cluster

- Linux OS (Ubuntu)
- Largely Command Line
- make files
- kgdb/gdb
- printf()
- TFTP/NFS


- Windows OS
- CCS GUI
- Projects
- GUI Debugging
- Console
- JTAG

MCU+ Differences for Linux

▼ USB (1)

TinyUSB

-0 nortos ti-arm-clang/example.syscf

Launching R5F application from Linux

- Steps needed to make a R5F application launchable from Linux:
 - 1. Add IPC to syscfg similarly to the benchmark demo:

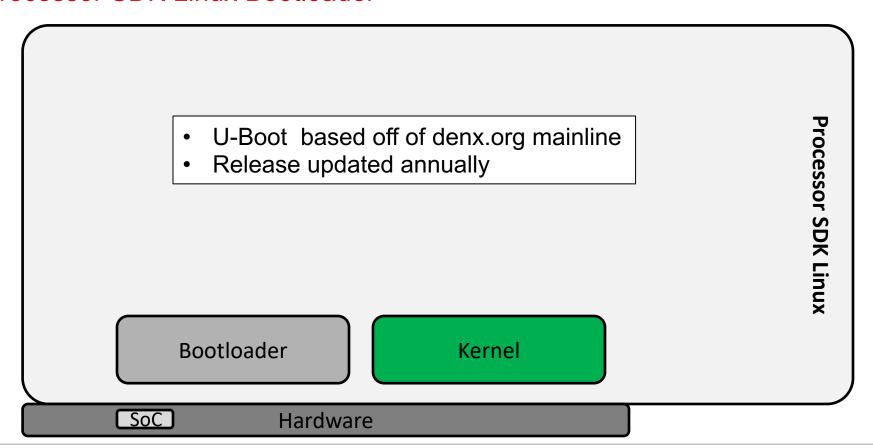
 mcu_plus_sdk_am64x_x_x_x_x\examples\motor_control\benchmark_demo\am64xevm\r5fss0-0 nortos\examples.syscfg
 - Make sure no resource conflict with Linux. For example, in the MCU+ Academy Part 4 project, UART should be removed from syscfg or a different UART instance than 0 should be used.
 - 3. Add .resource_table section to DDR in linker command file. Or simply reuse the linker command file from the benchmark demo:

 mcu_plus_sdk_am64x_x_x_x_x\examples\motor_control\benchmark_demo\am64x-evm\r5fss0-0 nortos\ti-arm-clang\linker.cmd
 - 4. Build CCS project and strip all symbols from the .out file:

 C:/ti/ccs1040/ccs/tools/compiler/ti-cgt-armllvm_1.3.0.LTS/bin/tiarmstrip
 -o=<stripped binary file> <original .out file>
 - 5. Copy the stripped .out file to Linux filesystem and set symbolic link /lib/firmware/am64-main-r5f0 0-fw, am64-main-r5f0 1-fw, etc.

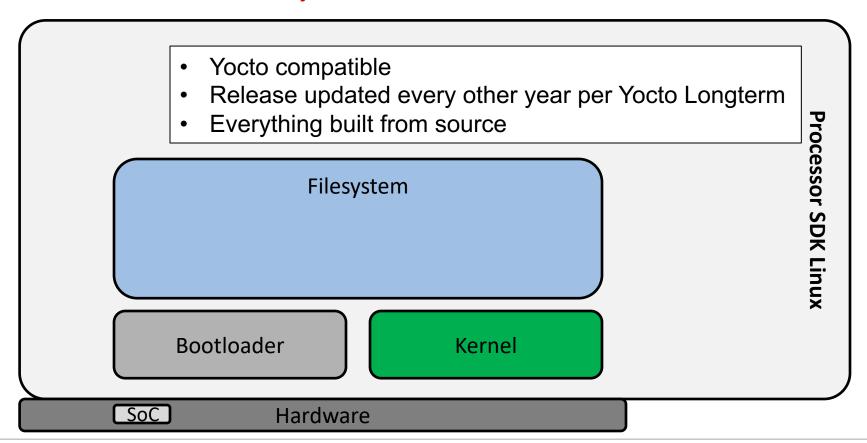
Processor SDK Linux Kernel

- Based off of <u>kernel.org Longterm maintenance</u>)
 - Provides bug fixes for about 2 years from the community
- Move to new Longterm annually
 - Allows users to pick up new features and capabilities

