

C6000 Embedded Design Workshop Using BIOS - Booting From Flash GrabBag - 14b - 1

Booting From Flash

Introduction

In this chapter the steps required to migrate code from being loaded and run via CCS to running

autonomously in flash will be considered. Given the AISgen and SPIWriter tools, this is a simple

process that is desired toward the end of the design cycle.

Objectives

Objectives

 Compare/contrast the startup events of

CCS (GEL) vs. booting from flash

 Describe how to use AISgen and

SPI Flash Writer utilities to create and

burn a flash boot image

 Lab 14b – Convert the keystone lab to

a bootable flash image, POR, run

Module Topics

GrabBag - 14b - 2 C6000 Embedded Design Workshop Using BIOS - Booting From Flash

Module Topics

Booting From Flash ..13-1

Module Topics ..13-2

Booting From Flash ...13-3
Boot Modes – Overview ..13-3
System Startup ...13-4
Init Files ...13-4
AISgen Conversion..13-5
Build Process ...13-5
SPIWriter Utility (Flash Programmer) ..13-6
ARM + DSP Boot ..13-7
Additonal Info…..13-8
C6748 Boot Modes (S7, DIP_x) ..13-9

Lab 14b: Booting From Flash ... 13-11
Lab14b – Booting From Flash - Procedure.. 13-12

Tools Download and Setup (Students: SKIP STEPS 1-6 !!) ... 13-12
Build Keystone Project: [Src → .OUT File] .. 13-16
Use AISgen To Convert [.OUT → .BIN] ... 13-20
Program the Flash: [.BIN → SPI1 Flash] ... 13-27
Optional – DDR Usage ... 13-29

Additional Information ... 13-30

 Booting From Flash

C6000 Embedded Design Workshop Using BIOS - Booting From Flash GrabBag - 14b - 3

Booting From Flash

Boot Modes – Overview

„C6748 Boot Modes - Overview

TTO
Technical Training

Organization

BOOT Modes

• NAND

• NOR

• HPI

• I2C

• SPI

• UART

ROM Code

0x11700000

0

1

2

3

BOOT[x]

On RESET:

• BOOT[x] pins are sampled

• Corresponding boot routine
is executed

Boot Loader (ARM or DSP):

• Runs out of L2 ROM

• Copies FLASH → RAM

• Execution begins at specified
“entry point” (reset vector)

Questions

• What else does the user need to configure? (GEL vs. Boot)

• How is the “flash image” created? (AIS)

• How is the EVM6748 Flash programmed? (SPIWriter)

Booting From Flash

GrabBag - 14b - 4 C6000 Embedded Design Workshop Using BIOS - Booting From Flash

System Startup

System Startup – CCS vs. Boot

TTO
Technical Training

Organization

Required Task CCS Boot

PLL Init GEL file AISgen.cfg

DDR Config GEL file AISgen.cfg

PINMUX GEL file AISgen.cfg

PSC GEL file AISgen.cfg

Load Program CCS loader ROM code

 When using CCS, the GEL file takes care of important
setup FOR YOU

 When using a boot loader, the user is responsible for
writing code to accomplish the same tasks (e.g. AIS…)

Let's look a little closer at the details of GEL and AIS...

AIS – Application Image Script

Init Files

CCS GEL File

TTO
Technical Training

Organization

 The GEL script runs every time you connect to
your target (C6748.gel).

 This script sets up the target environment:

• Mem Map

• PSC

• Core Freq

• DDR

• EMIF

• PINMUX

• PLL0

• PLL1

OnTargetConnect()

{

Clear_Memory_Map();

Setup_Memory_Map();

PSC_All_On_Experimenter();

Core_300MHz_mDDR_132MHz();

}

Setup_Memory_Map()

{

/* DSP */

GEL_MapAddStr(…); //DSP L2 ROM

GEL_MapAddStr(…); //DSP l2 RAM

GEL_MapAddStr(…); //DSP L1P RAM

Set_Core_300MHz();

Set_mDDR_132MHz();

Runs at “Connect To Target” .GEL Snippets

 Booting From Flash

C6000 Embedded Design Workshop Using BIOS - Booting From Flash GrabBag - 14b - 5

AISgen Conversion

Build Process

Booting From Flash

GrabBag - 14b - 6 C6000 Embedded Design Workshop Using BIOS - Booting From Flash

SPIWriter Utility (Flash Programmer)

