EDMA3 Low Level Driver

Introduction

In this chapter, you will learn the basic concepts of using the EDMA3 (Enhanced DMA version
3) along with the Low Level Driver (LLD) APIs to program various types of transfers. If you are

just planning to do block copies of memory without synchronization, we’d recommend you

explore the ACPY3 library. However, if you are building an I/O driver (such as a combo of a
peripheral like the serial port and EDMA3) that requires synchronization to a peripheral event,

then LLD is your best choice.

Objectives
» Provide an introduction to the EDMA3 hardware

» Compare/contrast ACPY3 and LLD

» Analyze LLD examples for basic transfers, interrupt generation, linking, channel sorting,

chaining, etc.

Outline

¢ EDMAS3 Overview

¢ EDMA3 Basic Examples

¢ LLD Overview

¢ Basic LLD Example

¢ More Events, Transfers and Actions
¢ Event Synchronization

¢ EDMAS3 Interrupt Generation

¢ Linking

¢ Chaining

¢ Channel Sorting

¢ EDMA3 Architecture & Optimization Tips

DSP/BIOS Integration Workshop - EDMA3 Low Level Driver

16-1

Module Topics

Module Topics

EDMASB LOW LEVEI DIFIVEL ...ttt bbbt 16-1
0T LU T=N o ot 16-2
EDIMASB OVEIVIEWuiiiiiiteiteieete ettt sttt bbbttt b etk s bbbtk b et b et bbbt bbbt st 16-3

Options for Moving BIOCKS 0f MEMOTYcccuiviiiiiiiiieiieieiie sttt s es 16-3
EDMAS3 and QDMA ...ttt sttt h ettt b bbbt ae et et nee b 16-4
All Master Peripherals have their OWn DMAoooiiiiiiiirieieeeeseee e 16-5
HOW D0es @ DIMA WOTK? ..ottt ettt sttt s 16-6
HOW D0es @ DIMA WOTK? ..c..oiiiiiiiiiiitiesees ettt sttt s 16-7
EDMAS BaSIC EXAMPIESc.vecviieiieciececie ittt ettt sttt ettt e st st e teeneene et enbe e e e nre e 16-8
Example 1 — Simple Horizontal Line XfT.......ccoooiiiiiiiiieieieeeeeeee e 16-8
Example 2 — Indexing (Vertical Line)cceriiiiiriii ittt 16-10
Example 3 — Indexing (Block Transfer)coooiriiiiiiieieeee e 16-11
EDIMAS REVIEW ...ttt ettt ettt ettt et s e et e bt e h e eb e e st e s e et e s e e beebeebeeseeseeneensensenseanesaeas 16-12
LD OVEIVIBW.....c.tieetietiteieet ettt ettt bbbt bbbt bbbt b et bbb 16-13
ACPY 3 EXAMPLE ...veeeiieiiiciieciiecieeie ettt ettt ettt e st et e esteessesssessaesseesseesseessesssesssenseenseessesnsenseas 16-13
What is the Low Level Driver (LLD) 2 ...coouviiiiiieiicieeeeieeieeteeee sttt ve e sneens 16-14
LLD V8. ACPY 3 ettt ettt ettt st b et eb et bbb bbbt et ea et et nae e 16-15
F O A B 25 1 111 1< 16-16
LLD Configuration and INItialization ... s 16-17
Example Code — ACPY3 VS. LLDcoiiiiiii ettt sttt sneen 16-17
Example — LLD (SYNC trANSTET) ...ccueeueiieiiieiiieiet ettt sttt ettt s eee e sneenaeens 16-18
Setting Up the LLD (_create APooiiiiiieeee e 16-19
Sidebar - create DEtails.......co.eiiiiiiriiieieee e e e e 16-20
LLD = 0PEN APttt et ettt a et et saeen 16-21
LLD - 0OPEN DELAIIS ...ttt ettt sttt st eb et et et et e e seente b e 16-22
Setting Up LLD — OPLIONS....ccuievuieiieiieiiesiieiieteeteseesteesteeteesseesaesseesseeseessesssesssesseesseessesssesssesseenss 16-23
EDMA3 ReIONS — SIACDATcoviiiiiiiiieiiecitestt ettt eve st st esaeeseessessaesseesseesseessesssensnens 16-24
Allocating Resources and Config INit.........ccccveviieeiiiiiiieiieiiee et 16-25
LLD — More Events, Transfers ant ACHIONScccoiiiiriiiiriiesee et 16-26
“Event” — Event SYNCRIONIZAtIONccuiiiiiieriieiieie ettt sttt ae et esseenseensesnaenneens 16-27
Event Sync — Code Detailsc.eeiiiieiieiiee ettt 16-28
Action — EDMA3 Interrupt GeNEeIationcecueeuerieriierieeieeeeeteseeesteeie e eeeeeeesteeseeeeeneeseeesaeeees 16-29
EDMAZ3 — CPU INterrupt GENETAtIONcocueeruieeieiiieiieetientieieeteetesteeseeenteeeesneesaeesseenseeneesneesseens 16-31
EDMA Interrupts — Code DEtailSc.eccviiiiiiiirieiieiieiieeit ettt ettt ste et e vt e sveebeesseeanesanens 16-32
EDMAZ3 — CPU INterrupt GENETAtIONcccuvierieeiiieriieeiieesieeeieeeieeeieesseesseesseessseessessssessssesnsees 16-33
ACION — LANKINE. ¢ttt ettt ettt et ettt et e s bt e bt e b et eaees 16-34
LinKing — Code DEtailS......cccuccvieeiiriiiieiiesiieie ettt ettt teetae s e e steebeesseesaesseesseesseesseessesssenseens 16-35
Action/Event - CRAININGc.cccveiiiiieiieieeeeseeieeie ettt e st aeebe v e seseeseesseessaesseessesssessnesseensenseas 16-36
Chaining — Code DEtails........cc.iecuiiiiiiieiieiieie ettt ettt e se et beebeeaesseesseesseesseessesssenseens 16-37
Transfer Config — Channel SOTtING.........ccoecveriierieriieii ettt eeesesnaesseens 16-38
How Channel SOrting WOTKS..........cccviieiieiierieie ettt ettt sttt esesaesaesstesseenseenseensesseenseens 16-39
EDMA3 Architecture & Performance TiPS. ..ottt 16-44
RETBIENCES ...ttt R e 16-46

16 -2 DSP/BIOS Integration Workshop - EDMA3 Low Level Driver

EDMAS3 Overview

EDMA3 Overview
Options for Moving Blocks of Memory

How To Move Blocks of Memory?
mem1| A0 mem2
A1
A3
A4
A5
C6000
CPU Enhanced DMA (EDMA)
+ memcpy() + Direct Memory Access
+ Takes DSP MIPs «+ Can directly access memory
+ No CPU MIPs

You have several options when you need to move a block of memory. From a high level, you can
either choose to use the CPU (like a standard memcpy()), or use the provided EDMA3
peripheral. memcpy() uses a load/store to move the data which can tax your CPU and keep it
from doing more important jobs like executing an algorithm.

The EDMA3 peripheral performs this load/store using its own buses and therefore takes no CPU
cycles away from your application.

DSP/BIOS Integration Workshop - EDMA3 Low Level Driver 16 -3

EDMAS3 Overview

EDMA3 and QDMA
Multiple DMA’s : EDMA3 and QDMA

VPSS EDMA3 Cé64x+ DSP
(System DMA)
L1P L1D
Master Periph DMA QDMA
sync async
(sync) | (async) T
\,
N\
N\
DMA Y QDMA N\
¢ Enhanced DMA (version 3) ¢ Quick DMA
¢ DMA to/from peripherals ¢ DMA between memory
¢ Canbe sync'd to peripheral events & Async - must be started by CPU
¢ Handles upto 64 events ¢ 4-8 channels available

Both Share (humber depends upon specific device)
¢ 128-256 Parameter RAM sets (PARAMS)
¢ 64 transfer complete flags
¢ 2-4Pending transfer queues

The System DMA (EDMAJ3) actually consists of two separate DMAs — synchronous DMA
(DMA) and the asynchronous DMA (QDMA or Quick DMA). “Quick” refers to the speed at
which you can configure the transfer — NOT to the speed of the transfer (a stumbling block for
people new to the EDMA3 peripheral). You can perform similar block memory moves with either
the DMA or the QDMA — however only the DMA supports options such as synchronizing the
transfer to peripheral events (e.g. the serial port receive register having data ready).

ACPY3, as mentioned previously, uses the QDMA to perform its transfers. A transfer using the
QDMA uses a trigger word (one of the configuration parameters in the parameter RAM set such
as CCNT) to start the transfer — when the parameter “word” is written, it “triggers” the transfer to
start. This is all hidden to the user when programming EDMA3 via the ACPY3 APIs (shown
later). Again, if all you need to do is simply move a block of memory from SRC to DST, then
ACPY3 is probably the method to use — either in an algorithm or your application.

However, when building a driver that contains a peripheral (e.g. the serial port), using the
synchronous capability of the DMA via the LLD library is required. Most of this chapter will
focus on how to configure and use LLD to program synchronous transfers.

