
10/12/2019 MCUSW Documentation: Cdd IPC Design Document

file:///C:/Sujith/Work/k3/mcusw_docs/internal_docs/docs_doxy_cfg/drv_docs/design_ipc_top.html 1/19

Table of Contents

Introduction

Overview

Cdd IPC Overview

Basic Working Principle

Rational for IPC as an CDD

References

Requirements

Features Supported

Features Not Supported

Assumptions

Constraints

Design Description

Processor Identifiers

End Point

Message Buffer

Queue in shared memory

Multiple End Point / Communication Channels

Control End Point

Dynamic Behavior

States

Directory Structure

Configurator

CDD IPC General Configuration parameters

CDD IPC Shared Memory Configuration parameters

CDD IPC Processor Identifier

CDD IPC Processor Identifier Remote

CDD IPC Communication Channels

Variant Support

Dependency on other modules

Error Classification

Development Errors

Error Detection

Error notification (DET)

Runtime Errors

Error notification (DEM)

Resource Behavior

Low Level Definitions

MACROS, Data Types & Structures

Maximum number of channels

Cdd_IpcMpType

Cdd_IpcVertIoType

Cdd_IpcChannelType

Cdd_IpcConfigType

Cdd_IpcRegRbValues

API's

Cdd_IpcNewMessageNotify

Cdd_IpcNewCtrlMessageNotify

Cdd_IpcInit

Cdd_IpcDeinit

Cdd_IpcSendMsg

Cdd_IpcReceiveMsg

Cdd_IpcAnnounce

Cdd_IpcGetVersionInfo

Cdd_IpcRegisterReadBack

Cdd_IpcReceiveCtrlMsg

Cdd_IpcNewMessageNotify ISR

Global Variables

Decision Analysis & Resolution (DAR)

Allocation of memory for LocalQ

DAR Criteria

Available Alternatives

Decision

Test Criteria

Document Revision History

Cdd IPC Design Document

Introduction

Overview
The figure below depicts the AUTOSAR layered architecture as 3 distinct layers, Application, Runtime
Environment (RTE) and Basic Software (BSW). The BSW is further divided into 4 layers, Services, Electronic
Control Unit Abstraction, MicroController Abstraction (MCAL) and Complex Drivers.

MCAL is the lowest abstraction layer of the Basic Software. It contains software modules that interact with the
Microcontroller and its internal peripherals directly. Inter Processor Communication (IPC) driver is part of the
Complex Device Driver (block, show above). Below shows the position of the CDD IPC driver in the AUTOSAR
Architecture.

AUTOSAR Architecture – CDD IPC MCAL

Module ID shall be 255
Vendor ID shall be 44
Instance ID shall be 0

Cdd IPC Overview
CDD IPC primarily used for communication with other cores on the SoC. This implementation relies on mailbox
and shared memory to establish communication channel.

Shared memory holds the messages that requires to be transported and mailbox is used to notify the remote
core on availability of a message.

Basic Working Principle

10/12/2019 MCUSW Documentation: Cdd IPC Design Document

file:///C:/Sujith/Work/k3/mcusw_docs/internal_docs/docs_doxy_cfg/drv_docs/design_ipc_top.html 2/19

CDD IPC MCAL - Basic Working Principle

Transmission & Reception

Transmission of message from 1 processor to another is performed by 4 step sequence. As depicted above

Processor 1 has to send a message of 128 bytes to Processor 2

1. Processor 1 copies the message to shared area, designated write area to this processor
2. Writes a pre-determined pattern to mailbox
3. Processor 2, receives an interrupt indicating presence of a message in Processor 1, designated write area.
4. Processor 2, read the data from shared area
5. Processor 2, processes the received message and has to reply back with different message
6. Processor 2 copies the message to shared area, designated write area to this processor
7. Writes a pre-determined pattern to mailbox
8. Processor 1, receives an interrupt indicating presence of a message in Processor 2, designated write area.
9. Processor 1, read the data from shared area

10. Processor 1, processes the received message

Note that dotted line indicates a READ-ONLY operation

Mailbox hardware

Communication between the on-chip processors of TDAxx class of devices uses a queued (FIFO) mailbox-interrupt mechanism. The queued mailbox-interrupt mechanism
allows the software to establish a communication channel between two processors through a set of registers and associated interrupt signals by sending and receiving
messages. Mailbox could be envisioned as shared FIFO between cores and can generate an interrupt either on reception of a 32 bit word or on FIFO not being empty.

Below shows the block diagram of the Mailbox IP, FIFO (referred as FIFO ID, throughout this document) could be used to write and read messages. The depth of the FIFO
depends on the SOC used and an interrupt could be generated either on reception of a 32 bit word or on FIFO not being empty. These interrupts could be routed to any of the
cores (refer device specific TRM for restrictions, not all mailboxes interrupts could be routed to all cores)

10/12/2019 MCUSW Documentation: Cdd IPC Design Document

file:///C:/Sujith/Work/k3/mcusw_docs/internal_docs/docs_doxy_cfg/drv_docs/design_ipc_top.html 3/19

Mailbox Block Diagram

Example of Communication between 2 cores

It's important to note that the Mailbox hardware shall not be reset, as there could be pending messages in the FIFO. Other entities (such as boot-loader, start up sequence
would have reset the mailbox)