 Booting From Flash

C6000 Embedded Design Workshop Using BIOS - Booting From Flash GrabBag - 14b - 7

ARM + DSP Boot

ARM + DSP Boot (OMAP-L138)

TTO
Technical Training

Organization

• Unlock DSP

• Set DSP reset vec

• Wake DSP

• DSP PC = reset vec

• while(1)

•Audio Application

•Link reset vector to

specific addr (add

custom CMD file)

ARM.out

DSP.out
AISgen

flash.bin

ARM
sect_1

sect_2

…

DSP
sect_1

sect_2

…

 ARM code programs DSP’s entry point to L2 addr

 DSP linker.cmd file specifies exact entry point for boot

 AISgen combines .out files into one bootable image

• PLL0

• PLL1

• SPI

• DDR

• PSC

.cfg

ARM + DSP Boot (OMAP-L138)

TTO
Technical Training

Organization

 ARM Bootloader runs at reset, copies ARM/DSP sections to RAM

 ARM App runs, wakes DSP, sets DSP PC = entry point, DSP runs

 Both ARM and DSP programs are running simultaneously

flash.bin

Host PC

C6748

“SPIWriter”

DSP+ARM

Image

Flash

Programmer

EEPROM
Flash

Memory

RESETBoot Pins

ARM Bootloader

L2

ROM
• Copy ARM sections  L3

• Copy DSP sections  L2

• PC = ARM entry point

ARM App DSP App

Reset DSP Audio

Booting From Flash

GrabBag - 14b - 8 C6000 Embedded Design Workshop Using BIOS - Booting From Flash

Additonal Info…

 Booting From Flash

C6000 Embedded Design Workshop Using BIOS - Booting From Flash GrabBag - 14b - 9

C6748 Boot Modes (S7, DIP_x)

Flash Pin Settings – C6748 EVM

EMU MODE

SW7

BOOT[4]

BOOT[3]

BOOT[2]

BOOT[1]

I/O (1.8/3.3)

8

7

6

5

4

3

2

1

NC

Audio EN

LCD EN

ON

ON

SPI BOOT

SW7

8

7

6

5

4

3

2

1

Default = SPI BOOT

OFF

Booting From Flash

GrabBag - 14b - 10 C6000 Embedded Design Workshop Using BIOS - Booting From Flash

*** this page was accidentally created by a virus – please ignore ***

 Lab 14b: Booting From Flash

C6000 Embedded Design Workshop Using BIOS - Booting From Flash GrabBag - 14b - 11

Lab 14b: Booting From Flash

In this lab, a .out file will be loaded to the on-board flash memory so that the program may be run

when the board is powered up, with no connection to CCS.

Any lab solution would work for this lab, but again we’ll standardize on the “keystone” lab so

that we ensure a known quantity.

Lab 14b: Booting From Flash

GrabBag - 14b - 12 C6000 Embedded Design Workshop Using BIOS - Booting From Flash

Lab14b – Booting From Flash - Procedure

Hint: This lab procedure will work with either the C6748 SOM or OMAP-L138 SOM. The

basic procedure is the same but a few steps are VERY different. These will be noted

clearly in this document. So, please pay attention to the HINTS and grey boxes like this

one along the way.

Tools Download and Setup (Students: SKIP STEPS 1-6 !!)
 The following steps in THIS SECTION ONLY have already been performed. So, workshop

attendees can skip to the next section. These steps are provided in order to show exactly

where and how the flash/boot environment was set up (for future reference).

1. Download AISgen utility – SPRAB41c.

 Download the pdf file from here:

 http://focus.ti.com/dsp/docs/litabsmultiplefilelist.tsp?docCategoryId=1&familyId=1621&liter

atureNumber=sprab41c§ionId=3&tabId=409

 A screen cap of the pdf file is here:

 The contents of this zip are shown here:

http://focus.ti.com/dsp/docs/litabsmultiplefilelist.tsp?docCategoryId=1&familyId=1621&literatureNumber=sprab41c§ionId=3&tabId=409
http://focus.ti.com/dsp/docs/litabsmultiplefilelist.tsp?docCategoryId=1&familyId=1621&literatureNumber=sprab41c§ionId=3&tabId=409

 Lab 14b: Booting From Flash

C6000 Embedded Design Workshop Using BIOS - Booting From Flash GrabBag - 14b - 13

2. Create directories to hold tools and projects.

 Three directories need to be created:

 C:\BIOSv4\Labs\Lab14b_keystone – will contain the audio project (keystone)

to build into a .OUT file.