Both DMAs (DMA and QDMA) use EDMA3 resources such as Parameter RAM sets (PARAM
or PSETs) which contain the configuration registers (like src, dst, count, etc) and transfer
complete codes (TCCs). Check your datasheet to determine the exact number for your device. All
of these resources are shared amongst the two DMAs.

16-4

DSP/BIOS Integration Workshop - EDMA3 Low Level Driver

EDMAS3 Overview

All Master Peripherals have their own DMA

Multiple DMA’s : Master Periphs & C64x+ IDMA

bus access to SCR

¢ VPSS (and other master periph's)
include their own DMA functionality
¢ USB, ATA, Ethemet, VLYNQ share

VPSS EDMA3 C64x+ DSP
+ Front End (capture) (System DMA)
«+ Back End (display) L1P L1D
Master Periph’s DMA QDMA I /
+ USB * ATA
+ Etherret (sync) (async) IDMA[«— | L2
+ VLYNQ \ "
\\ //
Master Peripherals IDMA

4 Built into all C64x+ DSPs

¢ Performs moves between internal
memory blocks and/or config bus

¢ Don't confuse with iDMA API (ch 14)

Notes: ¢ Both ARM and DSP can access the EDMA3
¢ Only DSP can access hardware IDMA

Depending on your specific device, you will have master peripherals such as video ports (VPSS),
USB, Ethernet MAC, HPI, etc. All of these peripherals have their own DMA embedded in the
peripheral in order to initiate transfers to the buses. Slave peripherals (such as a serial port) do

NOT have a DMA built into them.

Another somewhat confusing name is the IDMA. Don’t confuse this with the iDMA algorithm
interface standard for requesting DMA resources from an algorithm to an application. All CAPS

IDMA is the “Internal DMA” located in the C64x megamodule. Its sole purpose is to move
blocks of memory between internal memories (L1, L2) and from L1/L2 to the peripheral

configuration registers. How to use the IDMA is outside the scope of this chapter — however there
is pretty good documentation on it available.

DSP/BIOS Integration Workshop - EDMA3 Low Level Driver

16 -5

EDMAS3 Overview

How Does a DMA Work?
DMA : Direct Memory Access

Goal: e Copyfrommemory to memory
Original Copied
Data DMA Data
Block Block
Examples : Import raw data from off-chip to on-chip before processing

Export results from on-chip to off-chip afterward

.
.

Controlled by : e Transfer Configuration (.e. Parameter Set - aka PaRAM or PSET)
+ Transfer configuration primarily includes 8 control registers

~\
Source
Length
Destination Transfer
Configuration
J

The goal of any DMA is to transfer either memory to memory or between peripherals and
memory. To program a transfer, you must specify certain transfer configuration parameters such
as source address (SRC), destination address (DST) and the length of the transfer (count). A
Transfer Configuration is also called a Parameter RAM Set or PARAM Set or PSET. Each
PARAM Set contains 8 32-bit registers which define the behavior of the transfer.

The bulk of this chapter will focus on how to program this transfer configuration using the Low
Level Driver (LLD) for EDMA3.

16 -6 DSP/BIOS Integration Workshop - EDMA3 Low Level Driver

EDMAS3 Overview

How Does a DMA Work?

How Much to Move?
Frame 1 - Elem1 |
Frame 2 Elem 2 «A” Count
‘«.\ . (# of contig bytes)
.| ElemN
Frame M
“B” Count
“C” Count
Transfer Configuration
Options
Source
B A .
Destination ™ B Count A Count
Index 31 16 15 0
CntReload | Link Addr
Index Index e C Count
Rsvd c I 31 16 15 0
Lets look at a simple example...

The length of a transfer is specified by three count values: A Count (ACNT) — the number of
contiguous bytes (1-64K), B Count (BCNT) — the number of ACNTs (1-64K), and C Count
(CCNT), the number of BCNT frames (1-64K) which grouped together can be called a block.
Each count value has a range of 1-64K — plenty for just about any imaginable transfer.

The combination of count values provides up to a 3-dimensional (3D) transfer. The reason they
were split like this will become more apparent in later slides — mainly to handle indexing and
syncing between ACNT and BCNT transfers.

NOTE: ACNT * BCNT * CCNT must NOT equal ZERO or nothing will be transferred. So, all
minimum count values are 1. This is a quick way to check to make sure your values are correct.
Multiply the 3 numbers together and this will be the total size of the transfer in bytes.

DSP/BIOS Integration Workshop - EDMA3 Low Level Driver 16-7

EDMAS Basic Examples

EDMA3 Basic Examples

Example 1 — Simple Horizontal Line Xfr

EDMA Example : Simple (Horizontal Line)

loc_8 (bytes)

Goal: 1[2]3]4]5]6 myDest: 8

7189 [10]11]12 9

Transfer 4 elements 13|14[15[16|17|18 10

fromloc_8 to myDest 19[20[21[22[23]24 > 11
25[26[27]28]29]|30

<+ 8bhits —

¢ DMA always increments across ACNT fields
¢ B andC counts must be 1 (or more) for any actions to occur

Source =&loc_8
1=| BONT | ACNT |[=4
Destination =&myDest

0=| DSTBIDX | SRCBIDX | =

0=| DSTCIDX | SRCCIDX | =0
CCNT 1 =1 Is there anotherwa
to set this up’

Transfers can be viewed in several ways with different combinations of ACNT, BCNT and
CCNT. Which one you choose is highly dependent upon your application and the type of transfer
you require. Hopefully through these examples and ones later, you’ll have the proper information
to make an educated choice.

In this example, our goal is to transfer 4 contiguous bytes that represent a line in our 2D grid.
Please note that bytes 1-30 are CONTIGUOUS in memory — they are just shown as a 2D grid to
portray a video display. The SRC and DST locations are shown. Next, we must determine the
count values. We have two options: (1) ACNT =4 bytes and BCNT = 1; (2) ACNT = 1 byte and
BCNT = 4. For each ACNT bytes, the EDMA3 will request a transfer to the internal buses. So,
limiting the number of requests is actually more efficient. So, the best answer is option #1: ACNT
=4 bytes and BCNT = 1. (Note, CCNT must be 1 also — never zero — or nothing will be
transferred).

When BCNT and CCNT are both 1, this is called a 1D transfer. This nomenclature shows up
when using ACPY3 APIs, so that is why it is mentioned here. If BCNT is greater than 1, it is
called a 2D transfer. And, you guessed it, when CCNT is greater than 1, it is called a 3D transfer.
We’ll see both of those coming up.

16 -8 DSP/BIOS Integration Workshop - EDMA3 Low Level Driver

EDMA3 Basic Examples

EDMA Example : Simple (Horiz

loc_8 (bytes)
1

¢ Therefore, BCNT will now be framesize : 4 bytes
¢ Bindexing must now be specified as well

Source =&loc_8
4= BONT | ACNT |=1
Destination =&myDest

1=[DSTBIDX | SRCBIDX [=1

0=| DSTCIDX | SRCCIDX | =0
CCNT [=1

ontal Line)

Goal: 2131415161 myDest: 8
8 | 9 |10[112]12 9
Transfer 4 elements 13]|14l15]16]17]18 10
fromloc_8 to myDest 19[20[21[22]23]24 ’ 11
25[26[27]28[29]30
«— 8bits —

¢ Here, ACNT was defined as element size : 1 byte

Note: Less efficient
version

This shows the other case with ACNT = 1 and BCNT = 4. As described on the previous page, this

is less efficient in terms of the number of bus requests, but it will still work. Also, if the

destination was NOT a memory block, but a peripheral that could only handle one byte at a time
(like the XMT side of a serial port), then you would have no option other than to use this method.

DSP/BIOS Integration Workshop - EDMA3 Low Level Driver

16-9

EDMAS Basic Examples

Example 2 — Indexing (Vertical Line)

EDMA Example : Indexing (Vertical Line)

loc_8 (bytes) myDest: 3
1|(2]3]4(5]s6
Goal:
] 7|8]9|10|11]12 14
Transfer 4 vertical elements [5lialisl16[17[18 —>
from |0C_8 toa port 19120121|22]| 23|24 +—8bits— 20
25|26[27]28]|29|30
31|32(33(34|35|36 26
¢ ACNT is again defined as element size : 1 byte
¢ Therefore, BCNT is still framesize : 4 bytes
¢ SRCBIDX now will be 6 — skipping to next column
¢ DSTBIDX now will be 2
Source =&loc_8
4=| BCNT | ACNT [=1
Destination =&myDest

2 =| DSTBIDX | SRCBIDX [=6

0=| DSTCIDX | SRCCIDX | =0
CCNT =1

We are now transferring a vertical line. ACNT is the number of contiguous bytes to transfer.
Well, in this case, there is only ONE byte to transfer and then we need to “hop” or index an
amount to get to the next value in the array. So, ACNT will be 1. Notice the two ‘BIDX values. B
index is used when ACNT goes to zero (and BCNT is decremented). We will use ‘BIDX for the
SRC to jump from loc_8 to loc_14. We will use DSTBIDX to jump every other spot at myDest.
If you hold a pointer at loc_8 and count to loc_14, you get 6 bytes — so SRCBIDX is 6 bytes. For
DSTBIDX, it is simply 2 bytes that we want the destination pointer to jump to each time.