Design ID DES_CDD_IPC_001

Requirements MCAL-3707

Rational for IPC as an CDD

10/12/2019 MCUSW Documentation: Cdd IPC Design Document

file:///C:/Sujith/Work/k3/mcusw_docs/internal_docs/docs_doxy_cfg/drv_docs/design_ipc_top.html 4/19

TDAxxx class of processors has multiple processing cores (such as DSP’s, ARM (A7, R5F), etc.…) and AUTOSAR stack is not hosted on all of these cores (i.e. heterogeneous
system with one or more OS’s) and AUTOSAR doesn’t define standardized entity for inter-core communication in a heterogeneous multi-core systems. Hence a CDD is
implemented to provide communication mechanism between cores via Mailbox (peripheral for inter-processors communication mechanism) and shared memory.

References

Sl No Specification Comment / Link

1 AUTOSAR 4.2.1 CDD Design & Integration Guideline Intranet Link

2 AM65XX and TDA4x TRM Technical Reference Manual, Mailbox module is detailed

3 BSW General Requirements / Coding guidelines Intranet Link

4 Software Product Specification (SPS) Intranet Link Requirements are derived from 1 & 2

Requirements
The CDD IPC driver shall implement as per requirements detailed in 4, 1 and 2. It’s recommended to refer 1 for clarification.

Back To Top

Features Supported
Below listed are some of the key features that are expected to be supported

Ability to transport fixed messages across cores
Notify on reception of message from remote core
Received messages are retained within the driver until consumed by applications

i.e. Messages will not be available in the new message notification ISR. Service API call required to receive the message
Number of messages that can be queued is configurable

Configureable maximum message size
Ability to announce capability of core to all other cores
PRE COMPILE Variant is supported

Design ID DES_CDD_IPC_002

Requirements MCAL-964, MCAL-3717, MCAL3691, MCAL-3724, MCAL-3682, MCAL-3685, MCAL-3730, MCAL-3708, MCAL-920 MCAL-3703

Back To Top

Features Not Supported
Non use of shared memory for message length <= 32bits

Always uses shared memory irrespective of the message length
Configureability to use different mailbox, user id, FIFO ID & cluster

Mailbox, user id, FIFO ID and cluster instance is built into driver, that guranteens inter-interoperability with TI IPC drivers
VARIANT-POST-BUILD and VARIANT-LINK-TIME Variants are not supported

Design ID DES_CDD_IPC_003

Non Requirements MCAL-3708, MCAL-3709, MCAL-3710

Back To Top

Assumptions

Below listed are assumed to valid for this design/implementation, exceptions and other deviations are listed for each explicitly. Care should be taken to ensure these
assumptions are addressed.

1. This design assumes that TI IPC driver are used in the remote cores
2. The shared buffer shall be allocated in non-cached region and accessible to all cores participating in IPC
3. The functional clock to the Mailbox module is expected to be on before calling any CDD IPC service APIs
4. The CDD IPC driver as such doesn’t perform any PRCM programming to get the functional clock
5. Configurator : This design do not depend on the configurator used. Use of EB Configurator is recommended as other MCAL modules use the same.

Design ID DES_CDD_IPC_004

Non Requirements MCAL-3699, MCAL-3675, MCAL-921

Back To Top

http://www-open.india.ti.com/~pspcm/data_pspdocs/PDP/MCAL/Documents/Autosar/V4.2/SW_Architecture_General/Auxiliary_Material/AUTOSAR_EXP_CDDDesignAndIntegrationGuideline.pdf
https://confluence.itg.ti.com/display/MCAL/Coding+Guidelines
https://confluence.itg.ti.com/display/MCAL/MCUSW+Software+Product+Specification

10/12/2019 MCUSW Documentation: Cdd IPC Design Document

file:///C:/Sujith/Work/k3/mcusw_docs/internal_docs/docs_doxy_cfg/drv_docs/design_ipc_top.html 5/19

Constraints

Some of the critical constraints of this design are listed below

The communication channels are created statically, via the configurator
i.e. Remote end points of the remote core will have to defined and CDD IPC configurations generated before compilation.

Reserved END POINT, CDD IPC will reserve one of the end point which shall be be used to communicate control messages. Control endpoint would 53 Refer API,

Design ID DES_CDD_IPC_005

Requirements Covered MCAL-3677, MCAL-3678, MCAL-3679, MCAL-3680, MCAL-3681, MCAL-3682, MCAL-3685, MCAL-3686, MCAL-3760

Back To Top

Design Description

As detailed in Overview, IPC relies on shared memory & mailbox to transmit and receive messages. Section below highlight some of the key concepts.

Shared Memory
As discussed in Basic Principle, shared memory is required for IPC. This shared memory region shall be referred as VirtIo

Processor Identifiers
In order to be able to communicate with multiple cores, each cores requires to be identified uniquely. Refereed as procId in the rest of this document.

The configurator shall allow integrators to select set of cores, with which communication is desired.