 C:\BIOSv4\Labs\Lab14b_ARM_Boot – will contain the ARM boot

code required to start up the DSP after booting.

 C:\BIOSv4\Labs\Lab14b_SPIWriter – will contain the SPIWriter.out file

used to program the flash on the EVM.

 C:\BIOSv4\Labs\Lab14b_AIS – contains the AISgen.exe file (shown above)

and is where the resulting AIS script (bin) will be located after running the utility (.OUT

→ .BIN)

 Place the “keystone” files into the \Lab14b_keystone\Files directory. Users will

build a new project to get their .OUT file.

 Place the recently downloaded AISgen.exe file into \Lab14a_AIS directory.

Lab 14b: Booting From Flash

GrabBag - 14b - 14 C6000 Embedded Design Workshop Using BIOS - Booting From Flash

3. Download SPI Flash Utilities.

 You can find the SPI Flash Utility here:

 http://processors.wiki.ti.com/index.php/Serial_Boot_and_Flash_Loading_Utility_for_OMAP-L138

 This is actually a TI wiki page:

 From here, locate the following and click “here” to go to the download page:

 This will take you to a SourceForge site that will contain the tools you need to download.

 Click on the latest version under OMAP-L138 and download the tar.gz file. UnTAR the

contents and you’ll see this:

 The path we need is \OMAP-L138. If we dive down a bit, we will find the

SPIWriter.out file that is used to program the flash with our boot image (.bin).

http://processors.wiki.ti.com/index.php/Serial_Boot_and_Flash_Loading_Utility_for_OMAP-L138

 Lab 14b: Booting From Flash

C6000 Embedded Design Workshop Using BIOS - Booting From Flash GrabBag - 14b - 15

4. Copy the SPIWriter.out file to \Lab14b_SPIWriter\ directory.

 Shown below is the initial contents of the Flash Utility download:

 Copy the following file to the \Lab14b_SPIWriter\ directory:

 SPIWriter_OMAP-L138.out

5. Install AISgen.

 Find the download of the AISgen.exe file and double-click it to install. After installation,

copy a shortcut to the desktop for this program:

6. Create the keystone project.

 Create a new CCSv4 BIOS project with the source files listed in

C:\BIOSv4\Lab14b_keystone\Files. Create this project in the neighboring

\Project folder. Also, don’t forget to add the BSL library and BSL includes (as normal)

Make sure you use the RELEASE configuration only.

Lab 14b: Booting From Flash

GrabBag - 14b - 16 C6000 Embedded Design Workshop Using BIOS - Booting From Flash

Hint: [workshop students: START HERE]

Build Keystone Project: [Src → .OUT File]

7. Import keystone audio project and make a few changes.

 Import “keystone_flash” project from the following directory:

 C:\BIOSv4\Labs\Lab14b_keystone\Project

 This project was built for emulation with CCSv4 – i.e there is a GEL file that sets up our

PLL, DDR2, etc. In creating a boot image, as discussed in the chapter, we have to perform

these actions in code vs. the GEL creating this nice environment for us.

 So, we have a choice here – write code that runs in main to set up PLL0, PLL1, DDR, etc.

OR have the bootloader do it FOR US. Having the bootloader perform these actions offers

several advantages – fewer mistakes by human programmers AND, these settings are done at

bootload time vs waiting all the way until main() for the settings to take effect.

Hint: The following step is for OMAP-L138 SOM Users ONLY !!

8. View the c_int00_locater_cmd file (OMAP-L138 ARM+DSP only).

 Here is one of the “tricks” that must be employed when using both the ARM and DSP. The

ARM code has to know the entry point (reset vector, c_int00) of the DSP. Well, if you just

compile and link, it could go anywhere in L2. So, this little command file specifies

EXACTLY where the .boot section should go for a BIOS project (this is not necessary for a

non-BIOS program).

 Lab 14b: Booting From Flash

C6000 Embedded Design Workshop Using BIOS - Booting From Flash GrabBag - 14b - 17

9. Build the keystone project.

 Using the RELEASE build configuration, build the project. This should create the .OUT file.

Go check the \Release directory and locate the .OUT file:

 keystone_flash.out

 Load the .OUT file and make sure it executes properly. We don’t want to flash something

that isn’t working. 

 Do not close the Debug session yet.