So, the index values (SRCBIDX, DSTBIDX) denote the number of BYTES to jump. What if
these were short (16-bit) values instead of 8-bit? How would the index values change? Well, they
would double in size. SRCBIDX would be 12 and DSTBIDX would be 4. Indexing can be very
useful when channel sorting (i.e. you have stereo coming in LRLRLR and you want to channel
sort them to LLLL RRRR). This is covered later in this chapter.

One other question. Why couldn’t ACNT be 4 instead with a BCNT of 1?7 We are transferring the
same amount of data. I think the answer is obvious, but you must employ ‘BIDX between ACNT
transfers to get the “hops” necessary to perform the operation. So, in this case, you’re stuck with
ACNT being 1.

16 - 10 DSP/BIOS Integration Workshop - EDMA3 Low Level Driver

EDMA3 Basic Examples

Example 3 — Indexing (Block Transfer)
EDMA Example : Block Transfer

16-bit Pixels

myDest: 8
Goal: [1]2[3[4]5]6 9
Transfer a 4x4 subset 7|FRAME 112 > 10
from loc_8 to a port 13{FRAME 2118 15piis s 11
1o| FRAVE 3|22 v
25] FRAME 4 30 15

31[32[33[34] 35|36

¢ ACNT is defined here as ‘short’ element size : 2 bytes
¢ BCNT is again framesize : 4 bytes
¢ CCNT now will be 4 — as there are 4 frames
¢ SRCCIDX skips to the next frame
Source =&loc_8
4= BCNT | ACNT |=2
Destination =&myDest

2 =| DSTBIDX | SRCBIDX [=2

2 =| DSTCIDX | SRCCIDX [=6
CCNT [=4

This is taking our examples one step further into a 3D transfer. In this case, we want to transfer a
BLOCK of pixels as shown, starting at loc 8 and ending at loc_29. Notice that the data size has
changed to 16 bits instead of 8 (kinda tricky, but fun). So, ACNT is now 2 bytes (16-bit pixels). A
frame size is 4 ACNT transfers, so BCNT = 4. When ACNT goes to zero and BCNT decrements
(when SRCBIDX is employed), what should the value be? Well, they are contiguous, so
SRCBIDX is the size of ACNT = 2.

When you get to the end of the frame, BCNT is zero and CCNT decrements. When CCNT
decrements, ‘CIDX is employed. From the first byte of loc_11 (the starting of the last 16-bit value
in Frame 1) to the first byte of loc 14, how many bytes should we jump to hop from the end of
the first frame to the beginning of Frame 2? If you count: loc_12 (2 bytes), loc_13 (2 bytes),
loc_14 (2 bytes) — that totals 6 bytes for SRCCIDX.

There are two types of synchronization within EDMA3 — A-sync and AB-sync (discussed further
in LLD Synchronization later on). If you are syncing to a peripheral, you almost always use A-
sync because most peripherals can only handle one data item at a time (like a serial port). In this
case, CIDX is calculated from the LAST ACNT byte transferred when BCNT reaches zero. On
the SRC side, that would be from the first byte of loc_11 to the first byte of loc 14 — which is 6
bytes (as shown). Likewise, DSTCIDX would use the same sync and therefore would hop from
where loc_11 is stored at myDest to two bytes further — hence DSTCIDX would be 2.

If AB-sync was chosen, ‘CIDX is calculated from the first byte in the first frame to the first byte
of the second frame. So, for SRCCIDX, that would 12 bytes. On the DSTCIDX side, the bump
would be 4 16-bit values = 8 bytes. The reason for this difference is how the transfer (A or AB) is
sent to the transfer controller of the DMA. It goes off the last address it received.

DSP/BIOS Integration Workshop - EDMA3 Low Level Driver 16-11

EDMAS Basic Examples

EDMA3 Review

EDMA3 Basics Review

1[2]3]4]s]s

¢ Count- How many items to move 78] 9]10[11]12
13]14]15[16]17] 18

A, B, and Ccounts L 19]20] 21| 22[23] 24]

& Addresses -the source & destination addresses 5 126| 27] 28]29| 30

¢ Index - How far to increment the src/dst after each transfer

T

(xfer config)
Options
A

Source
B] A i !
Destination nrerapd

g Anal .\

Cnt Reload | Link Addr)
(event) Index [(action)
Rsvd C

& Event- triggers the transfer to begin
& Transfer —the transfer config describes the transfers to be executed when triggered
¢ Resulting Action — what do you want to happen after the transfer is complete?

So, the basic elements of a transfer configuration are count (A, B, C), src/dst addresses and
indexes (if required).

You can view the EDMA3 as having 3 major components in terms of programming a transfer.
First, an event “E” must occur to start the transfer — this could be a manual start, an event sync
from a peripheral (saying I have data or I need data) or via something called chaining (where the
completion of one channel kicks off a different channel to run — explained later).

The “T” for transfer configuration defines how the transfer behaves. Most of the transfer
parameters have been covered so far except for Options, Link and Cnt Reload — which will be
explained in future slides.

“A” stands for “Action”. What do you want to happen when the current transfer completes? Do
you want to link to a different configuration PSET? Do you want to interrupt the CPU? Do you
want to chain to another channel or a combo of these? These issues will all be covered in the
upcoming slides. If you keep this picture in mind, it is a good brain map to understand the
fundamentals of how the EDMA3 operates and is programmed.

16 -12

DSP/BIOS Integration Workshop - EDMA3 Low Level Driver

LLD Overview

LLD Overview

ACPY3 Example
ACPY3 Example - Review

Q

P
123456/\ 8 i Action
A E1E 6 R 9 Event+ tefgy - (aita)
3(14[15|16]17|18 10 (ACPY3_start)
19[20[21|22|23| 22 11

25126|27(28]|29|30

Source = &loc_start
Transfer 4 bytes BCNT=1 | ACNT=4

#define tcfg0 0 //set transfer numbers Destination = &loc end
DSTBIDX=0] SRCBIDX =0
ACPY3_Params tcfg; DSTCIDX = 0| SRCCIDX =0
tcfg.transferType = ACPY3 1D1D; CCNT =1
tcfg.srcAddr (IDMA3_AdrPtr) loc start;
tcfg.dstAddr §IDMA3 AdrPtr?I loc_end;
a
1;
1 -

tcfg.elementSize * sizeof (char);

tcfg.numElements
tcfg.numFrames ;
tcfg.waitld 0;

ACPY3_configure (dmaHandle, &tcfg, tcfgo);

ACPY3_start (dmaHandle);

How do we do this with LLD?
Let's start with an overview of LLD...

Well, this is actually NOT a review because we haven’t covered ACPY3 at all yet. However, this
will give you a sense of what the APIs look like if you decide to use ACPY3 for simple memory-
memory transfers with NO synchronization to peripherals.

You can see we’re using the same horizontal line transfer as before and the transfer params are
shown in the upper RH corner. With ACPY3, you define a transfer number (in this case 0) which
you can use to poll on to see if the transfer is finished later. You set up a list of parameters in a
structure called tcfg as shown. Instead of ACNT, BCNT and CCNT, ACPY 3 uses elementSize
(ACNT), numElements (BCNT) and numFrames (CCNT).

The dmaHandle is provided via DMAN3 (DMA Manager) which is not shown.
ACPY3 configure takes the parameters you specified and initializes the proper PSET with these
values. To start a transfer, use ACPY3_start with the dmaHandle.

Using ACPY3 is simple and straightforward. The benefits are that it is easy to use with relatively
few APIs to understand. The limitation is that you cannot sync a peripheral to any transfers using
ACPY3. The reason for this is that ACPY3 uses the QDMA which only supports asynchronous
(manual start) transfers.

Hopefully this gives enough of a sense of how ACPY3 works because we’re about to contrast it
to LLD which is lower level and has several more APIs because you have the ability to program
every bit and every feature of EDMA3 using LLD...

DSP/BIOS Integration Workshop - EDMA3 Low Level Driver 16 - 13

LLD Overview

What is the Low Level Driver (LLD) ?
What is LLD?

¢ LLD = EDMA3 Low Level Driver
¢ Implements sync DMA transfers, primarily used for device drivers

¢ Consists of libraries to manage the EDMA3 peripheral

+ Resource Manager (EDMA3 RM) '
Manages al EDMA3 hardware resources and interrupts
+ Driver (EDMA3 DRV)
Handles all EDMA3 configuration and resource (via RM) needs

Application Code
(device drivers)

I

LLD Driver (DRV) Resource Mgr (RM)

I

EDMAS3 Hardware

LLD is a set of libraries that allow you to program every feature and option of the EDMA3
peripheral. It is primarily used by driver authors to build I/O drivers that use EDMA3.
Application authors can also use LLD to manage transfers within their code. There are actually
two libraries — one for the LLD (DRV layer) and one that is more closely tied to the hardware
specification (RM).

Most calls you need to make are from the DRV layer. However, there are a few calls during early
initialization that are RM calls only. These will be clearly explained in a few more slides.

So, the device driver author or application author uses APIs to call the DRV layer which in turns
calls the RM layer to talk directly to the peripheral registers that configure the EDMA3 peripheral

registers and hardware.

If you are using framework components, i.e. ACPY3 and DMAN3...it looks like the following...

