Booting From Flash

Introduction

In this chapter the steps required to migrate code from being loaded and run via CCS to running
autonomously in flash will be considered. Given the AlSgen and SPIWriter tools, this is a simple
process that is desired toward the end of the design cycle.

Objectives

Objectives

= Compare/contrast the startup events of
CCS (GEL) vs. booting from flash

= Describe how to use AlSgen and
SPI Flash Writer utilities to create and
burn a flash boot image

= Lab 14b - Convert the keystone lab to
a bootable flash image, POR, run

C6000 Embedded Design Workshop Using BIOS - Booting From Flash GrabBag - 14b -1

Module Topics

Module Topics
[ToTo (]l Tt 0 g T =T o 13-1
T LU T=N o] [or TSP 13-2
2ToTo) (T aTo £ -) S 13-3
BOOt MOGES — OVEIVIEWeuiiiitiieiieii ettt b et b bt en bt abe e 13-3
SYSEEIM STAITUD ..ottt ettt b et e e bt et e e ek b e e s be e e ke e e s ke e e bb e e nbeeenbeeenbneebneens 13-4
INTE FTIES vttt ettt bbbt b et b ek bRt b e Rt bttt e b bt ebe e 13-4
AULSGEN CONVEISION....c.tieitiitiiteteete ettt sb et b et b bt e bt st s e e bt s b st eb e nb e s e eb e sb et ebenbeseebenneseene e 13-5
BUITA PIOCESS ...ttt ettt e et bbbt bt e st et et se e et e e be e bt e s e et et sbesbesneeneas 13-5
SPIWriter Utility (F1ash Programmer)coooo oot 13-6
ARM + DSP BOOL....c.titiieriitiiietieti sttt e st sa sttt seate st e e ete st e s e ate st e e ate st e e ete st e e etesbe e ete st e e ene e 13-7
AddItonal INTO. . ..ooviiii e e e res 13-8
C6748 B0OOt MOUES (S7, DIP_X) ..cveeeiiiteieieitesieie sttt sttt sttt 13-9
Lab 14b: BOOtiNg From FIAShccviiiic ittt 13-11
Lab14b — Booting From Flash - ProCEAUIE...........vciuviii i 13-12
Tools Download and Setup (Students: SKIP STEPS 1-6)ccccoviiiieieceecece e 13-12
Build Keystone Project: [Src — .OUT File] ...cccviiiiiiiiiiieiecieesie e 13-16
Use AISgen To Convert [.OUT — BINT....ccooiiiiiiiieiee e 13-20
Program the Flash: [.BIN — SPI1 Flash].......ccccooiiiiiiiiiie e 13-27
OPLIoNAl — DDR USAQEcoviviieiiitiieeiecte ettt sttt bbbt b et nr et sb e ebennes 13-29
Additional INFOFMALION. ..o ettt e st e tesaesresreeneas 13-30

GrabBag - 14b - 2 C6000 Embedded Design Workshop Using BIOS - Booting From Flash

Booting From Flash

Booting From Flash

Boot Modes — Overview

Technical Training
Organization

* BOOT[x] pins are sampled

Boot Loader (ARM or DSP):
* Runs out of L2 ROM 1 :>
« Copies FLASH — RAM 2

3

* Execution begins at specified
“entry point” (reset vector)

‘C6748 Boot Modes - Overview
On RESET:

» Corresponding boot routine 0x11700000
is executed

BOOT([x]
0

ROM Code

BOOT Modes

* NAND
* NOR
* HPI
*12C

* SPI

* UART

4

Questions

* What else does the user need to configure? (GEL vs. Boot)

* How is the “flash image” created? (AIS)

* How is the EVM6748 Flash programmed? (SPIWriter)

C6000 Embedded Design Workshop Using BIOS - Booting From Flash

GrabBag - 14b - 3

Booting From Flash

System Startup

System Startup — CCS vs. Boot

Required Task CCS Boot

PLL Init GEL file AlSgen.cfg
DDR Config GEL file AlSgen.cfg
PINMUX GEL file AlSgen.cfg
PSC GEL file AlSgen.cfg
Load Program CCS loader ROM code

AIS - Application Image Script

¢ When using CCS, the GEL file takes care of important
setup FOR YOU

¢ When using a boot loader, the user is responsible for
writing code to accomplish the same tasks (e.g. AlS...)

0 Let's look a little closer at the details of GEL and AlS...

Technical Training
Organization

Init Files

CCS GEL File

¢ The GEL script runs every time you connect to
your target (C6748.gel).

¢ This script sets up the target environment:

*MemMap -<CoreFreq <EMIF *PLLO
*PSC +DDR *PINMUX +PLL1
Runs at “Connect To Target” .GEL Snippets
OnTargetConnect() ?etup_Memory_Map()
{ I DSP*/

Clear Memory Map() ;
Setup Memory Map () ;
PSC_All On_ Experimenter() ;
Core 300MHz mDDR 132MHz () ;

} 7

Technical Training
Organization

GEL_MapAddstr(...); //DSPL2 ROM
GEL_MapAddStr(...); //DSP |2 RAM
GEL_MapAddStr(...); //DSP L1P RAM

4

Set_Core_300MHz();
Set_mDDR_132MHz();

GrabBag - 14b - 4

C6000 Embedded Design Workshop Using BIOS - Booting From Flash

Booting From Flash

AlSgen Conversion
AlSgen Conversion (.OUT — .BIN)

¢ AlSgen converts your .OUT file to a “flash”-able
boot image (.bin)

¢ Contains all of your app’s code/data sections
¢ Can include user-defined code to set up environment:

u
AlSgen forl
D800K006

AlSgen for DBOOK006 Q
File Help
General |Flash AlSgen for DBOOK006 E]

Device Type: | d800k006 v||osp v Fie Help

General | Flash | PLLO | SDRAM | PLL1 | DDR |PSC | Pinmux

Boot Mode: |NORFash v
Clock Source: | Crystal v MHz

[J Configure PLLO [Configure PLL1 [] Use direct clock from PLL1 DRPYCIR:
[] Configure SDRAM] Configure DDR DDR Clock: |240.00 MHz SDCR