End Point

To allow multiple logical channels for communications an end-point shall be used. The end-point shall be an unsigned integer configurable through the configurator, with the
exception of reserved end point. Refer Constraint End Point for details

Need of End-Point in communication

Design ID DES_CDD_IPC_006

Requirements
Covered

MCAL-3672, MCAL-3673, MCAL-3674, MCAL-3675, MCAL-3676, MCAL-3668, MCAL-3669, MCAL-3670, MCAL-3671, MCAL3679, MCAL-3680,
MCAL-3681

Back To Top

Message Buffer

Referring the diagram below, Processor 1 reads from Processor 2 designated write area and vice versa. To prevent loss of messages (in cases where the receiving processor
was slower/loaded with other high priority tasks) the message is copied into local queue. When service API to receive is invoked, the received message from the queue is
copied into user provided buffer. Please note that, these copies are CPU based copies.

10/12/2019 MCUSW Documentation: Cdd IPC Design Document

file:///C:/Sujith/Work/k3/mcusw_docs/internal_docs/docs_doxy_cfg/drv_docs/design_ipc_top.html 6/19

Need for Queue to store received messages

Design ID DES_CDD_IPC_007

Requirements Covered MCAL-3682, MCAL-3674, MCAL-3755

Back To Top

Queue in shared memory

It could be possible that one processor (producer) might generate faster IPC messages than another processor (consumer). To avoid messages being over-written/lost an
shared queue shall be implemented in the shared buffer, as depicted in the diagram below

Shared Queue

Some of the key points to note, considering the above example

The queue implemented in Processor 1 designated shared area
1. The queue shall be circular queue
2. The writer (Processor 1, in this e.g.) shall write and advance write-pointer only
3. The reader (Processor 2, in this e.g.) shall read and advance read-pointer only
4. The actual message shall be stored in the designated shared area and queue element shall contain a pointer to the message.

10/12/2019 MCUSW Documentation: Cdd IPC Design Document

file:///C:/Sujith/Work/k3/mcusw_docs/internal_docs/docs_doxy_cfg/drv_docs/design_ipc_top.html 7/19

Design ID DES_CDD_IPC_008

Requirements Covered MCAL-3673, MCAL-3674

Back To Top

Multiple End Point / Communication Channels

IPC CDD shall provide ability to create multiple end-point pairs. As depicted in the diagram below, applications could define multiple end-point pairs to realize multiple
communication channels

Multiple End Points

Some of the key points to note, considering the above example

From the perspective of Processor 1
1. Local End Points (Local EP X, Y, M & N) define end-points on Processor 1
2. Remote End Points (Remote EP X', Y', M' & N') define end-points on Processor 2
3. End-point pairs (X and X', Y and Y', M and M' & N and N') define 4 distinct communication channels
4. End-point pairs X and X', Y and Y' are used to transmission of messages from Processor 1 to Processor 2
5. End-point pairs M and M', N and N' are used to reception of messages from Processor 2 to Processor 1
6. Note that X & X' could be same and shall be honored.

Design ID DES_CDD_IPC_009

Requirements Covered MCAL-3685

Back To Top

Control End Point

IPC CDD shall create a control end point primarily used for communication of control messages. This shall be created by default, provided CddIpcAnnounceApi is ON

10/12/2019 MCUSW Documentation: Cdd IPC Design Document

file:///C:/Sujith/Work/k3/mcusw_docs/internal_docs/docs_doxy_cfg/drv_docs/design_ipc_top.html 8/19

Control End Points

Some of the key points to note, considering the above example

From the perspective of Processor 1
1. Control end point shall be used to announce availability of a remote end point to processes messages
2. Shall allow transportation of n bytes of data
3. Shall not be bound to user defined end point
4. Shall rely on Reserved END POINT

A Typical sequene would be, assuming Processor 1 start first followed by Processor 2

Time Processor 1 Processor 2

T1 Annouce Availability of end points - Step 1 Not Yet Started

T2 Wait for control message - Step 2 Not Yet Started

T3 Waiting Annouce Availability of end points - Step ~1

T4 Validate Control message Wait for control message - Step ~2

T5 Trasmit/Receive message Validate control message

T6 Trasmit/Receive message Trasmit/Receive message

Design ID DES_CDD_IPC_037

Requirements Covered MCAL-4068, MCAL-4069

Back To Top

Dynamic Behavior

States

CDD IPC shall maintain two distinct states Initialized & Un Initialized

Initialized State <====> Un Initialized State

Initialized State
All service API's shall be honored
All configured communication channels created
Shall be able to receive messages from configured remote core on configured end-point.

Un Initialized State
All service API's shall NOT be honored, Refer API
Any service API invoked shall return CDD_IPC_E_INIT_FAILED

Design ID DES_CDD_IPC_010

Requirements Covered MCAL-3706, MCAL-3715, MCAL-3756

10/12/2019 MCUSW Documentation: Cdd IPC Design Document

file:///C:/Sujith/Work/k3/mcusw_docs/internal_docs/docs_doxy_cfg/drv_docs/design_ipc_top.html 9/19

Back To Top

Directory Structure

The directory structure is as depicted in figures below, the source files can be categorized under “Driver Implementation” and “Configuration”

Driver Implemented by

Cdd_Ipc.h and Cdd_IpcIrq.h: Shall implement the interface provided by the driver
Cdd_Ipc.c, Cdd_IpcIrq.c : Shall implement the driver functionality
Cdd_IpcCbk.h : Shall define function prototype that shall be implemented by the applications and invoked by the driver on reception of new message.