16-14 DSP/BIOS Integration Workshop - EDMA3 Low Level Driver

LLD Overview

LLD vs. ACPY3

LLD vs ACPY3

¢ LLD = EDMA3 Low Level Driver
Implements sync DMA transfers, primarily used for device drivers

Consists of libraries to manage the EDMA3 peripheral

+ Resource Manager (EDMA3 RM) '
Manages al EDMA3 hardware resources and interrupts

+ Driver (EDMA3 DRV)
Handles all EDMA3 configuration and resource (via RM) needs
¢ Co-exists with Framework Components (DMAN3, ACPY3)
+ Makes use of RM for resource management
+ UseLLD for device drivers, and ACPY3 for algorithm memcpy's

¢ o

Application Code Framework Components
(device drivers) (DMAN3, ACPY3)
LLD Driver (DRV) Resource Mgr (RM)
EDMA3 Hardware

ACPY3 uses the same resource manager (RM) that LLD uses. It makes sense because you
wouldn’t want driver authors and application developers and algorithms to request more
resources than the EDMAS3 has. All of these methods require you to request a channel and TCC
from the RM which can return an error code that allows you to manage resource allocation.

Again, as we’ve already documented, use ACPY?3 for algorithms and some application code
when the need is to only do a memory to memory transfer without synchronization. Use LLD
when synchronization, indexing, linking and chaining is desired.

The rest of this chapter is totally dedicated to using the LLD.

DSP/BIOS Integration Workshop - EDMA3 Low Level Driver 16 - 15

LLD Overview

ACPY3 Example
LLD Download and Setup

¢ The latest LLD can be downloaded from the following site:
https://www-a. ti.com/downloads/sds_support/TargetContent/psp/edma3_lld/index.html

After download, you'll need to add the following libraries to
your project to use LLD:

+1-[27 Include

-1-3 Libraries
edma3_drv_bios.lib
edma3_dry_bios_sample.lib <-==:=+ Two of these libraries are device-specific. Add

edmaz_rm_bios.Jb <= the library from the correct“DEVICE” directory.

[lld_root]\packages\tisdo\edma3\drAib\Debugledma3 drv_bios.lib
[lld_root]\packages\thsdo\edma3\rm\ib\DEVICE\Debug\edma3_rm_bios. lib

[lld_root]\packages\tisdo\edma3\drisamplellib\DEVICE\Debug\edma3 drv_hios_sample.lib

¢ These libraries require the following header files:

edma3_drv.h /I LLD header fie
bios edma3 drv_sample.h // OS-specific and device-specific header file

Sometimes, just getting all of the stuff (libraries, header files, etc.) in the right place can be the
most frustrating part of the effort to get any software or library to work properly. When we first
started working with the LLD, this was one of the more difficult hurdles to get over. This slide is
probably a culmination of man-weeks of effort — but it boils down to just these few items.

LLD is part of a bigger package of content called PSP (Platform Support Package) which is a
bundle of already created drivers for various peripherals and devices. The link to the latest LLD is
shown (note: the latest version at the time of this writing was version 6 — there might be newer
versions available now). You will need to sign up with a userid and password, but that’s typical.
Download the software and place it in an obvious directory — our preference is C:\TI\. But you
can use whatever you like.

LLD uses the DSP/BIOS RTOS within the libraries. The location of each library is shown on the
slide above. You will need to add three libraries to your project to get your code to work properly.
As previously stated, two of them are quite obvious — the drv and rm libraries. The one that is
WAY NOT obvious is the _sample.lib. At first, you think “sample” means it is like an “example”
library. Bad naming convention and this one thing spun the authors of this chapter into la-la land
for way too long. In the LLD world, SAMPLE = DEVICE. This is the device-specific library that
describes the actual hardware on the chosen device —i.e. 6455, 6437 and 6747 (or whatever
devices are supported). This one piece of knowledge will save you hours if not days. You’re
welcome.

As always, libraries require header files. Those are listed at the bottom of this slide.

16 - 16

DSP/BIOS Integration Workshop - EDMA3 Low Level Driver

LLD Configuration and Initialization

LLD Configuration and Initialization

Example Code — ACPY3 vs. LLD

Async Copy (i.e. memcpy) Comparison

ACPY3 LLD

#define tcfg0 0 //set xfer config numb. || EDMA3_DRV_create (...);
hEdma = EDMA3_DRV open (...);

ACPY3_Params tcfg; EDMA3_DRV_requestChannel (hEdma, Chan, Tcc, ...);
tcfg.srcAddr = loc_start EDMA3_DRV_setSrcParams (hEdma, Chan, Srg, ...);
tcfg.dstAddr = loc_end; EDMA3_DRV_setDestParams (hEdma, Chan, Dst, ...);
tcfg.elementSize =4; [/Acnt EDMA3_DRV_setTransferParams(hEdma, Chan, Acnt,
tcfg.numElements = 1; /Bent Bent,
tcfg.numFrames =1; liCcnt Ccent, 0, 0); //0,0will be discussed shortly
ACPY3_configure (hDma, &tcfg, tcfgo);
ACPY3_start (hDma); EDMA3_DRV_enableTransfer (hEdma, Chan, Manual);
ACPY3 LLD
+ Uses a config struct and an ¢ Uses separate APIs to init
_config APl to initialize the config structure
¢ Supports scratch resources ¢ Does not support scratch resources
¢ Typicallyused in algorithms ¢ Typically usedin drivers

Let'slook more closely at the LLD code...

The goal here is to draw a parallel or comparison between how ACPY3 works and LLD — and
how the APIs from each library line up. Some of similar and some are different. If you think
about ACPY3 being a higher level interface — fewer APIs and based on structures — and you think
LLD is “lower level” and gives you more options which means more APIs, then you have a sense
of how they differ.

We’ve seen a similar example of the ACPY3 code before. You define a structure with the
parameters you want, configure it (write the values to the hardware) and then manually start it
with _start. Done.

For LLD, you have a few more APIs to accomplish the same thing. First, create and open are
used to eventually provide a handle to the EDMA3 hardware. You then request a channel (get a
channel ID) that you use for the rest of the initialization. Instead of using a structure, LLD has
separate APIs for SRC address, DST address and count values as shown on the slide. To trigger
the transfer, you use _enableTransfer and the type of transfer you prefer — manual (async start) or
SYNC (sync’d start). You will see these LLD APIs more in future slides.

For simple async transfers (which is shown above), LLD doesn’t look too exciting. However,
once we probe into more capabilities of the EDMA3, the power you have as a programmer will
become apparent.

DSP/BIOS Integration Workshop - EDMA3 Low Level Driver 16 - 17

LLD Configuration and Initialization

Example — LLD (async transfer)

Basic LLD Example (async transfer)

Setup | EDMA3 DRV_create (edma3instanceld, global Config, (void *)&miscParam);
LLD = hEdma =EDMA3_DRV_open (edma3instanceld, (void *) &initCfg, &edma3Result);

Allocate EDMA3 DRV_requestChannel (...);
Resources

Configure | EDMA3 DRV_setSrcParams (...);
Channel EDMA3 DRV_setDestParams (...);
EDMA3 DRV_setTransferParams(...);

Start EDMA | EDMA3 DRV _enableTransfer (...);

_create() allocates an instance of the LLD library

_open() assigns resources toa specific user handle (.e. hEdma)
_requestChannel() allocates a channel id from a pool of channels or LINK PSETs
_setXyzParams() initializes the PSET with values

_enableTransfer() starts the transfer (or sets up event sync)

olo|o o o

Let'slook in more depth at _create() and _open() ...

This example shows the set of APIs to program an EDMA3 transfer using LLD. Of course, not all
of the parameters are shown — we’ll get into more details soon. If you look at the left top of this
slide, you can see it broken into 4 pieces — Setup (getting a handle to the EDMA), Allocating
Resources (channel id and TCC value), Configuration (setting the src/dst, count values and other
options) and Start triggers the execution to occur.

On the next few slides, we’re look more in depth at the create and open APIs...

16 - 18 DSP/BIOS Integration Workshop - EDMA3 Low Level Driver

LLD Configuration and Initialization

Setting Up the LLD (_create API)

Setting Up LLD

EDMA3 H/W Resources

Instance of LLD module

Chan’s

PSETs

A"
TCCs

Chan’'s|[PSETs|| TCCs

globalConfig structure

EDMA3_DRV_create (Instanceld, globalConfig, ..
+ Creates aninstance of the LLD module
¢ Assigns EDMA3 hardware resources as described in

)

We start with the actual devices resources on the left-hand side: channels (or events), PSETs
(Parameter RAM sets) and TCCs (transfer complete codes). These are actually the physical
hardware resources on your device. _create creates an instance or copy of these resources based
upon the globalConfig structure for your specific device. From this instanceid, using the open

API, we can receive a handle to the EDMAS3 resources.