[Configure PSC] Configure Pinmux Memory Type SDCR2
[] Enable CRC ©:mODR;: ©/DoF2 SDTIMR1
[[] Specify Entrypoint SDTIMR2

2
DSP Application Fie: SDRCR

ALS Output Fie

[Ready] [[] DsP Appication Fie o(J(]
| AIS Output Fle o]

[Ready] [Gereratens]

Build Process
Build Steps

: CCS/Debug vs FLASH

CCS CCS: Project / Build FLASH CCS: Project / Build
file.out
C6748.gel = CCS: File /Ld Pgm AlSgen.cfg |—= AlSgen
SPIWritercmd == SPIWriter.OUT
SPI Flash
St e User specifies
Ty - o e
0 _C In
L1,L2,L3 L1, L2, L3
6748 EVM 6748 EVM

C6000 Embedded Design Workshop Using BIOS - Booting From Flash

GrabBag - 14b -5

Booting From Flash

SPIWriter Utility (Flash Programmer)

SPIWriter Flash Utility - Procedure

¢ SPIWriter is the “flash programming utility” that runs
on the target and programs the flash with your .bin file

¢ SIMPLE procedure:

1.

2.

Create your app.OUT file

Use AlSgen to convert . OUT — .BIN using proper settings
Load/run SPIWriter OMAP-L138.0UT file in CCS

Respond “no” to “UBL boot?”

Provide path to .BIN file (then flash erase/program occurs)

Terminate debug session, power-cycle, DONE.

Using SPIWriter

¢ SPIWriter is available for download at:

http:/iprocessors.wikiti.com/index.php/Serial_Boot_and_Flash_Loading_Utility_for OMAP-L138

¢ Part of a larger package of utils that includes writers

for NAND, NOR, UBL_ARM, UBL_DSP

|() Common
=) omaP-.138
= & ccs

I NORWriter

=) SPIWriter
=]ose |
) include
) src

® | UBL_ARM

() UBL_DSP

= |2) OMAP-L138_FlashAndBootUtils_2_27

I NANDWriter

Al @ debug.obj
E device,obj
g device_spi.obj
E spi.obj
Q spi_mem.obj
=

[spiwwriter_OMAP-138.0ut J \7

Will you be writing a UBL image?

[ubL.ob)

Starting CMAP-L138 SPIWriter.

(Y or y)

Enter the application file name (enter 'none' to skip):
INFO: File read complete.

Doing block erase. SPI boot preparation was successful!

GrabBag - 14b - 6

C6000 Embedded Design Workshop Using BIOS - Booting From Flash

Booting From Flash

ARM + DSP Boot

ARM.out
* Unlock DSP
* Set DSP reset vec
 Wake DSP
* DSP PC = reset vec
* while(1)

DSP.out
* Audio Application

*Link reset vector to
specific addr (add
custom CMD file)

+PLLO +DDR
*PLL1T +PSC
« SPI

ARM + DSP Boot (OMAP-L138)

.cf

¢ ARM code programs DSP’s entry point to L2 addr
¢ DSP linker.cmd file specifies exact entry point for boot
0 # AlSgen combines .out files into one bootable image

flash.bin

Host PC
DSP+ARM f_l_f_s\hl,'f_l_f’
Image
" ~prao)
Flash C6748
Programmer| “SPI|Writer”
-~ @ J
Flash
Memory EEPROM

ARM + DSP Boot (OMAP-L138)

Boot Pins «— RESET

U

ARM Bootloader

 Copy ARM sections > L3 L2
* Copy DSP sections > L2
» PC = ARM entry point

ROM

U

ARM App

Reset DSP

¢ ARM Bootloader runs at reset, copies ARM/DSP sections to RAM
¢ ARM App runs, wakes DSP, sets DSP PC = entry point, DSP runs
m + Both ARM and DSP programs are running simultaneously

DSP App

=

Audio

C6000 Embedded Design Workshop Using BIOS - Booting From Flash

GrabBag - 14b - 7

Booting From Flash

Additonal Info...
For Add’l Info...(Wiki & App Notes)

< | €] http: forocessors.wiki.ti.com/index. php /Serial_Boot_and_Fiash_Loading_Utiity_for_OMAP4.138 L

page discussion view source history
&3 Texss Serial Boot and Flash Loading Utility for OMAP-L138
INSTRUMENTS
Serial Boot and Flash Loading Utility for OMAP-L138
= (G Search for an article here
navigation & . -
tp: /foe xpressdsp. comfwiki/index. php ?titte =Debugging _from_Flash
= Main Page esech
= Allpages
= Al categaries : page discussion view source || history
= Popular pages Contents [hide]
= Popular authors 1T1Flash and Boot Utilities i
= F')DL”;CEfEDDHEE 2 Obtaining the software TEXAS Debugglng from FlaSh
g INSTRUMENTS
= Category stats 3 Compiling
= Recent changes +Running Debugging from Flash
. 0 hide]
::ﬂf”m page 5 Serial Flasher Options Contents [nide]
- Steps
= Google Search 6 Restoring the OMAP-L138 EVM SPI Flash 1Key Steps
Goog 7 Considerations for Custom Boards on 1.1 "Load Symbols” instead of “Load Program
printiexport 3 License Page 1.2 Use Hardware Breakpoints
s_Create ahook paes 1.3 Be careful with gel files
ptegories 2 CCS Crashing when Connecting
ilar pages 3 Debugging problems with the bootloader
Jlar authors
” Texas Application Report
INSTRUMENTS

SPRAB418-Janusry 2010

Using the OMAP-L1x8 Bootloader

Joseph Coombs

OMAP-L1x Debug GEL Files

Page Discussion

OMAP-L1x Debug Gel Files Debuq THIS !
vebug 1nls :
OMAP-L1x Debug Gel Files

Download « ROM ID

Use the following GEL file with CCS3 3 or higher to display debug information after connecting « Sj Revision
OMAPLTx debug v zig
Directions + Boot Mode