IPC CDD Directory Structure

Configuration

Standard EB configuration structure

Configurator Plugin Directory Structure

Back To Top

Configurator

TI specific parameters are detailed in following sections and Standard AUTOSAR parameters are not detailed.

Design ID DES_CDD_IPC_011

Requirements Covered MCAL-921, MCAL-964

Following lists this design’s specific configurable parameters

CDD IPC General Configuration parameters

Parameter Usage comment

CddIpcOSCounterId
This shall allow integrators to specify the OS counter instance to be used in OS API GetCounterValue () The driver shall implement timed-wait
for all waits (e.g. waiting for reset to complete). This timed wait shall use OS API GetCounterValue ()

file:///C:/Sujith/Work/k3/mcusw_docs/internal_docs/docs_doxy_cfg/drv_docs/Cdd__Ipc_8h.html
file:///C:/Sujith/Work/k3/mcusw_docs/internal_docs/docs_doxy_cfg/drv_docs/Cdd__IpcIrq_8h.html

10/12/2019 MCUSW Documentation: Cdd IPC Design Document

file:///C:/Sujith/Work/k3/mcusw_docs/internal_docs/docs_doxy_cfg/drv_docs/design_ipc_top.html 10/19

CddIpcDeviceVariant This shall allow integrators to select the device variant for which integration is being performed. This parameter shall be used by driver to impose
device specific constraints. The user guide shall detail the device specific constraints

CddDevErrorDetect This parameter turns on ERROR detection and shall be used during development, disabled for production builds

NewMsgNtfyFunc Specify the integrator defined function that would invoked on reception of new message

CddVersionInfoApi Enable / Disable Get Version Info service API

CddDeinitApi Enable / Disable De Initialization of IPC CDD service API

CddIpcAnnounceApi
Enable / Disable Announcement (broadcast) of processors capabilities to other cores. This service API would be mandatory when the remote
core hosts Linux

CddRegisterReadBackApi Enable / Disable service API to Read back of critical registers

CddIrqType Specify category of ISR, Only CAT 2 is supported

Design ID DES_CDD_IPC_012

Requirements Covered MCAL-3694, MCAL-980, MCAL-3693, MCAL-3691, MCAL-3690, MCAL-3688, MCAL-3689, MCAL-3687, MCAL-3692, MCAL-3696

Back To Top

CDD IPC Shared Memory Configuration parameters

Parameter Usage comment

VertIoRingAddr Specify the physical address of the shared memory. [Constraints] Please refer (Constraints) & (Cdd IPC Overview)

VertIoRingSize Please retain the recommended configurations. When changing, ensure the size is same across all cores that uses IPC.

VertIoObjSize
Non shared memory, used for book-keeping of VRING. Refer LocalQ. Note that memory shall be allocated in the generate configuration and alignment to
128 byte boundary shall be ensured.

reserved Reserved for future use

Design ID DES_CDD_IPC_013

Requirements Covered MCAL-3674, MCAL-3675, MCAL-3676

CDD IPC Processor Identifier

Parameter Usage comment

OwnProcID Select the current processor on which the MCAL/AUTOSAR is hosted

Design ID DES_CDD_IPC_014

Requirements Covered MCAL-3668, MCAL-3669, MCAL-980

Back To Top

CDD IPC Processor Identifier Remote

Parameter Usage comment

ProcID Select the list of remote processor ID, which with IPC is desired. Please note that all selected remote processors shall host TI IPC

Design ID DES_CDD_IPC_015

Requirements Covered MCAL-3671

CDD IPC Communication Channels

Parameter Usage comment

CommId
Specify an unique integer that uniquely identifies the communication channel. This ID shall be used in service API's to transmit/receive/notify arrival on
new message. Configurator shall support symbolic names for the communication ID's

LocalEp
Local End Point, specify an unique integer that uniquely identifies the communication channel end-point on a given processor. The reserved end-point
shall not be accepted by the configurator

RemoteEp
Remote End Point, specify an unique integer that uniquely identifies the communication channel end-point on a associated remote processor. The
reserved end-point shall not be accepted by the configurator

RemoteProcID Remote processor, shall be one of the processor listed in (CDD IPC Processor Identifier Remote)

MaxNumMsgQueue Specify the maximum number of messages that can queued (before received by call to receive service API) (Message Buffer)

MaxMsgSize Specify the maximum size of all possible messages that could be received. (before received by call to receive service API) (Message Buffer)

The driver shall reserves space to implement a queue of elements and the size shall be MaxNumMsgQueue * MaxMsgSize bytes .

10/12/2019 MCUSW Documentation: Cdd IPC Design Document

file:///C:/Sujith/Work/k3/mcusw_docs/internal_docs/docs_doxy_cfg/drv_docs/design_ipc_top.html 11/19

Design ID DES_CDD_IPC_016

Requirements Covered MCAL-3677, MCAL-3678, MCAL-3679, MCAL-3680, MCAL-3681, MCAL-3682, MCAL-3685, MCAL-3686, MCAL-3755, MCAL-3686

Back To Top

Variant Support

The driver shall support VARIANT-PRE-COMPILE only

Design ID DES_CDD_IPC_017

Requirements Covered MCAL-3703

Back To Top

Dependency on other modules
CDD IPC driver shall depend on these modules to realize the required functionality.