DSP/BIOS Integration Workshop - EDMA3 Low Level Driver

16 -19

LLD Configuration and Initialization

Sidebar - _create Details

Setup LLD Libraries: EDMA3 DRV create()

uint32 edma3instanceld = 0; // Instance # of LLD (flexible, in case chip has >1 EDMA3)

/I EDMA3 features spedific to your device (e.g. found in bios_edma3_drv_sample C6455_cfg.c)
extern EDMA3_DRV_GblConfigParams sampleParams;
EDMA3_DRV_GblIConfigParams *globalConfig = &sampleParams;

Il Specifies sharing of EDMA3 between CPU’s
EDMA3_DRV_MiscParam miscParam,;
miscParam.isSlave = FALSE; // ARM+DSP = specify if master; single-CPU = use FALSE

EDMA3 DRV _create (edma3instanceld, globalConfig, (void *) &miscParam);

/' Next slide examines the open function
hEdma = EDMA3 DRV_open (...),

¢ You must first create and open DRV, before you can use LLD
+ Create alocates an instance of the LLD library
« Open assigns (subset of) resources to a specific user handle (i.e. hEdma)
¢ LLD can be instantiated multiple times, in case processor’s ever have multiple EDMA's;
since al processors today only have one EDMA, use instanceld =0
+ globalcfy structure lists all EDMA3 h/w resources for your specific device (# of: pset’s,
tec’s, etc.); device specific sample (i.e. default) libraries are included with LLD

This code can basically be copied as is. The init code for any library can sometimes be a little
bothersome and cause more questions than answers. The _create API requires 3 parameters: (1)
edma3Instanceld (which is a return value); (2) globalConfig (which contains the specific
resources on your device); (3) miscParam structure (which defines if this EDMA is a master or
slave).

The instanceld is basically a handle to the instance of the LLD library for your specific device.
The contents of your specific EDMA3 (PSETs, events and TCCs) are found in the

_sample DEVICE cfg.c file as shown in the comment — in a structure called sampleParams.
Remember, sample is a poor name — and that sample = DEVICE. Kwirky but true. Confusing, but
true. That’s how the globalConfig structure gets initialized and finally used in the create API. If
you had more than one EDMA3 on your device (which is rare if nonexistent), you might have one
instanceld pointing to one EDMA3 and another instanceld pointing to the other EDMA3.

The miscParam structure only has one element we care about - .isSlave. Most processors that are
single core (i.e. NO ARM + DSP) will use the value FALSE.

That’s it. _create is done. We will use the instanceld along with the open API which is discussed
next.

16 - 20 DSP/BIOS Integration Workshop - EDMA3 Low Level Driver

LLD Configuration and Initialization

LLD - _open API

Setting Up LLD

Instance of LLD module

EDMA3 H/W Resources

\
Chan’s||[PSETs|| TCCs

ol . ey
EDMA3 DRV create (Instanceld, gobalConfig, ...); Detailed \f
Chan's|| PSETs|| TcCs _DRV_create (g 0. (e ey

¢ Creates aninstance of the LLD module

¢ Assigns EDMA3 hardware resources as described in
globalConfig structure

Instance of LLD module

hEdmaE =EDMA3_DRV_open (Instanceld, &initCfg, ...);
T e Open creates a handle to EDMA3 resources
+ initCfg specifies which resources to give to handle

+ More than one hande can be opened, but each will
contain different resources

Chan's|[PSETs|[TCCs |

Notes:

¢ LLD’s Device specific “sample” libraries contain a “default” version of globalConfigand initCfg
structures which can be used to give all EDMAS3 resources to _create() and _open()

¢ Ifsharing EDMA3 between CPU’s (i.e. ARM & DSP), then these structures would need to be modified

The create API is a copy of the entire set of resources on your specific device. With _open, you
can assign all of these resources (which is done the majority of the time) or a subset of these
resources. So, you could have multiple hEdma handles to different resources of one EDMA3
peripheral. initCfg would then need to be modified if multiple handles are requested. However,
the most common use case is to assign them all to one EDMA handle.

More details on the code follow...

DSP/BIOS Integration Workshop - EDMA3 Low Level Driver 16-21

LLD Configuration and Initialization

LLD - _open Details
Setup LLD Libraries: EDMA3 DRV_open()

I EDMAS3 features (PARAM sets, channels, TCCs, etc.) to be owned by your handle (hEdma)

Il Start with device specific sample config, then edit as needed

Il Default configurations found in ‘sample’ libraries (e.g. bios_edma3_drv_sample_C6455 cfg.c)

extern EDMA3_DRV_InstancelnitConfig samplelnstinitConfig)]
EDMA3_DRV_InstancelnitConfig *instanceConfig = &samplelnstinitConfig;

EDMA3_DRV_InitConfig initCfg;

initCfg.isMaster = TRUE; Il Single-CPU processor, choose TRUE
initCfg.regionld = 1 /I Pick “1”, unless you use mem protection
initCfg.drvSemHandle = &0sSem; Il Pass BIOS semaphore to LLD

initCfg.drvinstinitConfig = instanceConfig; // Device-specific configuration extern’d above

hEdma = EDMA3_DRV_open (edma3instanceld, (void *) &initCfg, &errorReturn);

¢ You must first create and open DRV, before you can use LLD
+ Create allocates an instance of the LLD library
+ Open assigns (subset of) resources toa specific user handle (i.e. hEdma)

initCfg - Init config tells LLD how we plan to use the handle it returns
+ Will this handle be the EDMA3 master when using EDMA3 with multiple CPUs?
+ Most users choose region “1” (see Sidebar - EDMA3 Regions for more info)
+ LLD uses Semaphore as a mutex when allocating resources; create the sesmaphore
using your O/S, then pass handle to LLD; (ex. create SEM using BIOS config tool)
+ InstinitConfig — what resources are assigned to our region (and handle); start with
the device defaults (LLD's sample library), then edit if necessary.

_open has three parameters: (1) instanceld which was created with the create call; (2) initCfg
which specifies the resources allocated to our EDMA handle (hEdma); (3) a return error code.
The resources assigned to initCfg again come from the “sample” code found in

_sample DEVICE cfg.c. Yes, poor naming again, but there you go. Also within the initCfg
structure, you must specify isMaster (typically TRUE), regionld (use “1” as a default — more on
regions in a few slides), a semaphore used as a mutex for resource protection within the driver,
and the instanceConfig which contains the device-specific resources.

The result is a handle to the EDMAZ3 resources that your future LLD APIs will access, configure
and use.

16 - 22

DSP/BIOS Integration Workshop - EDMA3 Low Level Driver

LLD Configuration and Initialization

Setting Up LLD — Options
Setting Up LLD

Instance of LLD module

EDMA3 H/W Resources

\
Chan’s||[PSETs|| TCCs

EDMA3 DRV create (Instanceld, gobalConfig, ...); Detailed View
Chan’s|{PSETs|| TcCs _DRV_create (g g.) (el

¢ Creates aninstance of the LLD module

¢ Assigns EDMA3 hardware resources as described in
globalConfig structure

Instance of LLD module

hEdmaE =EDMA3_DRV_open (Instanceld, &initCfg, ...);
ChansPSETs TCCS mmmmmET o Open creates a handle to EDMA3 resources
+ initCfg specifies which resources to give to handle

+ More than one hande can be opened, but each will
contain different resources
Il N I IS I IS D I D S S S S B S -

Bottom Line:
Rule of LLD configuration: Most common use case, though, is:
H/W = LLD Instance = hEdma H/W = LLDInstance = hEdma

As you can see, this has been a build up to this final slide which has all the init APIs together and
the common use case specified. In the bottom line area, the first equation should read:

H/W >= LLD Instance >= hEdma

For some reason, PowerPoint played a trick and wouldn’t show this properly. In other words, the
instance (copy) of the hardware will be the same or smaller than the actual hardware on the
device (by modifying the cfg.c file and thereby changing the sampleParams structure). In the
same way, hEdma could point to only a subset of the resources contained in the instanceld by
modifying the samplelnstlnitConfig structure in _cfg.c file.

However, the most common use case is to NOT modify these files and have the hEdma handle
point to ALL of the resources. And, that’s what the authors did when they built the examples that
you have access to.

DSP/BIOS Integration Workshop - EDMA3 Low Level Driver 16 - 23

LLD Configuration and Initialization

EDMA3 Regions — Sidebar
Sidebar - EDMA3 Regions

¢ EDMA3 regions protect resources between various users
+ Eight regions (i.e. users) are provided by EDMA3

+ Region 0 provides access to all regions — supervisor level
(not supported by LLD)

» Remaining regions (1-7) provided for users
¢ You assign different EDMA3 resources (PARAM sets, TCC's, etc.) to each ‘user
Each region hasit's own associated CPU interrupt event signal

2

+ |If using C64x+ memory protection features, regions also extend this protection
to memory transfers initiated by the EDMA3

¢ Ifa‘user accesses resources (or memory) assigned to a different user, thenan
interrupt exception is generated

¢ When using LLD, it is recommended that you select Region 1, unless:

+ You are implementing memory protection and need to create additional handles
for each user

+ Youare using LLD for different CPUs on the same device; by assigninga
different region (and resources) to each CPU, you can generate exceptions if
one CPU tries to access another’s resources

Sidebars are usually for extra details that you may or may not find interesting or helpful. In a
complex system that uses exception handling and multiple CPUs accessing the same EDMA3
peripheral, regions are extremely important. Otherwise, you can use Region 1 and be just fine.

The text above says just that, so we’ll just let it speak for itself.