Directions for CCS 3 3 . ROM StatuS COde

Connect to the processor. can be ARM or DSP of any OMAP-L1x. AM1x. or TMS320C674x device
File -> Load Gel

.
Gel = Run Al Boot ROM Errors
« Current PC

Directions for CCS 4 x and higher

+ Connect to the processor, can be ARM or DSP of any OMAP-L1x. AM1x. or TMS320C674x device H
-
= Tools -» Gel Files DeVICe lnfo
= Right-click on the window and select "Load Gel"
« Go to Scripts -> Diagnostics -> Run All * Clock Info
The GEL file will print out the following information + PSC States

+« ROM ID: Revision number of the boot ROM
= Silicon revision number

= Boot Mode: Current boot mode, as selected by the boot pins latched at reset Oufpufs resuffs f'o
+ ROM Status Code Current status of the ROM code i
« Description” Description of any errar messages that the ROM may have encountered during boot the Console Window
« Program Counter The current program counter of the connacted device (ARM or DSP}
« Device Information: Generic device infarmation that may be helpful when getting support fram Tl
» Clock information: PLLm_SYSCLKn is output
= Note: Iif your board uses an input clock other than 24 MHz you need to modify the definitiog
* PSC state infarmation

GrabBag - 14b - 8 C6000 Embedded Design Workshop Using BIOS - Booting From Flash

Booting From Flash

C6748 Boot Modes (S7, DIP_x)

C6748 Boot Modes — S7 DIP_x

Table 2.10 - S7 DIP Switch Functions

Switch | OFF Position ON Position

S74° Baseboard LCD drive enablad. Baseboard LCD drive dsabled.
Baseboard audio enabled. i:éfz;’; i;ﬂ‘zg':f‘ﬁf :'r i

87:2 Aszsociated McASP lines connect to] ;
baseboard audio only. availabla on audio expansion

connectar.
3 OMAP-L138 VO runs at 3.3V OMAP-L128 /0 runs at 1.8V

S7:4 No connection

S7:5 BOOT[]

876 BOOT[2

S7:7 BCOT[3)

87:8 BOOT[4]

Table 2.11 - S7 DIP Switch Boot Modes

DIP Switch Setting—S7[5:8]
BOOTH] | BOOT[3] | BOOT[2] | BOOT(1]
Boot Mode s7:8 S7:7 S76 S7:5
[NOA EMIFA OFF ON ON ON
NAND-8 EMIFA OFF OFF OFF ON
[Dsfault | SPH Fiash OFF OFF OFF OFF
UART2 ON ON OFF OFF
EMU Debug ON OFF OFF ON

Flash Pin Settings — C6748 EVM

Default = SPI BOOT

EMU MODE SPI BOOT
8 |[oN | BOOT[4] 8 (oFF])
7 | | BOOTI[3] 7 | ’
6 | ’ BOOT[2] 6 | ’
5 |(on | BOOTI[1] 5 | f
L [N I
3 | ' /0 (1.8/3.3) | 3 | ’
2 | ’ Audio EN 2 | ’
1 | ’ LCD EN 1 | ’

SW7 SW7

C6000 Embedded Design Workshop Using BIOS - Booting From Flash

GrabBag - 14b -9

Booting From Flash

*** this page was accidentally created by a virus — please ignore ***

GrabBag - 14b - 10 C6000 Embedded Design Workshop Using BIOS - Booting From Flash

Lab 14b: Booting From Flash

Lab 14b: Booting From Flash

In this lab, a .out file will be loaded to the on-board flash memory so that the program may be run
when the board is powered up, with no connection to CCS.

Any lab solution would work for this lab, but again we’ll standardize on the “keystone” lab so
that we ensure a known quantity.

Lab 14b — ARM+DSP SPI FLASH Boot
¢ Using AlSgen & SPIWriter

» Select “Keystone” Solution

CCS: Project/ Build

» Build “Release” config (.out) file.out

» Convert ARM and DSP .out files —
to .bin using AlSgen | Alsgen.ini H AlSgen I
» Run SPIWriter. OUT (burn flash)
 Provide path to .bin | SPIWriter.cmd |—~| SPIWriter.OUT |
* Success ? T
+ Disconnect CCS
» Power off/on — code runs
Cx:L1,L2
¢ Time: 60 min 6748 EVM

+ Workshop Students: Skip Lab Steps 1-6 (lab setup only)

C6000 Embedded Design Workshop Using BIOS - Booting From Flash GrabBag - 14b - 11

Lab 14b: Booting From Flash

Labl4b — Booting From Flash - Procedure

Hint: This lab procedure will work with either the C6748 SOM or OMAP-L138 SOM. The
basic procedure is the same but a few steps are VERY different. These will be noted
clearly in this document. So, please pay attention to the HINTS and grey boxes like this
one along the way.

Tools Download and Setup (Students: SKIP STEPS 1-6 !!)

The following steps in THIS SECTION ONLY have already been performed. So, workshop
attendees can skip to the next section. These steps are provided in order to show exactly
where and how the flash/boot environment was set up (for future reference).