10. Determine silicon rev of the device you are currently using.

 AISgen will want to know which silicon rev you are using. Well, you can either attempt to

read it off the device itself (which is nearly impossible) or you can visit a convenient place in

memory to see it.

 Now that you have the Debug perspective open, this should be relatively straightforward.

Open a memory view window and type in the following address:

 0x11700000

 Can you see it? No? Shame on you. Ok. Try changing the style view to “Character” instead.

See something different?

 Like this?

 That says “d800k002” which means rev2 of the silicon. That’s an older rev…but whatever

yours is…write it down below:

 Silicon REV: ____________________

 FYI – for OMAP-L138 (and C6748), note the following:

 d800k002 = Rev 1.0 silicon (common, but old)

 d800k004 = Rev 1.5 silicon (not found very often)

 d800k006 = Rev 2.0 silicon (if you have a newer board, this is the latest)

 There ARE some differences between Rev1 and Rev2 silicon that we’ll mention later in this

lab – very important in terms of how the ARM code is written.

 You will probably NEVER need to change the memory view to “Character” ever again – so

enjoy the moment. 

 Next, we need to convert this .out file and combine it with the ARM .out file and create a

single flash image for both using the AIS script via AISgen…

Lab 14b: Booting From Flash

GrabBag - 14b - 18 C6000 Embedded Design Workshop Using BIOS - Booting From Flash

11. Use the Debug GEL script to locate the Silicon Rev.

 This script can be run at any time to debug the state of your silicon and all of the important

registers and frequencies your device is running at. This file works for both OMAP-L137/8

and C6747/8 devices. It is a great script to provide feedback for your hardware engineer.

 It goes kind of like this: we want a certain frequency for PLL1. We read the documentation

and determine that these registers need to be programmed to a, b and c. You write the code,

program them and then build/run. Well, is PLL1 set to the frequency you thought it should

be? Run the debug script and find out what the processor is “reporting” the setting is. Nice.

 This script outputs its results to the Console window.

 Let’s use the debug script to determine the silicon rev as in the previous step.

 First, we need to LOAD the gel file. This file can be downloaded from the wiki shown in the

chapter. We have already done that for you and placed that GEL file in the \gel directory next

to the GEL file you’ve been using for CCS.

 Select Tools  GEL Files.

 Right-click in the empty area under the currently loaded GEL file and select: Load Gel.

 The \gel directory should show up and the file OMAPL1x_debug.gel should be listed. If

not, browse to C:\BIOSv4\Labs\evmc6748_v1-1\gel.

 Click Open.

 Lab 14b: Booting From Flash

C6000 Embedded Design Workshop Using BIOS - Booting From Flash GrabBag - 14b - 19

 This will load the new GEL file and place the scripts under the “Scripts” menu.

 Select “Scripts”  Diagnostics  Run All:

 You can choose to run only a specific script or “All” of them. Notice the output in the

Console window. Scroll up and find the silicon revision. Also make note of all of the registers

and settings this GEL file reports. Quite extensive.

 Does your report show the same rev as you found in the previous step? Let’s hope so…

 Write down the Si Rev again here:

 Silicon Rev (again): ______________________

Lab 14b: Booting From Flash

GrabBag - 14b - 20 C6000 Embedded Design Workshop Using BIOS - Booting From Flash

Use AISgen To Convert [.OUT → .BIN]
 AISgen (Application Image Script Generator) is a free downloadable tool from TI – check

out the beginning of this lab for the links to get this tool.

12. Locate AISgen.exe (only if requiring installation…if not, see next step).

 The installation file has already been downloaded for you and is sitting in the following

directory:

 C:\BIOSv4\Labs\Lab14b_AIS

 Here, you will find the following install file:

 This is the INSTALL file (fyi). You don’t need to use this if the tool is already installed on

your computer…

13. Run AISgen.

 There should be an icon on your desktop that looks like this:

 If not, you will need to install the tool by double-clicking on the install file, installing it and

then creating a shortcut to it on the desktop (you’ll find it in Programs → Texas Instruments

→ AISgen).

 Double-click on the icon to launch AISgen and fill out the dialogue box as shown on the next

page…there are several settings you need…so be careful and go SLOWLY here…

 It is usually BEST to place all of your PLL and DDR settings in the flash image and have the

bootloader set these up vs. running code on the DSP to do it. Why? Because the DSP then

comes out of reset READY to go at the top speeds vs. running “slow” until your code in

main() is run. So, that’s what we plan to do….