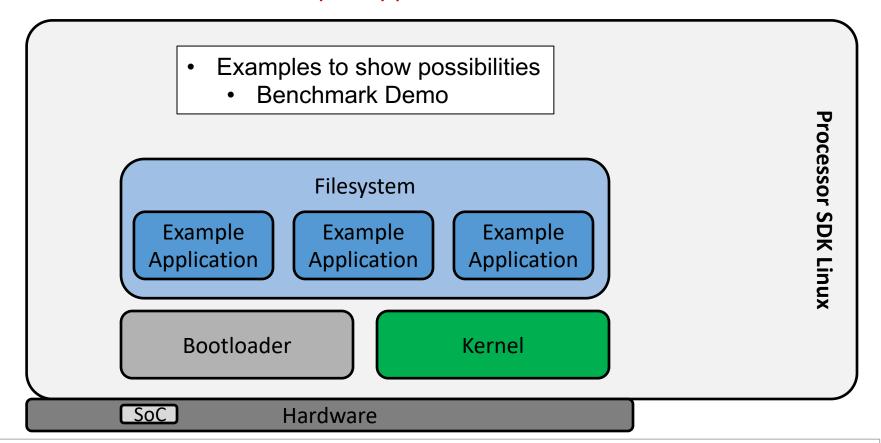

Kernel

SoC

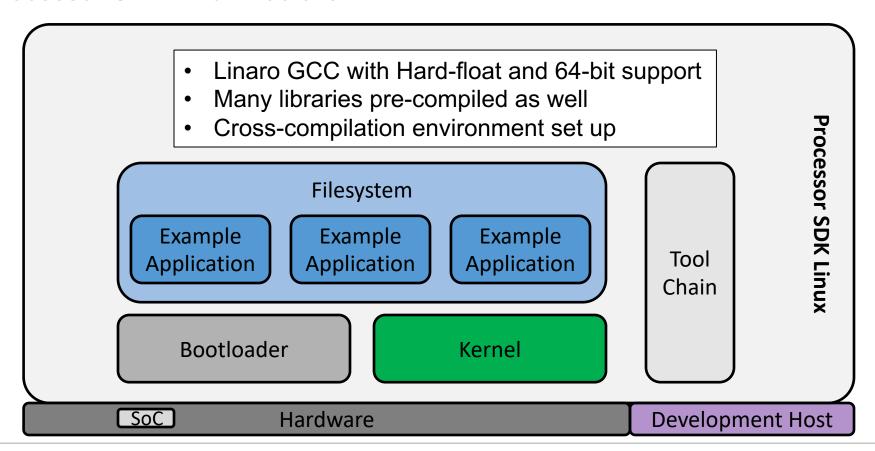
Hardware


Processor SDK Linux

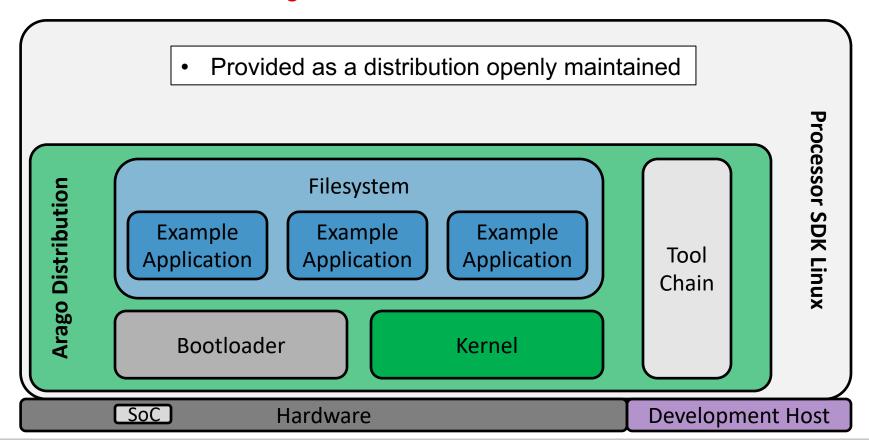
Processor SDK Linux Bootloader

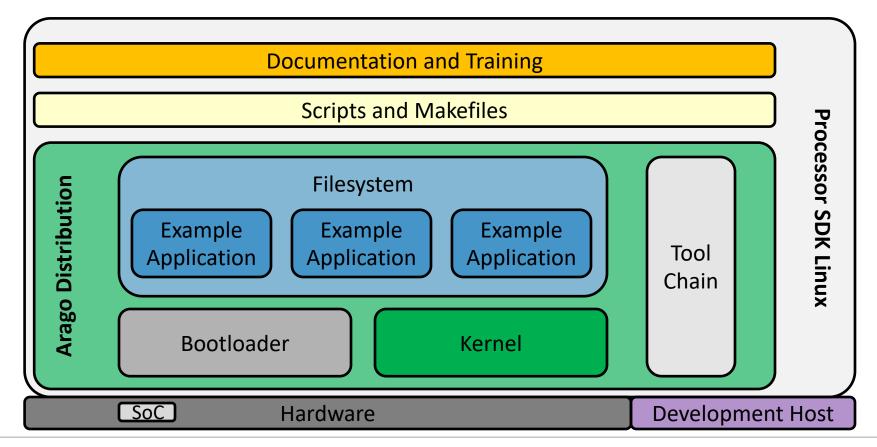


Processor SDK Linux Filesystem



Processor SDK Linux Example Applications




Processor SDK Linux Toolchain

Processor SDK Linux Arago Distribution

Processor SDK Linux Summary

Summary

- AM64x is a powerful, heterogeneous core processor to meet a variety of system needs
- SDKs and tools are provided to facilitate software development on all cores
- Training and examples are available to accelerate development

Future Webinars

- AM64x Multiple Industrial Protocols
 - October 19 at 10 AM CST and October 21 at 10 PM CST
- AM64x IPC
 - November 16 at 10 AM CST and November 18 at 10 PM CST
- More information, registration, and videos:
- https://training.ti.com/process-monthly-webinar-series

Backup

References

AM64x Linux Software Development Kit (SDK)

https://www.ti.com/tool/PROCESSOR-SDK-AM64X

AM64x MCU+ Software Development Kit (SDK)

https://www.ti.com/tool/download/MCU-PLUS-SDK-AM64X

AM64x Linux SDK User Guide

 https://software-dl.ti.com/processor-sdklinux/esd/AM64X/latest/exports/docs/devices/AM64X/index.html

AM64x MCU+ SDK Documentation

• https://software-dl.ti.com/mcu-plus-sdk/esd/AM64X/08 00 00 21/exports/docs/api guide am64x/index.html

AM64x EVM:

https://www.ti.com/tool/TMDS64GPEVM

AM64x SK board:

https://www.ti.com/tool/SK-AM64