1. Download AlSgen utility — SPRAB41c.
Download the pdf file from here:

http://focus.ti.com/dsp/docs/litabsmultiplefilelist.tsp?docCategoryld=1&familyld=1621&liter
atureNumber=sprab41c§ionld=3&tabld=409

A screen cap of the pdf file is here:

13 TEXAS
INSTRUMENTS

Application Report
SPRAB41G- September 2010

Using the OMAP-L1x8 Bootloader

Joseph Coombs

The contents of this zip are shown here:

Mame
37 AlSgen_danok0o06_Instal_v1.6.exe

GrabBag - 14b - 12 C6000 Embedded Design Workshop Using BIOS - Booting From Flash

http://focus.ti.com/dsp/docs/litabsmultiplefilelist.tsp?docCategoryId=1&familyId=1621&literatureNumber=sprab41c§ionId=3&tabId=409
http://focus.ti.com/dsp/docs/litabsmultiplefilelist.tsp?docCategoryId=1&familyId=1621&literatureNumber=sprab41c§ionId=3&tabId=409

Lab 14b: Booting From Flash

2. Create directories to hold tools and projects.
Three directories need to be created:

e C:\BIOSv4\Labs\Labl4b keystone —will contain the audio project (keystone)
to build into a . OUT file.

e C:\BIOSv4\Labs\Labl4b ARM Boot - will contain the ARM boot
code required to start up the DSP after booting.

e C:\BIOSv4\Labs\Labl4b SPIWriter —will containthe SPIWriter.out file
used to program the flash on the EVM.

e C:\BIOSv4\Labs\Labl4b AIS —containsthe AISgen.exe file (shown above)
and is where the resulting AIS script (bin) will be located after running the utility (. oUT
- .BIN)

Place the “keystone” files into the \Lab14b keystone\Files directory. Users will
build a new project to get their . oUT file.

Place the recently downloaded AISgen.exe file into \Labl4a AIS directory.

C6000 Embedded Design Workshop Using BIOS - Booting From Flash GrabBag - 14b - 13

Lab 14b: Booting From Flash

3. Download SPI Flash Utilities.
You can find the SPI Flash Utility here:

http://processors.wiki.ti.com/index.php/Serial Boot_and Flash Loading Utility for OMAP-L138

This is actually a Tl wiki page:

@ http: //processors. wiki. ti.comindex. php/Serial_Boot_and_Flash_Loading_Utility_for_OMAP-L133 Links

page discussion view source history

Serial Boot and Flash Loading Utility for OMAP-L138

INSTRUMENTS
Serial Boot and Flash Loading Utility for OMAP-L138

From here, locate the following and click “here” to go to the download page:

Obtaining the software

The latest source code and binaries can be download from here &,

This will take you to a SourceForge site that will contain the tools you need to download.
DaVind Serial Boot and Flashing by maridinga

Summary Files Reviews Support Develop Tracker Mailing Lists Forums

Looking for the latest version? Download OMAP-L138_FlashAndBootUtils_2_30.tar.gz (4.0 MB)

Home / OMAP-L138 / v2.31 RN

Name * Modified « Size ¢
4 Parent folder
README txt 2011-02-10 178 Bytes H .

OMAP-L138_FlashAndBootUtils_2 31 tar.gz 2011-02-10 4.4 MB H .

Click on the latest version under OMAP-L138 and download the tar.gz file. UnTAR the
contents and you’ll see this:

Mame
) Common
ICoMAP-L 138
CREDITS

The path we need is \OMAP-1,138. If we dive down a bit, we will find the
SPIWriter.out file that is used to program the flash with our boot image (.bin).

GrabBag - 14b - 14 C6000 Embedded Design Workshop Using BIOS - Booting From Flash

http://processors.wiki.ti.com/index.php/Serial_Boot_and_Flash_Loading_Utility_for_OMAP-L138

Lab 14b: Booting From Flash

4. Copy the SPIWriter.out fileto \Labl4b SPIWriter\ directory.
Shown below is the initial contents of the Flash Utility download:

= I3 OMAPL135_FlashAndBootUtils_2 27 A |5 debug. obj
I=) Commen device.obj
= O3 oMAPL138 device_spi.obj
= 3 ccs =) <pi.abj
(3 MAMNDWriter Spi_mem.cubj
(5 NORWriter = spiwriter.obj
= 5 SPIWriter SPIWriter_OMAP-133.map
= SFIVUriter_OMAP-L 138, out
I indude util.obj
I sre
[UBL_ARM
[UBL_DsP

Copy the following file to the \Labl14b SPIWriter\ directory:
SPIWriter OMAP-L138.out

5. Install AlSgen.

Find the download of the AlSgen.exe file and double-click it to install. After installation,
copy a shortcut to the desktop for this program:

AlSgen for
DE00K006

6. Create the keystone project.
Create a new CCSv4 BIOS project with the source files listed in
C:\BIOSv4\Labl4b keystone\Files. Create this project in the neighboring

\Project folder. Also, don’t forget to add the BSL library and BSL includes (as normal)
Make sure you use the RELEASE configuration only.

C6000 Embedded Design Workshop Using BIOS - Booting From Flash GrabBag - 14b - 15

Lab 14b: Booting From Flash

Hint: [workshop students: START HERE]

Build Keystone Project: [Src — .OUT File]

7. Import keystone audio project and make a few changes.
Import “keystone_flash” project from the following directory:

C:\BIOSv4\Labs\Labl4b keystone\Project

This project was built for emulation with CCSv4 — i.e there is a GEL file that sets up our
PLL, DDR2, etc. In creating a boot image, as discussed in the chapter, we have to perform
these actions in code vs. the GEL creating this nice environment for us.

So, we have a choice here — write code that runs in main to set up PLLO, PLL1, DDR, etc.
OR have the bootloader do it FOR US. Having the bootloader perform these actions offers
several advantages — fewer mistakes by human programmers AND, these settings are done at
bootload time vs waiting all the way until main() for the settings to take effect.

Hint: The following step is for OMAP-L138 SOM Users ONLY !!

8. View the c_int00_locater_cmd file (OMAP-L138 ARM+DSP only).

Here is one of the “tricks” that must be employed when using both the ARM and DSP. The
ARM code has to know the entry point (reset vector, ¢_int00) of the DSP. Well, if you just
compile and link, it could go anywhere in L2. So, this little command file specifies
EXACTLY where the .boot section should go for a BIOS project (this is not necessary for a
non-BI1OS program).

-1 bios.a6T74<bootC.o0674>(.3y3init)

GrabBag - 14b - 16 C6000 Embedded Design Workshop Using BIOS - Booting From Flash

Lab 14b: Booting From Flash

9.

10.

Build the keystone project.