Note: Each dialogue has its own section below. It is quite a bit of setup…but hey, you are

enabling the bootloader to set up your entire system. This is good stuff…but it takes some

work…

Hint: When you actually use the DSP to burn the flash in a later step, the location you store

your .bin file too (name of the .bin file AND the directory path you place the .bin file in)

CANNOT have ANY SPACES IN THE PATH OR FILENAME.

 Lab 14b: Booting From Flash

C6000 Embedded Design Workshop Using BIOS - Booting From Flash GrabBag - 14b - 21

Main dialogue – basic settings.

 Fill out the following on this page:

 Device Type (match it up with what you determined before)

 For OMAP-L138 SOM (ARM + DSP), choose “ARM”. If you’re using the 6748 SOM,

choose “DSP”.

 Boot Mode: SPI1 Flash. On the OMAP-L138, the SPI1 port and UART2 ports are

connected to the flash.

 For now, wait on filling in the Application and Output files.

Hint: For C6748 SOM, choose “DSP” as the Device type

Hint: For OMAP-L138 SOM, choose “ARM” as the Device type

Lab 14b: Booting From Flash

GrabBag - 14b - 22 C6000 Embedded Design Workshop Using BIOS - Booting From Flash

Configure PLL0, PLL0 Tab

On the “General” tab, check the box for “Configure PLL0” as shown:

 Then click on the PLL0 tab and view these settings. You will see the defaults show up. Make

the following modifications as shown below.

 Change the multiplier value from 20 to 25 and notice the values in the bottom RH corner

change.

Peripheral Tab

 Next, click on the Peripheral tab. This is where you will set the SPI Clock. It is a function

(divide down) from the CPU clock. If you leave it at 1MHz, well, it will work, but the

bootload will take WAY longer. So, this is a “speed up” enhancement.

 Type “20” into the SPI Clock field as shown:

 Also check the “Enable Sequential Read” checkbox. Why is this important? Speed of the boot

load. If this box is unchecked, the ROM code will send out a read command (0x03) plus a 24-

bit address before every single BYTE. That is a TON of read commands.

 However, if we CHECK this box, the ROM code will send out a single 24-bit address

(0x000000) and then proceed to read out the ENTIRE boot image. WAY WAY faster.

 Lab 14b: Booting From Flash

C6000 Embedded Design Workshop Using BIOS - Booting From Flash GrabBag - 14b - 23

Configure PLL1

 Just in case you EVER want to put code or data into the DDR, PLL1 needs to be set in the

flash image and therefore configured by the bootloader.

 So, click the checkbox next to “Configure PLL1”, click on that tab, and use the following

settings:

 This will clock the DDR at 300MHz. This is equivalent to what our GEL file sets the DDR

frequency to. We don’t have any code in DDR at the moment – but now we have it setup just

in case we ever do later on. Now, we need to write values to the DDR config registers…

Configure DDR

 You know the drill. Click the proper checkbox on the main dialogue page and click on the

DDR tab. Fill in the following values as shown. If you want to know what each of the values

are on the right, look it up in the datasheet. 

Lab 14b: Booting From Flash

GrabBag - 14b - 24 C6000 Embedded Design Workshop Using BIOS - Booting From Flash

Configure PSC0, PSC0 Tab

 Next, we need to configure the Low Power Sleep Controller (LPSC) to allow the ARM to

write to the DSP’s L2 memory. If both the ARM and DSP code resided in L3, well, the ARM

bootloader could then easily write to L3. But, with a BIOS program, BIOS wants to live in L2

DSP memory (around 0x11800000). In order for the ARM bootloader code to write to this

address, we need to have the DSP clocks powered up. Enabling PSC0 does this for us.

 On the main page, “check” the box next to “Configure PSC” and go to the PSC tab.

 In the GEL file we’ve been using in the workshop, a function named

PSC_All_On_Full_EVM() runs to set all the PSC values. We could cheat and just type in

“15” as shown below:

 Minimum Setting (don’t use this for the lab):

 This would Enable module 15 of the PSC which says “de-assert the reset on the DSP

megamodule” and enable the clocks so that the ARM can write to the DSP memory located in

L2. However, this setting does NOT match what the GEL file did for us. So, we need to

enable MORE of the PSC modules so that we match the GEL file.

Note: When doing this for your own system, you’ll need to pick and choose the PSC modules

that are important to your specific system.

