
BCP Usage in PDSCH Receiver

NOTE: BCP is not designed for UE or Relay node processing and Texas Instruments does not support

this mode. This document is being provided purely for information purposes. Texas Instruments does

not hold any responsibility related to success of the application should the user decide to use this

information.

Item Document name Version Description
1 BCP User guide

3 3GPP TS-36.211 8.9.0 Physical Channels and Modulation
(Release 8)
http://www.3gpp.org/ftp/specs/html-
info/36211.htm

4 3GPP TS-36.212 8.8.0 Multiplexing and Channel Physical
Channels and
Modulation (Release 8)
http://www.3gpp.org/ftp/specs/html-
info/36212.htm

BCP Usage in PDSCH Receiver

BCP is designed explicitly to accelerate PUSCH/PUCCH receivers and PDSCH/PDCCH transmitters, but not
PDSCH receiver that exists in both UE and Relay Node (RN), in LTE applications [1]. However, the bit
processing of PDSCH receiver may be offloaded to BCP partly with some work-around aids provided by
CPU and EDMA.

The BCP usage details depend on granularity of the noise scaling factors. In this document, two kinds of
granularities are considered:

1. One noise scaling factor per TB,
2. One noise scaling factor per resource element (RE).

One Noise Scaling Factor per TB

Figure 1 depicts the PDSCH receiver signal chain and the mapping from the signal chain components to
the processing resources, when one TB has only a single noise scaling factor.

1. All the Cmux scaling factors configured in the SSL local header are set to the same common
value.

2. According to section 5.1.4.1.2 of [4], the main difference between PUSCH and

PDSCH rate de-matching is the limited soft-buffer size at the receiver side for PDSCH receiving.
Accordingly, the fields defined in the BUFFER_WRAP_OUT_CFG word of the RM’s local header specify
the wrap-around position in the P1/P2 dual matrix, but RD has no similar local header fields and can’t be

used to perform rate de-matching in PDSCH receiver on UEs and RNs with limited soft-buffer capacity
[1].

However, RD can be used on the UEs and RNs which are not soft-buffer limited. Note that for the
KeyStone-based RNs, normally the soft-buffer should be large enough, so RD can be used to offload the
rate de-matching and HARQ combining.

 To disguise PDSCH as PUSCH for using SSL, the PUSCH channel de-interleaving on complex
symbols and the PUSCH channel interleaving on soft bits are performed before and after SSL
processing, respectively. The former can be done by CPU on-the-fly when performing
equalization. The latter can be done by EDMA.

Input Data of SSL

SSL is designed to perform channel de-interleaving, soft slicing, descrambling and UCI handling for
PUSCH. Soft slicing is performed symbol by symbol and doesn’t depend on the data order, but channel
de-interleaving and descrambling depend on the data order. To use SSL for PDSCH processing, the
equalizer output data have to be format converted before sent to BCP as if we are processing PUSCH
from the SSL point of view. This conversion is performed in the “PUSCH channel de-interleaver (stage 1)”

stage in Figure 1, and can be done by the equalizer on-the-fly. Figure 2 shows an example of the format
conversion

According to [3], PDSCH is transmitted for each involved antenna port on REs not used for PCFICH,
PHICH, PDCCH, PBCH, synchronization signals or reference signals. In general, denote the number of REs
on one layer as Msymb. The Rmux index (section 5.2.2.8 of [4], Figure 52 of [1]) and Cmux (section
5.2.2.8 of [4]), that have to be configured in SSL local header, can be derived from Msymb as below.

 Search for the minimum M’symb in Table 1 such that M’symb >= Msymb.

 Get Rmux index and Cmux from that line.

If the TB maps to two layers, the symbols of the two layers should be interleaved before sent to BCP as
shown in Figure 40 of [1], but the way to get the Rmux index and Cmux is still the same, and the Msymb
used is the number of REs of a single layer (instead of two layers). If M’symb > Msymb, (M’symb -
Msymb) padding symbols per layer have to be appended at the end of the SSL input symbol sequence.

Rmux and Cmux are used not only to configure the SSL local header, but also to get the output position
of each equalized symbol as shown in Figure 2.

Channel Interleaving EDMA

The SSL output data have to be channel interleaved before sent to RD as shown in Figure 1. This can be
performed by EDMA. Figure 3 depicts the EDMA transfer pattern for a single TB. The EDMA PaRAM set
parameters can be derived from the figure.

RN can be seen as a special UE from the DeNB (Donor eNB) point of view. There is only at most one
allocation scheduled for RN in one TTI, so at most two TBs (when in spatial multiplexing mode with more
than two layers) or one TB (in other scenarios) is sent from DeNB to RN in one TTI. For simplicity, we
don’t pursue automatic connection from SSL to the channel interleaving EDMA. Instead, we can use the
queue-pend queue as Rx queue to generate interrupt to notify CPU the completion of SSL processing.
Then CPU can trigger the EDMA manually.

One Noise Scaling Factor per RE

Figure 5 depicts the PDSCH receiver signal chain and the mapping from the signal chain components to
the processing resources, when each RE has its own noise scaling factor.

If each RE has it own noise scaling factor, we have to use WiMAX mode, instead of LTE mode, configured
in the BCP global header, because only in this mode each input QAM symbol is provided with its own
noise scaling factor (section 5.7.1.3 of[1]).

In WiMAX mode, SSL only supports the soft slicing function, leaving descrambling (including scrambling
sequence generation) done by CPU.
To make the descrambling processing easier at the output side of SSL, the equalized symbols should be
arranged in the scrambled order at the input side of SSL.
In the RN application, for simplicity we can use the queue-pend queue to generate interrupt to notify
CPU the completion of the SSL processing. Then CPU performs descrambling and starts BCP (for RD).