Standard BSW / AUTOSAR modules
Det : To report development errors. Should be able to turn OFF (especially for production build)
Dem : To report run time error (e.g. report critical error / warning, when Det is turned off: STD_OFF)
SchM : For exclusive access (in interrupt context and thread/task context)

PDK
CSL / LLD : Low level API's configure the peripheral and manipulate queues, shared memory & Core ID's

Design ID DES_CDD_IPC_018

Requirements Covered MCAL-3699, MCAL-3693, MCAL-3698, MCAL-3697, MCAL-3700

Back To Top

Error Classification

Errors are classified in two categories, development error and runtime / production error.

Development Errors

Type of Error Related Error code Value (Hex) Refer Req

API error return code: Init function failed CDD_IPC_E_INIT_FAILED 0x01 MCAL-2516

Service API is called without module initialization CDD_IPC_E_UNINIT 0x02 MCAL-3756

API parameter checking: invalid value CDD_IPC_E_PARAM_POINTER 0x03 MCAL-2518

API service for initialization is called when already initialized CDD_IPC_E_ALREADY_INITIALIZED 0x04 MCAL-2515

Error code indicating wrong configuration CDD_IPC_E_INVALID_CONFIG 0x05 MCAL-2517

Error code indicating sending of an message failed CDD_IPC_E_SEND 0x06 MCAL-2517

Error code indicating sending of an message failed CDD_IPC_E_RECEIVE_RETRY 0x07 MCAL-2517

Error code indicating feature is not supported CDD_IPC_E_NOT_SUPPORTED 0x08 MCAL-2517

Design ID DES_CDD_IPC_019

Requirements Covered MCAL-3720, MCAL-3721, MCAL-3722, MCAL-3723, MCAL-3727, MCAL-3729, MCAL-3734, MCAL-3740, MCAL-3756

Error Detection

The detection of development errors is configurable (ON / OFF) at pre-compile time. The switch CddDevErrorDetect shall activate or deactivate the detection of all development
errors.

Error notification (DET)

All detected development errors are reported to Det_ReportError service of the Development Error Tracer (DET).

Back To Top

Runtime Errors

The following runtime/production errors shall be detectable by CDD IPC driver

Type of Error Related Error code Value (Hex)

10/12/2019 MCUSW Documentation: Cdd IPC Design Document

file:///C:/Sujith/Work/k3/mcusw_docs/internal_docs/docs_doxy_cfg/drv_docs/design_ipc_top.html 12/19

This error shall be reported when Mailbox is not functional CDD_IPC_E_HARDWARE_ERROR Defined By Integrator

Error notification (DEM)

All detected run time errors shall be reported to Dem_ReportErrorStatus () service of the Diagnostic Event Manager (DEM).

Design ID DES_CDD_IPC_020

Requirements Covered MCAL-3698, MCAL-3693,

Back To Top

Resource Behavior
Code Size : Implementation of this driver shall not exceed 5 kilo lines of code and 1 KB of data section.
Stack Size : Worst case stack utilization shall not exceed 2 kilo bytes.

Design ID DES_CDD_IPC_021

Requirements Covered MCAL-3747, MCAL-3748, MCAL-929

Back To Top

Low Level Definitions

This section describes the API supported by the MCAL driver and the requirements covered by each of the API.

MACROS, Data Types & Structures

The sections below lists some of key data structures that shall be implemented and used in driver implementation

Maximum number of channels

Type Identifier Comments

uint32 CDD_IPC_CORE_ID_MAX
Defines the maximum number of remote cores supported by this implementation. This macro shall be used to allocate memory
(statically) in the driver implementation.

Cdd_IpcMpType

Used to specify the core identifiers, these values shall be generated by the configurator and not explicitly by the user of this module.

Type Identifier Comments

uint32 ownProcID Defines processor ID on which MCAL/AUTOSAR is being hosted

uint32 numProcs Number of remote processor which with IPC is desired

uint32 remoteProcID Array of uin32, that specifies the remote processor identifier

uint32 reserved Reserved for future use

Design ID DES_CDD_IPC_022

Requirements Covered MCAL-3668, MCAL-3669, MCAL-3670, MCAL-3671

Cdd_IpcVertIoType

Defines Shared Memories for VRING and VRING OBJECT, these values shall be generated by the configurator and not explicitly by the user of this module.

Type Identifier Comments

void * vertIoRingAddr Defines address that shall be shared between cores, also refer (Assumptions)

uint32 vertIoRingSize Size in number of bytes

uint32 reserved Reserved for future use

Design ID DES_CDD_IPC_023

Requirements Covered MCAL-3672, MCAL-3673

Cdd_IpcChannelType

Defines logical communication channel between cores, these values shall be generated by the configurator and not explicitly by the user of this module.