 Better Setting (USE THIS ONE for the lab – or as a starting point for your own system)

 The numbers scroll out of sight, so here are the values:

 PSC0: 0;1;2;3;4;5;9;10;11;12;13;15

 PSC1: 0;1;2;3;4;5;6;7;9;10;11;12;13;14;15;16;17;18;19;20;21;24;25;26;27;28;29;30;31

Note: Note: PSC1 is MISSING modules 8, 22-23 (see datasheet for more details on these).

 Lab 14b: Booting From Flash

C6000 Embedded Design Workshop Using BIOS - Booting From Flash GrabBag - 14b - 25

 Notice for SATA users:

 PSC1 Module 8 (SATA) is specifically NOT being enabled. There is a note in the System

Reference Guide saying that you need to set the FORCE bit in MDCTL when enabling

SATA. That’s not an option in the GUI/bootROM so we simply cannot enable it. If you

ignore the author’s advice and enable module 8 in PSC1, you’ll find the boot ROM gets stuck

in a spin loop waiting for SATA to transition and so ultimately your boot fails as a result.

 So, there are really two pieces to this puzzle if using SATA:

 A. Make sure you do NOT try to enable PSC1 Module 8 through AISgen

 B. If you need SATA, make sure you enable this through your application code and be sure

 to set the FORCE bit in MDCTL when doing so.

Configure PSC0, PSC0 Tab

 So, your final main dialogue should look like this with all of these tabs showing. Please

double-check you didn’t forget something:

 Save your .cfg file in the \Lab14b_AIS folder for potential use later on – you don’t want

to have to re-create all of these steps again if you can avoid it. If you look in that folder, it

already contains this .cfg file done for you. Ok, so we could have told you that earlier, but

then the learning would have been crippled.

 The author named the solution’s config file:

 OMAP-L138-ARM-DSP-LAB14B_TTO.cfg

Lab 14b: Booting From Flash

GrabBag - 14b - 26 C6000 Embedded Design Workshop Using BIOS - Booting From Flash

Hint: C6748 Users: You will only specify ONE output file (DSP.out)

Hint: OMAP-L138 Users: You will specify TWO files (an ARM.out and a DSP.out).

ARM/DSP Application & Output Files

 Ok, we’re almost done with the AISgen settings.

Hint: 6748 SOM Users – follow THESE directions (OMAP Users can skip this part)

For the “DSP Application File”, browse to the .OUT file that was created when you built

your keystone project: keystone_flash.out

Hint: OMAP-L138 SOM Users – follow THESE directions:

 For OMAP-L138 users: you will enter the paths to both files and AISgen will combine them

into ONE image (.bin) to burn into the flash. You must FIRST specify the ARM.out file

followed by the DSP.out file – this order MATTERS.

 Click the “…” and browse to the ARM code – located at:

 This ARM code is for rev1 silicon. It should also work on Rev2 silicon – but not tested.

 Next, click on the “+” sign and browse to your keystone_flash.out file you built

earlier. You should now have two .out files listed under “ARM Application File” – first the

ARM.out, then the DSP.out files separated by a semicolon. Double-check this is the case.

Hint: ALL SOM Users – Follow THIS STEP…

 For the Output file, name it “flash.bin” and use the following path:

 C:\BIOSv4\Labs\Lab14b_AIS\flash.bin

Hint: Again, the path and filename CANNOT contain any spaces. When you run the flash

writer later on, that program will barf on the file if there are any spaces in the path or

filename.

 Lab 14b: Booting From Flash

C6000 Embedded Design Workshop Using BIOS - Booting From Flash GrabBag - 14b - 27

 Before you click the “Generate AIS” button, notice the other configuration options you have

here. If you wanted AIS to write the code to configure any of these options, simply check

them and fill out the info on the proper tab. This is a WAY cool interface. And, the

bootloader does “system” setup for you instead of writing code to do it – and making

mistakes and debugging those mistakes…and getting frustrated…like getting tired of reading

this rambling text from the author….

14. Generate AIS script (flash.bin).

 Click the “Generate AIS” button. When complete, it will provide a little feedback as to how

many bytes were written. Like this:

 So, what did you just do?

 For OMAP-L138 (ARM+DSP) users, you just combined the ARM.out and DSP.out files into

one flash image – flash.bin. For C6748 Users, you simply converted your .out file to a flash

image.