16-24 DSP/BIOS Integration Workshop - EDMA3 Low Level Driver

LLD Configuration and Initialization

Allocating Resources and Config Init

T

(xfer config)

Options
Source
B | A
Destination

Index
Cnt Reload | Link Addr
Index Index
Rsvd Cc

Allocating Resources and Config Init

Instance of LLD module

hEdma

Chan’s|| PSETs|| TCCs
L 1‘
| Channel| | TCC]

EDMA3 DRV _requestChannel (hEdma, &Ch, &Tcg, ...);
Assigns channel id and TCC resources

EDMA3 DRV_setSrc/DestParams (hEdma, Ch, SrcAddr/DestAddr, ...);
¢ Sets Src and Dest addresses for this transfer

EDMA3 DRV _enableTransfer (hEdma, Ch, TRIG_MODE_MANUAL);
+ Starts the transfer with the mode select (MANUAL or TRIG_MODE_EVENT);

Note: similar APIs exist to set the INDX values (shown later)

EDMA3 DRV _setTransferParams (hEdma, Ch, ACNT, BCNT, CCNT, BRLD, SYNC_AB);
+ Initializes the count values and synchronization method (covered later)

The APIs shown allow you to: (1) request a channel and TCC resources; (2) set the Src/Dst
parameters; (3) set the count values and type of sync used (A or AB); (4) start the transfer either

manually (async) or via a trigger (event sync).

We will address each of these in detail throughout the following example code.

DSP/BIOS Integration Workshop - EDMA3 Low Level Driver

16 - 25

LLD — More Events, Transfers and Actions

LLD — More Events, Transfers and Actions

LLD Provides More E-T-A Options
T

(xfer config)
Options

Source : 3 1[2]3]4]5]6
BD n‘at'A 71 8] 910]11]:2
e SN e wovieop; 1314]15[16[17|18
E hdex_ A ‘ 19] 20| 21]22| 23]24
(event) m:nF;Zi?ad L'ngd' (action) ' i 25[26[27[28[29[30
Rsvd c 1 ke
¢ New Events ¢ Examplesto follow...
+ Evt Sync (sync to periphs) + Evt Sync (A-sync, AB-sync)
+ Chain (prev Ch triggers Ch to run) + Interrupt Generation (to CPU)
& New Transfer (Cfg Options) * Linking

Chaining

+ Channel Sorting (L/R sorting, etc.) Channel Sorting

¢ New Actions
« Generate Interrupt to CPU
+ Link (auto-reload of new PSET)
+ Chain (triggernext Ch to run)

This is somewhat of a review of what we’ve seen before, but it does set the stage for the

following set of slides which will go through programming many of the common features and
capabilities of the EDMA3.

Events trigger transfers to start — this can be done manually (like an async start) or via an event
which could be either a peripheral sync or a chaining event (covered later).

Transfer options include using indexing to channel sort incoming data — again, covered in an
example later.

Actions refer to what happens when the transfer completes — either generating a CPU interrupt,
linking to another PSET (auto reload) and/or chaining (triggering another channel to run).

In the following slides, we plan to cover each one with the theory/methodology of the concept
followed by example code showing how it works with the LLD APIs.

16 - 26 DSP/BIOS Integration Workshop - EDMA3 Low Level Driver

LLD — More Events, Transfers and Actions

“Event” — Event Synchronization

Event Sync — “Event” — Overview
T

(xfer config) @
T :.-

Source A i 1]2]3]4]s]s

BD tilarA ; 7 18] 9]10[11]12

s appestination L. rannannapt 13|14] 15[16]17[18

Index }
E Cnt Reload | Lirk Addr A i 19120121122123|24
(event) Index Index (action) i 25]26] 27) 2829} 30
|__Rsvd C
¢ Need: sync xfr to “Evt” ¢ A-Syncvs. AB-sync
+ Ex1: peripheral ready (DRR on McBSP) + User can choose to transfer ACNT bytes
or ACNT*BCNT bytes per Evt

+ Ex2: GPIO pin going low

. . « Ex:ACNT=1,BCNT=4
Solution: use Evt Sync to trigger xfr X

A-SYNC (one Evt per ACNT bytes):

¢ Concept:
Byt Syno ses a ‘rigeer Evtocatse T pERIPHY
the xfr to occur (such as a peripheral E [11]

register, e.g. DRR, being ready to read)

+ How many element(s) should be transfered AB-SYNC (one Evt per ACNT*BCNT bytes):

per event? ACNT or ACNT*BCNT? Evt . .
+ The answer depends on the type of nnmm MEM

peripheral/memory being used...

Most peripherals (if not all) have a sync event tied to the EDMA. Just like most peripherals have
an interrupt source that you can use to interrupt the CPU, sync events trigger the DMA to execute
a transfer. This transfer could simply be a single data item or multiple values or an entire block of
memory. Typical sync events would be the DRR register of the serial port being “ready” to read
or a GPIO pin going low. Refer to your datasheet for the specific list of sync events on your
device.

You have a choice to transfer ACNT bytes (A-sync) or ACNT * BCNT bytes (AB-sync).
Usually, peripherals require A-sync transfers because they are limited in size (e.g. the serial port
can’t provide 16 32-bit data values at one time — it is normally one 16-bit value). AB-sync is used
in various ways, but primarily for blocks of data with one single event that transfers the entire
block (GPIO pin goes low, transfer A*B to this dest, etc.). The good news is that you can
architect this any way you like as a programmer.

If you view the example and the diagrams that go with it, you can see that A-sync moves ACNT
bytes (in this case one byte) per event. Using AB-sync, the entire line (ACNT * BCNT) is moved

per event. ABC-sync does not exist.

In the following slide, we’ll look at how you program this transfer using the LLD APIs.

DSP/BIOS Integration Workshop - EDMA3 Low Level Driver 16 - 27

LLD — More Events, Transfers and Actions

Event Sync — Code Details

Event Sync — Details and Code

Goal: loc_8 (bytes)

1] 2]3]4]s]s6 myDest: 8
Transfer 4 elements from loc_8 7] 8] 9J10[11f12 9
to myDest (memory) when GPIO0 iz ZJ‘ ;i ;‘Z ; ;i r—> icl)
goes low (one Evt to start xfr): 51261271281 291 30
<« 8 bits =
¢ Details ¢ Code to make this happen:
+ Each Chhas a specffic Evt tied to it + Request Channel (get Ch w/GPINTO tied to it):
(excerpt from SPRU987, Table 2-5): _requestChannel (hEdma, ..._GPINTO, ...);
Can Eret, pEon |+ choseyseotsyohoras)
33 GPINTL GPIO 1 Interrupt _setTransferParams(..., ..._SYNC_AB);
] + Start transfer with “EVENT" mode:
+ We've used a customenum for this _enableTransfer(..., ...TRIG_MODE_EVENT);

(symbalic vs. using the number 32):

EDMA HW EVENT GPINTO, ¢ Notes:
. Irgnsfer starts V\S/fhen %;PIOO Evt occ_ldqrs. All
. ' ytes are transferred to myDest with one
Corque Requtlrgrr?snts don Evt # event (due to AB-sync).
* Reques aseaon + Choose A-sync if myDest is a peripheral
+ Choose A- or AB-Sync e.g. the McBSP (DXR).
« Start xfr with “Sync” mode

This is the same example we looked at before. However, the only change is that we want to
transfer the horizontal line when GPIO0 goes low (event triggered).

Each event has a specific channel (0-63) tied to it. Each device will have a slightly different list of
events and channel numbers — so refer to your datasheet for the specifics. The example shown is
for the ‘C6455 device. The authors of this chapter used enums in a file to make it easier for the
user (and us) not to make a mistake (you can see this in the downloadable examples).

Once you know the event you want, use that event name in the _requestChannel API so that the
exact channel with that event tied to it will be returned.

Next, you need to choose the type of sync mode — A or AB. In this example, ACNT = 1, and we
want to transfer ACNT * BCNT with one event, so AB-sync is specified. Also, we’re transferring
memory to memory, so typically AB-sync is used for this.

There are two ways to start a transfer — manually and via a sync event. The enumeration for this
value is symbolically shown as “TRIG_ MODE_EVENT” using the _enableTransfer API. So, you
can set all this up in your initialization code and the transfer will not occur until the GPIO0 event
occurs.

16 - 28 DSP/BIOS Integration Workshop - EDMA3 Low Level Driver

LLD — More Events, Transfers and Actions

Action — EDMA3 Interrupt Generation

Interrupt Generation — “Action” - Overview
T

(xfer config)
Options

5 SourceA f - 11213 4I5I6

L i 78 To10[11]:2

.............’%‘mmm P [T Y G K6 G

E Crt Rel eXLinkAddr A i 19[20]21]22]23[24]

(event) ndex ndex (action) 25]26]27] 282930
Rsvd c Lo

¢ Need: Generate CPU Interrupt when EDMA completes transfer
¢ Solution: Turn on EDMAZ interrupt generation

& Notes:

+ User has option to interrupt the CPU after the entire transfer is complete or
after every “intermediate” transfer (ACNT for A-sync, A*BCNT for AB-sync).