Type Identifier Comments

uint32 id Unique identifiers for a channel

10/12/2019 MCUSW Documentation: Cdd IPC Design Document

file:///C:/Sujith/Work/k3/mcusw_docs/internal_docs/docs_doxy_cfg/drv_docs/design_ipc_top.html 13/19

uint32 localEp Local End Point identifier, on which MCAL/AUTOSAR is hosted

uint32 remoteProcId Remote Processor Identifier

uint32 numMsgQueued Maximum depth of the queue, that holds received messages

uint32 maxMsgSize Maximum size of the message that could be received

uint32 reserved Reserved for future use

Design ID DES_CDD_IPC_024

Requirements Covered MCAL-3677, MCAL-3678, MCAL-3679, MCAL-3680, MCAL-3681, MCAL-3682, MCAL-3755

Cdd_IpcConfigType

CDD IPC Configuration type, these values shall be generated by the configurator and not explicitly by the user of this module.

Type Identifier Comments

Cdd_IpcMpType coreIds Used to specify the core identifiers refer (Cdd_IpcMpType)

Cdd_IpcVertIoType vertIoCfg VertIO configurations refer (Cdd_IpcVertIoType)

uint32 channelCount Number of communication channels configured by the integrator

Cdd_IpcChannelType * pChCfg Pointer to constant, refer (Cdd_IpcChannelType)

uint32 reserved Reserved for future use

Design ID DES_CDD_IPC_025

Requirements Covered MCAL-3702, MCAL-3705

Cdd_IpcRegRbValues

Name Type Range Comments

numRegisters uint32 0 to 0xFFFFFFFF Will specify number of registers values provided

regValues uint32 0 to 0xFFFFFFFF Values of critical registers that's read and provided

reserved uint32 0 Reserved for future use

Back To Top

API's
Sections below defines the expected API's to part of this implementation

Cdd_IpcNewMessageNotify

Is a function implemented by the application, with prototype as void Cdd_IpcNewMessageNotify (uint32 commId) , where commId is the value specified by integrator while
creating the communication channel id

Description Comments

Function
Name

Cdd_IpcNewMessageNotify Is a symbolic name, integrators can specify desired name

Syntax
void Cdd_IpcNewMessageNotify(uint32
commId)

Shall be implemented by the MCAL consumer

Called
Context

Interrupt
This function would be invoked by driver in interrupt context. Also refer Flow Chart for implementation of
the ISR.

Reentrancy Non Reentrant

Parameter in uint32 commId commId is the value specified by integrator while creating the communication channel id

Return Value None NA

Design ID DES_CDD_IPC_026

Requirements Covered MCAL-3691, MCAL-3701

Back To APIs

Back To Top

Cdd_IpcNewCtrlMessageNotify

Is a function implemented by the application, with prototype as void Cdd_IpcNewCtrlMessageNotify (uint32 remoteProcId) , where remoteProcId is remote processor ID
Specified During Initialization

file:///C:/Sujith/Work/k3/mcusw_docs/internal_docs/docs_doxy_cfg/drv_docs/structCdd__IpcMpType.html
file:///C:/Sujith/Work/k3/mcusw_docs/internal_docs/docs_doxy_cfg/drv_docs/structCdd__IpcVertIoType.html
file:///C:/Sujith/Work/k3/mcusw_docs/internal_docs/docs_doxy_cfg/drv_docs/structCdd__IpcChannelType.html
file:///C:/Sujith/Work/k3/mcusw_docs/internal_docs/docs_doxy_cfg/drv_docs/group__MCAL__IPC__CFG.html#ga33e3be4d4af1eec308b9a24b27ec7999

10/12/2019 MCUSW Documentation: Cdd IPC Design Document

file:///C:/Sujith/Work/k3/mcusw_docs/internal_docs/docs_doxy_cfg/drv_docs/design_ipc_top.html 14/19

Description Comments

Function Name Cdd_IpcNewCtrlMessageNotify Is a symbolic name, integrators can specify desired name

Syntax void Cdd_IpcNewCtrlMessageNotify(uint32 remoteProcId) Shall be implemented by the MCAL consumer

Called Context Interrupt This function would be invoked by driver in interrupt context. Also refer Control End Point

Reentrancy Non Reentrant

Parameter in uint32 remoteProcId One of the Remote processor ID Specified During Initialization

Return Value None NA

Design ID DES_CDD_IPC_038

Requirements Covered MCAL-4067, MCAL-4066

Back To APIs

Back To Top

Cdd_IpcInit

Description Comments

Service
Name

Cdd_IpcInit First API to be invoked to initialize the module

Syntax
Std_ReturnType
Cdd_IpcInit(void)

Service for CDD Initialization

Service ID 0x02

Sync / Async Sync

Reentrancy Non Reentrant

Parameter in none NA

Parameters
out

none NA

Return Value Standard return type
E_OK or CDD_IPC_E_INIT_FAILED in case of initialization failure id, or CDD_IPC_E_ALREADY_INITIALIZED in case of
reinitialization

Design ID DES_CDD_IPC_027

Requirements Covered MCAL-3706, MCAL-3707, MCAL-3708, MCAL-3709, MCAL-3710, MCAL-3712, MCAL-3713, MCAL-3714, MCAL-3715, MCAL-3716

Back To APIs

Back To Top

Cdd_IpcDeinit

Description Comments

Service Name Cdd_IpcDeinit Last API to be invoked to de initialize the module, can be turned OFF CddDeinitApi