Using the RELEASE build configuration, build the project. This should create the .OUT file.
Go check the \Release directory and locate the .OUT file:

keystone flash.out

Load the .OUT file and make sure it executes properly. We don’t want to flash something
that isn’t working. ©

Do not close the Debug session yet.

Determine silicon rev of the device you are currently using.

AlSgen will want to know which silicon rev you are using. Well, you can either attempt to
read it off the device itself (which is nearly impossible) or you can visit a convenient place in
memory to see it.

Now that you have the Debug perspective open, this should be relatively straightforward.
Open a memory view window and type in the following address:

0x11700000

Can you see it? No? Shame on you. Ok. Try changing the style view to “Character” instead.
See something different?

Like this?
0x11700000 v 2 R

S | [[]L 1D Cache |CL1P Cache |[v
ox11700000l. ... [4 & 0o o0 «k

0xl1l170000D0 O 0 P o

P T e B B B W W T 2= or

That says “d800k002” which means rev2 of the silicon. That’s an older rev...but whatever
yours is...write it down below:

Silicon REV:

FYI1 —for OMAP-L138 (and C6748), note the following:
e d800k002 = Rev 1.0 silicon (common, but old)
e d800k004 = Rev 1.5 silicon (not found very often)
e (800k006 = Rev 2.0 silicon (if you have a newer board, this is the latest)

There ARE some differences between Revl and Rev?2 silicon that we’ll mention later in this
lab — very important in terms of how the ARM code is written.

You will probably NEVER need to change the memory view to “Character” ever again — SO
enjoy the moment. ©

Next, we need to convert this .out file and combine it with the ARM .out file and create a
single flash image for both using the AIS script via AlSgen...

C6000 Embedded Design Workshop Using BIOS - Booting From Flash GrabBag - 14b - 17

Lab 14b: Booting From Flash

11. Use the Debug GEL script to locate the Silicon Rev.
This script can be run at any time to debug the state of your silicon and all of the important
registers and frequencies your device is running at. This file works for both OMAP-L137/8
and C6747/8 devices. It is a great script to provide feedback for your hardware engineer.

It goes kind of like this: we want a certain frequency for PLL1. We read the documentation
and determine that these registers need to be programmed to a, b and c. You write the code,
program them and then build/run. Well, is PLL1 set to the frequency you thought it should
be? Run the debug script and find out what the processor is “reporting” the setting is. Nice.

This script outputs its results to the Console window.

Let’s use the debug script to determine the silicon rev as in the previous step.

First, we need to LOAD the gel file. This file can be downloaded from the wiki shown in the
chapter. We have already done that for you and placed that GEL file in the \gel directory next
to the GEL file you’ve been using for CCS.

Select Tools &> GEL Files.

Right-click in the empty area under the currently loaded GEL file and select: Load Gel.

Script

GEL Files (TMS320C674X)

[OMAPL 138_EVM_TTO. el

Remove All

The \gel directory should show up and the file OMAPL1x debug.gel should be listed. If
not, browse to C: \BIOSv4\Labs\evmc6748 v1-1\gel.

I gel

|ﬂ C&748_LogicPD_original.gel

Ei/oMAPL 1x_debug.gel

|&] oMAPL138_EVM_TTO.gel

[1)

Click Open.

GrabBag - 14b - 18

C6000 Embedded Design Workshop Using BIOS - Booting From Flash

Lab 14b: Booting From Flash

This will load the new GEL file and place the scripts under the “Scripts” menu.
Select “Scripts” = Diagnostics = Run All:

Window Help

YWake Core * e

OMAP-L138 Memory Map #

Freguency Settings ¥ main.c &3 @ fir.c @ n
Experimenter bk 55 main |

Full EVM 3 .

Print_ROM_Info

g Print_Device_Info
Print_PLL_Configuration
Print_PSC_Status

L
b

2 T2C dpi (T

jory

You can choose to run only a specific script or “All” of them. Notice the output in the
Console window. Scroll up and find the silicon revision. Also make note of all of the registers
and settings this GEL file reports. Quite extensive.

ROM ID: dB200k002
Silicon Revision 1.0
Boot Mode: Emalation Debug

Does your report show the same rev as you found in the previous step? Let’s hope so...

Write down the Si Rev again here:

Silicon Rev (again):

C6000 Embedded Design Workshop Using BIOS - Booting From Flash GrabBag - 14b - 19

Lab 14b: Booting From Flash

Use AISgen To Convert [[OUT — .BIN]

12.

13.

AlSgen (Application Image Script Generator) is a free downloadable tool from T — check
out the beginning of this lab for the links to get this tool.

Locate AlSgen.exe (only if requiring installation...if not, see next step).

The installation file has already been downloaded for you and is sitting in the following
directory:

C:\BIOSv4\Labs\Labl4b AIS

Here, you will find the following install file:

Mame
It AlSgen_da00ki0s_Install_v1.6.exe

This is the INSTALL file (fyi). You don’t need to use this if the tool is already installed on
your computer...

Run AlSgen.
There should be an icon on your desktop that looks like this:

If not, you will need to install the tool by double-clicking on the install file, installing it and
then creating a shortcut to it on the desktop (you’ll find it in Programs — Texas Instruments
— AlSgen).

Double-click on the icon to launch AlSgen and fill out the dialogue box as shown on the next
page...there are several settings you need...so be careful and go SLOWLY here...

It is usually BEST to place all of your PLL and DDR settings in the flash image and have the
bootloader set these up vs. running code on the DSP to do it. Why? Because the DSP then
comes out of reset READY to go at the top speeds vs. running “slow” until your code in
main() is run. So, that’s what we plan to do....

Note: Each dialogue has its own section below. It is quite a bit of setup...but hey, you are

enabling the bootloader to set up your entire system. This is good stuff...but it takes some
work. ..

Hint: When you actually use the DSP to burn the flash in a later step, the location you store

your .bin file too (name of the .bin file AND the directory path you place the .bin file in)
CANNOT have ANY SPACES IN THE PATH OR FILENAME.