«+ User can respond to the interrupt in several ways:
« by setting up a hardware interrupt (HWI_INTx) to call an ISR/handler

« by polling the EDMA interrupt pending register (IPR) — best done using the
_check() or _wait() LLD functions to (one-shot test or poll, resp.) the IPR bit

How is the EDMA interrupt generated?

Our goal here is not to discuss everything you need to know about CPU interrupts — that’s a topic
that takes some time to understand. However, the plan is to show you the overall stream of events
to that you understand the big picture. More study might be required to grasp all of the details
necessary to correctly program interrupts on your device.

We are now moving on to the “A” or “Action” part of the above diagram. Do you want to
interrupt the CPU when the transfer is complete? If so, the EDMA and the LLD APIs support
this. You have a choice of either interrupting the CPU after every ACNT bytes is finished in an
ACNT * BCNT (AB-sync) transfer (this is called intermediate interrupts) or you can wait until
the entire transfer is complete to generate an interrupt.

In the code review, we will examine the APIs to set up interrupts in the EDMA.

DSP/BIOS Integration Workshop - EDMA3 Low Level Driver 16 - 29

LLD — More Events, Transfers and Actions

EDMA Interrupt Generation

EDMA Channels EDMA Interrupt Generation
Channel # Options TCC IPR IER

0o ey aFR B
TCINTEN=0 TCC=0 IERg=0

1 o/c a D——@———O/D——
TCINTEN=0 TCC=1 IER1=0 EDMA3CC_INT1
e
TCINTEN=1 TCC=14 L -
ERy,=1
63 o/c a D——@———O/D——
TCINTEN=0 TCC=63 IERg3=0
4
|
| |TCINTEN I:I Tcc | IPR—EDMAInterruptPendingRRegisterrsset bKTCCEJ
20 17 12 IER — EDMA Interrupt Enable Register (NOT the CPU IER)

¢ There is only ONE EDMA interrupt for 64 channels (need a wayto handle this)
¢ TCINTEN (Options Reg) must be set to “1” or “EN” (default is “0” or “DIS”)

< If TCINTEN=1, then when a xfer completes, a flag bit in the IPR register is set -
which IPR bit gets setis determined by the TCC (Transfer Complete Code)
field init's OPTIONS register

+ |If the Interrupt Enable Register (IER bit in the EDMA) is enabled, an interrupt
(EDMA3CC_INT1)is sent to the CPU

This picture shows how EDMA interrupts are generated. Even though you have 64 or more
channels that could cause an interrupt, there is only one EDMA interrupt for all channels. The
EDMA interrupt dispatcher will poll the IPR bits to determine which channel fired and call the
appropriate interrupt service routine.

This is the first time we’ve seen the OPTions register. This register contains several bits that
control the behavior of the transfer — including interrupts. The TCINTEN bit determines whether
the IPR (interrupt pending register) will be set or not. The IPR is a flag that operates similar to the
IFR bit on the CPU. Which IPR bit is set is determined by the TCC value for that transfer
configuration. Most of the time, the channel # and TCC are the same, but that is not always the
case.

So, when a channel completes (or if intermediate interrupts are selected), it will set the
corresponding IPR bit (based on the TCC value in the configuration). If the EDMA IER bit is set
as well, this generates an interrupt to the CPU.

The interrupt may not be taken due to other factors (it might be masked or all CPU interrupts are
turned off). However, assuming the CPU interrupts are set up properly, this signal will interrupt
the CPU.

This slide discusses how an EDMA interrupt is generated. Next, we’ll provide a brief overview of
what happens after this interrupt fires and how the CPU responds to it....

16 - 30

DSP/BIOS Integration Workshop - EDMA3 Low Level Driver

LLD — More Events, Transfers and Actions

EDMA3 — CPU Interrupt Generation
EDMA ? CPU Interrupt Generation

1. Aninterrupt occurs 2. CPUIFR set, IER bit? 3. CPU HWI_INT5 Selector
* CPU IFR gets set when int HWI_INT5 Properties
§ EDMA3CC_INT1 (#36) occurs (flag) —
+ If comesponding CPU IER [TS T
bit is set, interrupt reaches
the CPU interupt selection number: |36
= function: _lisrEdma3ComplHandler0
4. CPUHWI Dispatcher (ON) 5. EDMA Interrupt Dispatcher 6. ISR (interrupt handler)
LTS s e Read all 64 IPR bits void edma_isr (void)
Genera Determine which one is set {
W' Use Dispatcher Call callback function Sl e

g [wowooooo (tccCb = edma_isr) p= }

EDMAS3 Interrupt occurs (INT1 from previous slide)

CPU IFR (flag bit) is automatically set If the CPU IER bit is enabled, int reaches CPU.

ISR for _INT5 is the EDMA interrupt dispatcher and EDMA3CC_INT1 is interrupt #36.

CPU interrupt dispatcher saves/restores appropriate context for ISR.

EDMA Int Dispatcher checks EDMA3's IPR bits, calls tccCh corresponding to that IPR bit.

ISR runs and returns. Let's look at some code to make this work...

This slide shows the events that take place when an interrupt occurs and how the CPU processes
that interrupt.

First, the interrupt occurs (i.e. the EDMA generates an interrupt). When this occurs, the CPU
automatically sets a flag bit to indicate an interrupt fired. If the corresponding CPU IER bit is set,
the ISR is called.

With most interrupts, the ISR is called, context is saved and the interrupt runs. However, using
the EDMA, we must determine WHICH channel triggered the interrupt (it could be one of 64
channels). So, in step 3 above, you can see that we are calling an interrupt handler to read the IPR
bits to determine which bit was set and then call the appropriate ISR for that channel.

In the LLD, you need to set up a “callback function” for the channel you are using. The LLD will
set up a table of functions that correspond to specific IPR bits and match the IPR bit found with
the function you desire. From a programmer’s perspective, all you need to do is specify the
callback function and the LLD does the rest. The only other piece you have to program is the
name of the handler shown in step 3 above. This is the LLD interrupt handler function name and
is required for processing any EDMA interrupts.

Next, we’ll examine the LLD code to generate an EDMA interrupt...

DSP/BIOS Integration Workshop - EDMA3 Low Level Driver 16 - 31

LLD — More Events, Transfers and Actions

EDMA Interrupts — Code Details

EDMA Interrupts — Code - Procedural

Select queue (priority of xfr), callback function (isr), set TCINTEN = EN as well as
clear IPR bit, set EDMA IER bit.

eventQ=0; Il Queue (0-2) that you want your channel tied to (for priority of xfr)
tccCb = edma_isr; // callback function for EDMA interrupt dispatcher to call when finished
_requestChannel (..., eventQ, tccCb, ...); Il clears IPR, sets|IER, queue, callback fxn
_setOptField (..., EDMA3_DRV_TCINTEN_EN); //sets TCINTEN =1

®

Enable CPU IER bit in main() to allow triggered interrupt to reach the CPU. For
HWI_INTS, the code would look like this:

| C64_enablelER (C64_EINT5), |

Tie HWI_INTx to proper interrupt source (EDMA3CC_INT1) and specify the
EDMA interrupt dispatcher (_lisrEdma3ComplHandler0) via HWI_INTx

Turn on CPU Interrupt Dispatcher to savelrestore ISR context via HWI_INTx

EDMA Interrupt Dispatcher checks IPR bits and calls tccCb (our own ISR)
corresponding to that IPR bit

®@ @® @

ISR runs and retums Click here to see atroubleshooting

checklist for interrupts/sync events...

The above shows the procedure for generating interrupts with the EDMA including setting up the
CPU interrupts.

In the requestChannel function, two of the parameters are the queue (there are 2-4 of them on
each EDMA) and the callback function (tccCb). As stated before, the callback function is the ISR
you want to run when this channel completes its transfer. The interrupt handler will initialize a
function table with the specified callback function associated with the TCC specified (which
defines the specific IPR bit to be set).

The programmer must also turn on the TCINTEN bit via the _setOptField API as shown. This
allows this specific channel to set the corresponding IPR bit properly.

The chosen CPU interrupt (INTS in the example above) must be enabled as well. Here, we are
enabling INT5 (the range is INT4-15 for user interrupts).

In the HWI (.tcf file), we have chosen to tie the interrupt source (EDMA3CC_INT], region 1
EDMA interrupt) to INTS of the CPU and set the function to the EDMA interrupt handler
function. In this dialogue box, we’ve also turned on the interrupt dispatcher to save/restore
context.

The interrupt handler then checks the IPR bits and calls the specified callback function for that
IPR bit. The ISR runs and then returns.

16 - 32

DSP/BIOS Integration Workshop - EDMA3 Low Level Driver

LLD — More Events, Transfers and Actions

EDMA3 — CPU Interrupt Generation

If your interrupt is not working properly, try steps 1-2 below to help indicate where the problem
lies. These two slides contain very handy info to help you debug your interrupt problem.

EDMA Interrupt Generation/Sync Checklist (1)

If your EDMA Interrupt is not working, here’s a quick debug checklist to go through:

1. Seta breakpaintin the interrupt service routine (i.e ISR). Did itget there?

2. Did the CPU’s interrupt flag bit (IFR) get set? (Hint, use CCS menu: View ? Register)

¢ Ifflag bitis set, then it's most likely a CPU interrupt setup problem, try
suggestions 3-5 on this slide.