Syntax Std_ReturnType Cdd_IpcDeinit (void) Service for CDD Initialization

Service ID 0x08

Sync / Async Sync

Reentrancy Non Reentrant

Parameter in none NA

Parameters out none NA

Return Value Standard return type E_OK

Design ID DES_CDD_IPC_028

Requirements Covered MCAL-3688

Back To APIs

Back To Top

Cdd_IpcSendMsg

Description Comments

Service Cdd_IpcSendMsg Service for sending an message to remote cores

file:///C:/Sujith/Work/k3/mcusw_docs/internal_docs/docs_doxy_cfg/drv_docs/group__MCAL__IPC__API.html#ga8e364a6e4653429d9fea902eb97edfaa

10/12/2019 MCUSW Documentation: Cdd IPC Design Document

file:///C:/Sujith/Work/k3/mcusw_docs/internal_docs/docs_doxy_cfg/drv_docs/design_ipc_top.html 15/19

Name

Syntax
Std_ReturnType Cdd_IpcSendMsg(uint32 chId, void *pBuf,
uint32 bufLen)

Service ID 0x03

Sync /
Async

Sync

Reentrancy Non Reentrant

Parameter
in

chId chId Refers to communication ID specified while configuring this module, refer chId

Parameter
in

pBuf Non NULL_PTR that describes the message that has to sent

Parameter
in

bufLen Message length in bytes

Return
Value

Standard return type
E_OK on successful transmission, CDD_IPC_E_SEND on error and CDD_IPC_E_UNINIT
when initialized

Design ID DES_CDD_IPC_029

Requirements Covered MCAL-3717, MCAL-3718, MCAL-3719, MCAL-3720, MCAL-3721, MCAL-3722, MCAL-3723

Back To APIs

Back To Top

Cdd_IpcReceiveMsg

Description Comments

Service
Name

Cdd_IpcReceiveMsg Service for reception of N bytes of data from remote cores

Syntax
Std_ReturnType
Cdd_IpcReceiveMsg(uint32 chId, void
*pBuf, uint32 bufLen)

Service ID 0x04

Sync /
Async

Sync

Reentrancy Non Reentrant

Parameter
in

chId chId Refers to communication ID specified while configuring this module, refer chId

Parameter
in out

pBuf
Non NULL_PTR that can hold the received message. Call shall ensure sufficient memory is available, shall be
greater than or equal to maximum size specified in configuration. Refer maxMsgSize

Parameter
in

bufLen Message length in bytes

Return
Value

Standard return type
E_OK on successful reception, CDD_IPC_E_RECEIVE_RETRY on no messages, CDD_IPC_E_UNINIT, when
uninitialized.

Design ID DES_CDD_IPC_030

Requirements Covered MCAL-3724, MCAL-3725, MCAL-3726, MCAL-3727, MCAL-3728, MCAL-3729

Back To APIs

Back To Top

Cdd_IpcAnnounce

Description Comments

Service
Name

Cdd_IpcAnnounce Used to broadcast capabilities of this core to all other cores, can be turned OFF CddIpcAnnounceApi

Syntax
Std_ReturnType Cdd_IpcAnnounce(void *pBuf,
uint32 bufLen)

Service broadcast of message to all cores

Service ID 0x05

Sync /
Async

Sync

10/12/2019 MCUSW Documentation: Cdd IPC Design Document

file:///C:/Sujith/Work/k3/mcusw_docs/internal_docs/docs_doxy_cfg/drv_docs/design_ipc_top.html 16/19

Reentrancy Non Reentrant

Parameter
in

pBuf Non NULL_PTR that describes the message that has to sent

Parameter
in

bufLen Message length in bytes

Return
Value

Standard return type
E_OK on successful transmission and CDD_IPC_E_SEND on error and CDD_IPC_E_UNINIT when
initialized. Also check Constraint

Design ID DES_CDD_IPC_031

Requirements Covered MCAL-3730, MCAL-3731, MCAL-3732, MCAL-3733, MCAL-3734, MCAL-3735

Back To APIs

Back To Top

Cdd_IpcGetVersionInfo

Description Comments

Service Name Cdd_IpcGetVersionInfo Can potentially be turned OFF, via configuration parameter CddVersionInfoApi

Syntax void Cdd_IpcGetVersionInfo(Std_VersionInfoType VersionInfoPtr)

Service ID 0x01

Sync / Async Sync

Reentrancy Reentrant

Parameters out VersionInfoPtr A pointer of type Std_VersionInfoType, which holds the read back values

Return Value None

Design ID DES_CDD_IPC_032

Requirements Covered MCAL-3739, MCAL-3740, MCAL-3741

Back To APIs

Back To Top

Cdd_IpcRegisterReadBack

As noted from previous implementation, the mailbox configuration registers could potentially be corrupted by other entities (s/w or h/w). One of the recommended detection
methods would be to periodically read-back the configuration and confirm configuration is consistent. The service API defined below shall be implemented to enable this
detection.

Description Comments

Service
Name

Cdd_IpcRegisterReadBack Can potentially be turned OFF

Syntax
Std_ReturnType
Cdd_IpcRegisterReadBack(Cdd_IpcRegRbValues
*RegRbPtr)

Cdd_IpcRegRbValues defines the type, that holds critical values. This service can be turned
OFF CddRegisterReadBackApi

Service ID 0x07

Sync /
Async

Sync

Reentrancy Non Reentrant

Parameters
out

RegRbPtr A pointer of type Cdd_IpcRegRbValues, which holds the read back values

Return
Value

Standard return type E_OK or E_NOT_OK in case of error

The critical register set shall be determined at implementation.