GrabBag - 14b - 20

C6000 Embedded Design Workshop Using BIOS - Booting From Flash

Lab 14b: Booting From Flash

Main dialogue — basic settings.

Fill out the following on this page:
e Device Type (match it up with what you determined before)

e For OMAP-L138 SOM (ARM + DSP), choose “ARM”. If you’re using the 6748 SOM,
choose “DSP”.

e Boot Mode: SPI1 Flash. On the OMAP-L138, the SPI1 port and UART?2 ports are
connected to the flash.

¢ For now, wait on filling in the Application and Output files.

Hint: For C6748 SOM, choose “DSP” as the Device type

Hint: For OMAP-L138 SOM, choose “ARM?” as the Device type

AlSgen for DBOOKDDG

File Help

General | Peripheral

Device Type: [de00k002 | [ARM |v|
Boot Mode: [SPI1Flash 1w
Clock Seource: |Crg,-sta| v| | Zil MHz

[Configure PLLO] Configure PLL1
[Configure SDRAM [] Corfigure DDR
[] Configure PSC] Configure Pinmue
] Enable CRC

1 Svcty Evps: [00000000

ARM Application File: ||S"-..|_E||:I1Etl_KE‘}'S‘tDI'IE:"'-.Pl'I:leC't"-..HE|EE|SE"-.}(E‘}'STDI‘|E_f|E|S|‘|_5C1|. | [:] [Z]

AlS Output File: |C:\BIOSv4\Sols\Lab13b_AIS flash bin | L]

Loaded configuration from file CABIOSv4M\Sols\lab13b_ ... [Generste AlS]

C6000 Embedded Design Workshop Using BIOS - Booting From Flash GrabBag - 14b - 21

Lab 14b: Booting From Flash

Configure PLLO, PLLO Tab

On the “General” tab, check the box for “Configure PLL0” as shown:

Configure PLLO

Then click on the PLLO tab and view these settings. You will see the defaults show up. Make
the following modifications as shown below.

Change the multiplier value from 20 to 25 and notice the values in the bottom RH corner

change.
Gereral || Perpheral | PLLO | PSC
Pre-Divisor: 1
Multiplier: 25
Post-Divisor: 2
DIv1: 1 CPU: 300.00 MHz
D3 3 SDRAM: |100.00 MHz
DIVT: & EMAL: 50.00 MHz

Peripheral Tab

Next, click on the Peripheral tab. This is where you will set the SPI Clock. It is a function
(divide down) from the CPU clock. If you leave it at IMHz, well, it will work, but the
bootload will take WAY longer. So, this is a “speed up” enhancement.

Type “20” into the SPI Clock field as shown:

Madule Clack: 150.00 MHz
SPI Clock: 20 18.75| MHz
Enable Sequential Read

Also check the “Enable Sequential Read” checkbox. Why is this important? Speed of the boot
load. If this box is unchecked, the ROM code will send out a read command (0x03) plus a 24-
bit address before every single BYTE. That is a TON of read commands.

However, if we CHECK this box, the ROM code will send out a single 24-bit address
(0x000000) and then proceed to read out the ENTIRE boot image. WAY WAY faster.

GrabBag - 14b - 22 C6000 Embedded Design Workshop Using BIOS - Booting From Flash

Lab 14b: Booting From Flash

Configure PLL1

Just in case you EVER want to put code or data into the DDR, PLL1 needs to be set in the
flash image and therefore configured by the bootloader.

So, click the checkbox next to “Configure PLL1”, click on that tab, and use the following
settings:

General || Peripheral | PLLO | PLL1

Multiplier: 25
Past-Divisar: 2
DIV1: 1 DDR: |300.00 MHz
DIz 2
DIV3: 3

This will clock the DDR at 300MHz. This is equivalent to what our GEL file sets the DDR
frequency to. We don’t have any code in DDR at the moment — but now we have it setup just
in case we ever do later on. Now, we need to write values to the DDR config registers...

Configure DDR

You know the drill. Click the proper checkbox on the main dialogue page and click on the
DDR tab. Fill in the following values as shown. If you want to know what each of the values
are on the right, look it up in the datasheet. ©

General || Peripheral || PLLD | PLL1 | DDR [PSC

[] Use dirsct clock from FLLT DRFYCIR: | [000000CA
DDR Clock: [150.00] MHz SDCR: 102034622
Memory Type SDCR2: (00000000

® mbDR O DDR2 SDTIMR1: 20923249
SDTIMR2: [3E141420

SDRCR: (k00000453

C6000 Embedded Design Workshop Using BIOS - Booting From Flash GrabBag - 14b - 23

Lab 14b: Booting From Flash

Configure PSCO0O, PSCO Tab

Next, we need to configure the Low Power Sleep Controller (LPSC) to allow the ARM to
write to the DSP’s L2 memory. If both the ARM and DSP code resided in L3, well, the ARM
bootloader could then easily write to L3. But, with a BIOS program, BIOS wants to live in L2
DSP memory (around 0x11800000). In order for the ARM bootloader code to write to this
address, we need to have the DSP clocks powered up. Enabling PSCO does this for us.

On the main page, “check” the box next to “Configure PSC” and go to the PSC tab.

In the GEL file we’ve been using in the workshop, a function named
PSC_All On Full EVM() runs to setall the PSC values. We could cheat and just type in
“15” as shown below:

Minimum Setting (don’t use this for the lab):

PSCO PSC1
Enable LPSC: 15;

Clisable LPSC:
Sync Rst LPSC:

This would Enable module 15 of the PSC which says “de-assert the reset on the DSP
megamodule” and enable the clocks so that the ARM can write to the DSP memory located in
L2. However, this setting does NOT match what the GEL file did for us. So, we need to
enable MORE of the PSC modules so that we match the GEL file.

Note: When doing this for your own system, you’ll need to pick and choose the PSC modules
that are important to your specific system.