 The next step is to burn the flash with this image and then let the bootloader do its thing…

Program the Flash: [.BIN → SPI1 Flash]

15. Check target config and pin settings.

 Use the standard XDS510 Target Config file that uses one GEL file (like all the other labs in

this workshop). Make sure it is the default.

 Also, make sure pins 5 and 8 on the EVM (S7 – switch 7) are ON/UP – so that we are in

EMU mode – NOT flash boot mode.

16. Load SPIWriter.out into CCS.

 The SPIWriter.out file should already be copied into a convenient place:

 C:\BIOSv4\Labs\Lab14b_SPIWriter

In CCS,

 Launch TI Debugger

 Connect to target

 Select “Load program” and browse to this location:

 C:\BIOSv4\Labs\Lab14b_SPIWriter\SPIWriter_OMAP-L138.out

Lab 14b: Booting From Flash

GrabBag - 14b - 28 C6000 Embedded Design Workshop Using BIOS - Booting From Flash

17. PLAY !

 Click Play. The console window will pop up and ask you a question about whether this is a

UBL image. The answer is NO. Only if you were using a TI UBL which would then boot

Uboot, the answer is no. This assumes that Linux is running. Our ARM code has no O/S.

 Type a smallcase “n” and hit [ENTER]. To respond to the next question, provide the path

name for your .BIN file (flash.bin) created in a previous step, i.e.:

 C:\BIOSv4\Labs\Lab14b_AIS\flash.bin

Hint: Do NOT have any spaces in this path name for SPIWriter – it NO WORK that way.

 Here’s a screen capture from the author (although, you are using the \Labs dir, not \Sols:

 Let it run – shouldn’t take too long. 15-20 seconds (with an XDS510 emulator). You will see

some progress msgs and then see “success” – like this:

18. Terminate the Debug session, close CCS.

19. Ensure DIP switches are set correctly and get music playing, then power-cycle!

 Make sure ALL DIP switches on S7 are DOWN [OFF]. This will place the EVM into the

SPI-1 boot mode. Get some music playing. Power cycle the board and THERE IT GOES…

 No need to re-flash anything like a POST – just leave your neat little program in there for

some unsuspecting person to stumble on one day when they forget to set the DIP switches

back to EMU mode and they automagically hear audio coming out of the speakers when the

turn on the power. Freaky. You should see the LED blinking as well…great work !!

Hint: DO NOT SKIP THE FOLLOWING STEP.

20. Change the boot mode pins on the EVM back to their original state.

 Please ensure DIP_5 and DIP_8 of S7 (the one on the right) are UP [ON].

RAISE YOUR HAND and get the instructor’s attention when

you have completed this lab. If time permits, move on to the

next OPTIONAL part…

 Lab 14b: Booting From Flash

C6000 Embedded Design Workshop Using BIOS - Booting From Flash GrabBag - 14b - 29

Optional – DDR Usage

Go back to your keystone project and link the .text section into DDR memory. Re-compile and

generate a new .out file. Then, use AISgen to create a new flash.bin file and flash it with

SPIWriter. Then reset the board and see if it worked. Did it?

FYI – to make things go quicker, we have a .cfg file pre-loaded for AISgen. It is located at:

When running AISgen, you can simply load this config file and it contains ALL of the settings

from this lab. Edit, recompile, load this cfg, generate .bin, burn, reset. Quick.

Additional Information

GrabBag - 14b - 30 C6000 Embedded Design Workshop Using BIOS - Booting From Flash

Additional Information

	Booting From Flash
	Module Topics
	Booting From Flash
	Boot Modes – Overview
	System Startup
	Init Files
	AISgen Conversion
	Build Process
	SPIWriter Utility (Flash Programmer)
	ARM + DSP Boot
	Additonal Info…
	C6748 Boot Modes (S7, DIP_x)

	Lab 14b: Booting From Flash
	Lab14b – Booting From Flash - Procedure
	Tools Download and Setup (Students: SKIP STEPS 1-6 !!)
	Build Keystone Project: [Src → .OUT File]
	Use AISgen To Convert [.OUT → .BIN]
	Main dialogue – basic settings.
	Configure PLL0, PLL0 Tab
	Peripheral Tab
	Configure PLL1
	Configure DDR
	Configure PSC0, PSC0 Tab
	Configure PSC0, PSC0 Tab
	ARM/DSP Application & Output Files

	Program the Flash: [.BIN → SPI1 Flash]
	Optional – DDR Usage

	Additional Information

