
## **BCP SSL LLR computation:**

In order to compute *LLR* values, the Soft Slicer requires the following as input:

- 1. One-dimensional received symbol Y<sub>n</sub> carrying bit b<sub>n</sub> (PAM symbol or I or Q component of QAM symbol).
- 2. Scaling factor  $c = \frac{1}{2\sigma_N^2}$ , where  $\sigma_N^2$  is is the variance of the 1-dimensional effective noise in the signal at the input to the soft slicer corresponding to symbol Y<sub>n</sub>. This scaling factor may change from symbol to symbol (WiMAX) or it may be the same for a group of symbols (LTE, WCDMA case). If the variance of the effective complex noise in the complex QAM symbol at the input to the soft slicer,  $\sigma_C^2$ , is estimated then  $\sigma_C^2 = 2\sigma_N^2$  and  $c = \frac{1}{\sigma_C^2}$ .
- 3. The unit value UVA which is the fixed point representation of 1 in the constellation diagram, or the distance between adjacent points. Some examples of how it is used inside the BCP are given below (in this case the 1-dim points are separated by 2a).



Some examples of how the BCP SSL block uses the unit value and scaling factor are the following LLR output data calculations for 2-PAM (1 bit per symbol) and 4-PAM (2 bits per symbol), where a=UVA (unit value input parameter), c=scale\_ci\_i (noise scaling factor), and Yn is the 1-dimensional input (PAM symbol or I or Q component of QAM symbol).

## **2-PAM**

$$LLR_0 = -\frac{2a}{\sigma_N^2} Y_n = -4acY_n$$

## **4-PAM**

$$LLR_0 = 4ac \begin{cases} -Y_n & |Y_n| < 2a \\ 2(a \operatorname{sgn}(Y_n) - Y_n) & \text{otherwise} \end{cases}$$

$$LLR_1 = 4ac(|Y_n| - 2a)$$

where 
$$\operatorname{sgn}(Y_n) \stackrel{\text{def}}{=} \begin{cases} 1 & Y_n \ge 0 \\ -1 & Y_n < 0 \end{cases}$$