Better Setting (USE THIS ONE for the lab — or as a starting point for your own system)

General || Perfpheral | PLLO || PLL1 | PSC

PSCO PSC1
Enable LPSC: 0:1;2:3.45.%;

[£3}
[T}
"
[
"
—
"
]
-
Toa
[s]
i
n
[*x]
1
[T}
"
[

Disable LPSC:
Sync Rst LPSC:

The numbers scroll out of sight, so here are the values:
PSCO: 0;1;2;3;4;5;9;10;11;12;13;15
PSC1: 0;1:;2:3:4:;5;6;7;9;10;11;12;13;14;15;16;17;18;19;20;21;24.25;26;27;28;29;30;31

Note: Note: PSC1 is MISSING modules 8, 22-23 (see datasheet for more details on these).

GrabBag - 14b - 24 C6000 Embedded Design Workshop Using BIOS - Booting From Flash

Lab 14b: Booting From Flash

motice for SATA users: \

PSC1 Module 8 (SATA) is specifically NOT being enabled. There is a note in the System
Reference Guide saying that you need to set the FORCE bit in MDCTL when enabling
SATA. That’s not an option in the GUI/bootROM so we simply cannot enable it. If you
ignore the author’s advice and enable module 8 in PSC1, you’ll find the boot ROM gets stuck
in a spin loop waiting for SATA to transition and so ultimately your boot fails as a result.

So, there are really two pieces to this puzzle if using SATA:
A. Make sure you do NOT try to enable PSC1 Module 8 through AlSgen
B. If you need SATA, make sure you enable this through your application code and be sure

K to set the FORCE bit in MDCTL when doing so. /

Configure PSCO, PSCO0 Tab
So, your final main dialogue should look like this with all of these tabs showing. Please
double-check you didn’t forget something:

General | Peripheral | PLLO || PLL1 | DDR | PSC
Device Type: |dB00K0O0Z | |ARM |»
Boot Mode: SFI1 Flash b
Clock Source: |Crystal w 24 MHz
Carfigure PLLO Configure PLL1
] Configure SDRAM Configure DDR
Corfigure P5C [] Configure Pinmuz

[] Enable CRC
[] Specify Entrypoint:

Save your . cfq fileinthe \Lab14b ATIS folder for potential use later on — you don’t want
to have to re-create all of these steps again if you can avoid it. If you look in that folder, it
already contains this .cfg file done for you. Ok, so we could have told you that earlier, but
then the learning would have been crippled.

The author named the solution’s config file:
OMAP-L138-ARM-DSP-LAB14B TTO.cfg

C6000 Embedded Design Workshop Using BIOS - Booting From Flash GrabBag - 14b - 25

Lab 14b: Booting From Flash

Hint: C6748 Users: You will only specify ONE output file (DSP.out)

Hint: OMAP-L138 Users: You will specify TWO files (an ARM.out and a DSP.out).

ARM/DSP Application & Output Files
Ok, we’re almost done with the AlSgen settings.

Hint: 6748 SOM Users — follow THESE directions (OMAP Users can skip this part)

For the “DSP Application File”, browse to the .OUT file that was created when you built
your keystone project: keystone flash.out

Hint: OMAP-L138 SOM Users — follow THESE directions:

For OMAP-L138 users: you will enter the paths to both files and AlSgen will combine them
into ONE image (.bin) to burn into the flash. You must FIRST specify the ARM.out file
followed by the DSP.out file — this order MATTERS.

L) [+]

Click the «...” and browse to the ARM code — located at:

IC C:'\BIO5v4\Labs\Lab 196_ARM_Boot
= [Mame

=l | Labi14b ARM Boot rs JO[“'U‘.PL].ES‘DSP‘LED"&Q

) OMAPL138-DSP-LED OMAPL133-ARM_BOOT_REV1_Silicon.out
38 oMAPL133-D3PLED C'f*h'*F'L 138-DSPLED-ARM.out |

This ARM code is for rev1l silicon. It should also work on Rev2 silicon — but not tested.

Next, click on the “+” sign and browse to your keystone flash.out file you built
earlier. You should now have two .out files listed under “ARM Application File” — first the
ARM.out, then the DSP.out files separated by a semicolon. Double-check this is the case.

Hint: ALL SOM Users — Follow THIS STEP...

For the Output file, name it “flash.bin” and use the following path:
C:\BIOSv4\Labs\Labl4b AIS\flash.bin

Hint: Again, the path and filename CANNOT contain any spaces. When you run the flash
writer later on, that program will barf on the file if there are any spaces in the path or
filename.

GrabBag - 14b - 26 C6000 Embedded Design Workshop Using BIOS - Booting From Flash

Lab 14b: Booting From Flash

Before you click the “Generate AIS” button, notice the other configuration options you have
here. If you wanted AIS to write the code to configure any of these options, simply check
them and fill out the info on the proper tab. This is a WAY cool interface. And, the
bootloader does “system” setup for you instead of writing code to do it — and making
mistakes and debugging those mistakes...and getting frustrated...like getting tired of reading
this rambling text from the author....

14. Generate AIS script (flash.bin).

Click the “Generate AIS” button. When complete, it will provide a little feedback as to how
many bytes were written. Like this:

Wrote 63388 bytes to file CABIOSv4\Sols\Lab14a_keysto. .. Generate AlS

So, what did you just do?

For OMAP-L138 (ARM+DSP) users, you just combined the ARM.out and DSP.out files into
one flash image — flash.bin. For C6748 Users, you simply converted your .out file to a flash
image.

The next step is to burn the flash with this image and then let the bootloader do its thing...

Program the Flash: [.BIN — SPI1 Flash]

15. Check target config and pin settings.

Use the standard XDS510 Target Config file that uses one GEL file (like all the other labs in
this workshop). Make sure it is the default.

Also, make sure pins 5 and 8 on the EVM (S7 — switch 7) are ON/UP — so that we are in
EMU mode — NOT flash boot mode.