Design ID DES_CDD_IPC_033

Requirements Covered MCAL-3736, MCAL-3737, MCAL-3738

Back To APIs

Back To Top

file:///C:/Sujith/Work/k3/mcusw_docs/internal_docs/docs_doxy_cfg/drv_docs/group__MCAL__IPC__API.html#gabf2f341732ca7b617bd885cf03881a91
file:///C:/Sujith/Work/k3/mcusw_docs/internal_docs/docs_doxy_cfg/drv_docs/structCdd__IpcRegRbValues.html

10/12/2019 MCUSW Documentation: Cdd IPC Design Document

file:///C:/Sujith/Work/k3/mcusw_docs/internal_docs/docs_doxy_cfg/drv_docs/design_ipc_top.html 17/19

Cdd_IpcReceiveCtrlMsg

Description Comments

Service
Name

Cdd_IpcReceiveCtrlMsg Service for reception of N bytes of control data from remote cores

Syntax
Std_ReturnType Cdd_IpcReceiveCtrlMsg(uint32
*pRemoteProcId, uint32 *pRemoteEndPt, void *pBuf,
uint32 bufLen)

Service ID 0x09

Sync /
Async

Sync

Reentrancy Non Reentrant

Parameter
in out

pRemoteProcId
Holds the remote processor identifier, one of valid remote processors specified while initializing,
refer RemoteProcID

Parameter
in out

pRemoteEndPt Holds the remote processor end point, that is the originator of this control message

Parameter
in out

pBuf
Non NULL_PTR that can hold the received message. Call shall ensure sufficient memory is
available, shall be greater than or equal to maximum size specified in configuration. Refer
maxMsgSize

Parameter
in

bufLen Received message length in bytes

Return
Value

Standard return type
E_OK on successful reception, E_NOT_OK on no messages, CDD_IPC_E_UNINIT, when
uninitialized and CDD_IPC_E_PARAM_POINTER when any one of the pointer is NULL

Design ID DES_CDD_IPC_039

Requirements Covered MCAL-4068, MCAL-4069, MCAL-4070, MCAL-4071, MCAL-4072

Back To APIs

Back To Top

Cdd_IpcNewMessageNotify ISR
The flow chart below depict the behaviour of ISR on reception of mailbox non-empty interrupt

New Message ISR Flow chart & Reception Service API call

Design ID DES_CDD_IPC_034

Requirements Covered MCAL-3691, MCAL-3701

Back To APIs

Back To Top

10/12/2019 MCUSW Documentation: Cdd IPC Design Document

file:///C:/Sujith/Work/k3/mcusw_docs/internal_docs/docs_doxy_cfg/drv_docs/design_ipc_top.html 18/19

Global Variables
This design expects that implementation will require to use following global variables.

Variable Type Description Default Value

Cdd_IpcDrvStatus uint32 Initialization status of the driver is maintained FALSE

Cdd_IpcDrvObj Cdd_IpcDriverObjType IPC driver object, local to the implementation and scope shall be limited to Cdd_Ipc.c Un defined

Design ID DES_CDD_IPC_035

Requirements Covered MCAL-3706

Back To Top

Decision Analysis & Resolution (DAR)
Sections below list some of the important design decisions and rational behind those decision.

Allocation of memory for LocalQ

The memory required to implement queues used to store the received messages could be allocated by user of this module or by this module itself, please refer LocalQ for need
of local queue

DAR Criteria

Simpler interface and minimize potential errors

Available Alternatives
Allocated by user of this module The user / integrator allocates the required memory and provides a pointer to the allocated memory while configuring this driver

Advantages:
Complete control for the integrators, size and location of the allocated memory

Disadvantages:
Additional configuration parameter
Location specified via a global memory
Additional checks in the driver required for alignment and null pointer checks

Local Allocation Driver allocates the memory statically, i.e. via an array.
Advantages:

Minimal configuration parameters
Alignment can be easily enforced

Disadvantages:
The size of memory is computed and integrator will have to analyze the system memory requirement post compilation of the driver

Decision
To minimize the checks and enhanced ease-of-use, Local Allocation is chosen.

Design ID DES_CDD_IPC_036

Requirements Covered None

Back To Top

Test Criteria
The sections below identify some of the aspects of design that would require emphasis during testing of this design implementation

Boundary Checks
Since variable length messages could be transmitted, tests on message size range shall be performed.
Ensure associated error codes are returned on error

Latency Measurements
Test cases shall ensure, latencies are measured for transmission and reception

Concurrency
Since a core can communicate with multiple cores on different channels, data integrity checks shall be performed when communicating with multiple cores on
multiple channels, concurrently.

Back To Top

Document Revision History

10/12/2019 MCUSW Documentation: Cdd IPC Design Document

file:///C:/Sujith/Work/k3/mcusw_docs/internal_docs/docs_doxy_cfg/drv_docs/design_ipc_top.html 19/19

Revision Date Author Description Status

0.1 11 March 2019 Sujith S First version Pending Review

0.2 22 March 2019 Sujith S Addressed review comments Approved

0.3 01 October 2019 Sujith S Updated to include control-end point and associated API's Pending Review