16. Load SPIWriter.out into CCS.
The SPIWriter.out file should already be copied into a convenient place:

C:\BIOSv4\Labs\Labl4b SPIWriter

Starting COMARP-L138 SPIWriter.
Will you be writing a UBL image? (¥ or w)
Enter the application file name (enter 'none' to skip):
INFQ: File :e;d conplete.
Doing block erase.Doing block erase. 5F1I boot preparation was successful!
In CCS,

e Launch TI Debugger
e Connect to target
e Select “Load program” and browse to this location:
C:\BIOSv4\Labs\Labl4b SPIWriter\SPIWriter OMAP-L138.out

C6000 Embedded Design Workshop Using BIOS - Booting From Flash GrabBag - 14b - 27

Lab 14b: Booting From Flash

17.

PLAY !

Click Play. The console window will pop up and ask you a question about whether this is a
UBL image. The answer is NO. Only if you were using a TI UBL which would then boot
Uboot, the answer is no. This assumes that Linux is running. Our ARM code has no O/S.

Type a smallcase “n” and hit [ENTER]. To respond to the next question, provide the path
name for your .BIN file (f1lash.bin) created in a previous step, i.e.:

C:\BIOSv4\Labs\Labl4b AIS\flash.bin

Hi

nt: Do NOT have any spaces in this path name for SPIWriter — it NO WORK that way.

Here’s a screen capture from the author (although, you are using the \Labs dir, not \Sols:

Starting CMAP-L138 SPIWriter.
Will wyou be writing a UBL image? (¥ or w)
Enter the application file name (enter 'none' to skip):
INFD: File read complete.
woing block erase.Doing klock erase. 5FI boot preparation was successful!

18.
19.

Let it run — shouldn’t take too long. 15-20 seconds (with an XDS510 emulator). You will see
some progress msgs and then see “success” — like this:

S5PI koot preparation was successful!

Terminate the Debug session, close CCS.

Ensure DIP switches are set correctly and get music playing, then power-cycle!

Make sure ALL DIP switches on S7 are DOWN [OFF]. This will place the EVM into the
SPI-1 boot mode. Get some music playing. Power cycle the board and THERE IT GOES...

No need to re-flash anything like a POST — just leave your neat little program in there for
some unsuspecting person to stumble on one day when they forget to set the DIP switches
back to EMU mode and they automagically hear audio coming out of the speakers when the
turn on the power. Freaky. You should see the LED blinking as well...great work !!

Hint: DO NOT SKIP THE FOLLOWING STEP.

20. Change the boot mode pins on the EVM back to their original state.

Please ensure DIP_5 and DIP_8 of S7 (the one on the right) are UP [ON].

RAISE YOUR HAND and get the instructor’s attention when

next OPTIONAL part...

g% you have completed this lab. If time permits, move on to the

GrabBag -

14b - 28 C6000 Embedded Design Workshop Using BIOS - Booting From Flash

Lab 14b: Booting From Flash

Optional — DDR Usage

Go back to your keystone project and link the .text section into DDR memory. Re-compile and
generate a new .out file. Then, use AlSgen to create a new flash.bin file and flash it with
SPIWriter. Then reset the board and see if it worked. Did it?

FYI —to make things go quicker, we have a .cfg file pre-loaded for AlSgen. It is located at:

|2 CBIOSv 4 Labs!Lab 14b_AIS

¥ Mame
) Lab14s A WP aISgen_da00kD0e.exe
3 Lab14b_AIS R sisparse exe
B) Lab 1—1b:ARrv1_Eh:u:|t qumapl 135-arm-dsp-spi-psc_tto.cfg

() OMAPL133-DSPED 5] OMAPL133-DSP-LED-NAND-SPL-UART bin
B OMAPL138-DSP-LED |wl OMAPL138-DSP-LED-NAND-SPI-UART cfg

) Lab14b_Keystone W{OMAP 133-ARM-DSP1 AB14B_TTO.cfg
ey LAl eTeaeca

When running AlSgen, you can simply load this config file and it contains ALL of the settings
from this lab. Edit, recompile, load this cfg, generate .bin, burn, reset. Quick.

C6000 Embedded Design Workshop Using BIOS - Booting From Flash GrabBag - 14b - 29

Additional Information

Additional Information

AIS - Boot Script

Application image Scnipt (AlS) Boot www t.com

4 Application Image Script (AlS) Boot

AIS is a format of storing the boot image. Apart from the HPI and two NOR-boot modes described above,
all boot medes supported by the OMAR-L1x8 bootloader use AIS for boot purposes.

AIS is a binary language, accessed in terms of 22-bit (4-byte) words in little endian format. AIS starts with
a magic word (0x41504954) and contains a series of AIS commands, which are executed by the
bootloader in sequential manner. The Jump & Close (J&C) command marks the end of AIS

Magic Word

Command

J&C Command

Figure 4. Structure of AIS

Each AIS command consists of an opcode, optionally followed by one or more arguments, followed by
optional data.

Opcode

Argument

Dats

@ Figure 5. Structure of an AIS Command

GrabBag - 14b - 30 C6000 Embedded Design Workshop Using BIOS - Booting From Flash

	Booting From Flash
	Module Topics
	Booting From Flash
	Boot Modes – Overview
	System Startup
	Init Files
	AISgen Conversion
	Build Process
	SPIWriter Utility (Flash Programmer)
	ARM + DSP Boot
	Additonal Info…
	C6748 Boot Modes (S7, DIP_x)

	Lab 14b: Booting From Flash
	Lab14b – Booting From Flash - Procedure
	Tools Download and Setup (Students: SKIP STEPS 1-6 !!)
	Build Keystone Project: [Src → .OUT File]
	Use AISgen To Convert [.OUT → .BIN]
	Main dialogue – basic settings.
	Configure PLL0, PLL0 Tab
	Peripheral Tab
	Configure PLL1
	Configure DDR
	Configure PSC0, PSC0 Tab
	Configure PSC0, PSC0 Tab
	ARM/DSP Application & Output Files

	Program the Flash: [.BIN → SPI1 Flash]
	Optional – DDR Usage

	Additional Information