¢ [Ifflag bitis not set, thenit's most likely an EDMA3 setup problem, try the
suggestions on the next slide.
Things to check regarding CPU interrupt setup:

3. Check the global interrupt enable (GIE). If using BIOS, exiting from main() will run
BIOS_start(), which turns on GIE automatically. Check bit zeroin CSR register.

4. |s the proper CPU IER bit set? Did you setit with the code:
C64 _enablelER (C64_EINTX);
5. In BIOS graphical Config Tool:

a. Check HWI_INTx properties (in BIOS config Pui) to make sure the proper
function (_lisrEdma3ComplHandler0) gets plugged into the vector table.

b. Make sure the HWI Dispatcher is turned on (checkbox in gui).

c. Check the interrupt selector to make sure the proper event (interrupt) as
mapped to the proper CPU interrupt (in .tcf HWI_INTX).

EDMA Interrupt Generation/Sync Checklist (2)

What to check regarding EDMAS3 interrupt generation to CPU:

6. Was the proper EDMAIER bit set? The following LLD APl automatically sets
the EDMA IER bit, but you mightwant to check the CC registers to verify:

_requestChannel (..., fcc, ..., tccCh, ...); [/ clears IPR, setsIER and callback fxn
7. In the EDMA Options register, did you enable the channel to trigger
an interrupt (TCINTEN) ? Is the proper TCC selected to set the proper IPR hit?
_setOptField (.., EDMA3_DRV_TCINTEN_EN); //sets TCINTEN =1
8. Is the sync event set up properly? (EER Register). The following API

automatically sets this bit, however you might want to look at the
CC registers to verify:

_enableTransfer (..., TRIG_MODE_EVENT); // settrigger mode to EVENT

DSP/BIOS Integration Workshop - EDMA3 Low Level Driver 16 - 33

LLD — More Events, Transfers and Actions

Action - Linking

Linking — “Action” — Overview
T

(xfer config) @
T :.-

Source £ i 1]2]3]4]s]s

B _1 A i 718] o101 12

E bmsl"Tr;“m A R 13|14] 15| 16]17] 18

Cnt Reload | Link Addr i 19§20/21{22123124

(event) | _Index | Index (action) i 25|26 27| 28|29 30
|__Rsvd C B

¢ Need: auto-reload channel with new config & How does linking work?

+ Ex1: do the same transfer again + User mustspecify the LINK field
+ Ex2: ping/pong system (covered later) in the config to link to angther PSET.
. L . + When the cument xfr (0) is complete,
+ Solution: use linking to reload Ch config the EDMA auto reloads the new
& Concept: config (1) from the linked PSET.
+ Linking two or more chanrels together alows Config 0 Config 1
the EDMA to auto-reload a new configuration
when the current transfer is complete. Nk L
» Linking still requires a “trigger” to start the
transfer (manual, chain, event). NULL

+You can link asmany PSETSs as you like —
it is only imited by the#PSETs on a device.

Let's see an example...

Your device has any where from 128-256 PSETs or sets of configuration parameters (8 32-bit
registers). 64 channels (on most processors) can be active at any one time. So, this leaves at least
another 64 “reload sets” or other configurations you can use to initialize or reload active channels.
The act of reloading a channel from a PSET is called “linking”. Each configuration has a “link”
address field (16 bits) that can point to another channel configuration.

Linking can be performed in order to reload the same transfer or a completely different transfer.
Often, systems employ a ping-pong buffering system. In this case, when the ping transfer is done,
the EDMA can auto reload the pong transfer and on and on it goes.

Don’t confuse linking and chaining (covered later) — they are completely different. Linking
reloads an active channel with a new configuration. Linking is NOT an event that will cause a
transfer to start. You still must provide an event — either a manual start or via a synchronization
event.

In the example on the slide above, you can see that channel “0” has its link field set to “1”. When
0’s transfer is done, the EDMA will copy the configuration from “1” into “0” and then wait for a

trigger to start the next transfer.

Next, we’ll look at the LLD code to configure linking on the EDMA...

16-34 DSP/BIOS Integration Workshop - EDMA3 Low Level Driver

LLD — More Events, Transfers and Actions

Linking — Code Details

Linking — Example — Code
0

Q
1[2]3]4]s]s — 8 1 i
7[8 [¢ [10]i]12 a 9 -~ tcfg, — tcfg, |-/
13|14{15|16(17|18 10
19]20]21|22|23|24 “h” 11
25[26]27]28]29] 30 Source = &loc_start
Transfer 4 bytes there, and back BCNT=1 | ACNT=4
Destination = &loc_end
. DSTBIDX =0 | SRCBIDX =0
_requestChannel (..., a, ...); e D
I € setuptcfga parameters here > LINK = b CCNT =1

_requestChannel (..., b, ...);

I € setuptcfgb parameters here >
_linkChannel (..., a, b); /inits LINK field of ‘a” to point to “b”
_enableTransfer (...,a, TRIG_MODE_MANUAL); //trigger 1% xfr
_waitAndClearTcc (..., a); / wait for “a” to complete and auto reload “a” with “b”
_enableTransfer (..., a, TRIG_MODE_MANUAL); // triigger 2 xfr

| For double-buffer system timing and ping-pong linking example — see optional topic at chapter's end... |

The example above shows a horizontal line being transferred to memory and then back again. So,
we have channel “a”, which is an active channel PARAM set with a configuration that will
transfer the line from the 2D array to memory. Configuration “b” is simply a reload PARAM set
(non active) which holds the configuration parameters for the transfer from memory back to the
2D array. The best way to view linking is that you have an “active” channel (a) and a “reload”
channel (b). The reload channel (b) is a configuration that is copied to the active channel and then
that channel is triggered again. So, we don’t actually trigger “b” to run as an active channel. It is
only used as a reload of “a”. If you review the LLD example on linking, you’ll notice that the
type of channel requested for “a” is a different type than channel “b”. (More details on this if you
open up the code examples).

When channel “a” completes, it reloads its configuration registers with the “b” configuration and
then waits for a trigger to start the transfer. In LLD code, we first perform a _requestChannel()
for the active channel “a” and set up its parameters. Then, we do the same for the reload PARAM
set “b”. _linkChannel() actually pokes the address of the “b” into “a”s link field. The first
_enableTransfer kicks off the first “a” transfer. waitAndClearTcc waits for “a” to complete.
When “a” does complete, it auto reloads or “links” to “b”. Actually, the contents of the “b”
configuration are copied into “a”.

The second _enableTransfer() triggers “a” to run again, but now it is configured with “b’’s
parameters instead — thus performing the transfer from memory back to the 2D array. Notice that
the “mode” of the transfer is “TRIG_ MODE MANUAL” which is a manual start vs. any type of
event synchronization.

DSP/BIOS Integration Workshop - EDMA3 Low Level Driver 16 - 35

LLD — More Events, Transfers and Actions

Action/Event - Chaining

Chaining — “Action” & “Event” — Overview
T

(xfer config) @
T :.-

Source A i 1[2l3lals]6
BD tilarA ; 7 18] 9]10[11]12
s appestination L. rannannapt 13|14] 15[16]17[18
Index }
E Cnt Reload [Link Addr A i 19120421} 22123 24
(event) Index Index (action) i 25]26] 27) 2829} 30
[__Rsvd c
¢ Need: Whenone transfer completes, trigger ¢ How does chaining work?
another transfer to run + Set the TCC field to match the next
« Ex ChXcompletes, kicks off Chy (ie. chained) channel #
Solution: Use chaining to kick off next xfr + Tum ON chaining .
+ Whenthe curent xir (X) is complete,
¢ Concept: it tiggers the next Ch (Y) to run

+ Chaining actually refers to both an action and

an event —the completed ‘action’ from the 1% ChX chy
channelis the ‘event for the next channel)
+ You can chain as many Chan's as you like - T Done? T
it is only limited by the #Ch's on a device RUN'Y oIS
+ Chaining does NOT reload current Chan config Chain EN Chain EN

—that can only be accomplished by linking. It
simply triggers ancther channel to run.

Let's see an example...

When you need the completion of one transfer to trigger another channel (or itself) to execute a
transfer, use chaining. It is not the most popular feature of the EDMA, however some systems
cannot live without it.

If chaining is enabled for channel X (as shown in the diagram) and channel X’s TCC field is set
to Y, when X completes, it will trigger Y to run.

Chaining refers to both an “Action” and an “Event”. The action that occurs when Ch X’s transfer
completes (when chaining is enabled) is that it triggers another transfer (Y) to run. This is also an
event synchronization for Ch Y.

Keep in mind that chaining does NOT reload or configure any channel parameters like linking
does. Again, these two features are completely separate. However, they can be used in
combination with each other (i.e. Ch X could trigger Y to run — chaining — and Ch X could link to
Ch Z and reload its registers from Ch Z when the transfer completes).

To enable chaining, you need to do three things: (1) enable chaining in the channel that will
CHAIN to another channel; (2) set the TCC value of the first channel to match the second
channel; (3) initialize (configure) both channel configurations before the first one is triggered.

16 - 36 DSP/BIOS Integration Workshop - EDMA3 Low Level Driver

LLD — More Events, Transfers and Actions

Chaining — Code Details

Chaining — Example — Code

© Q
1[2[3]a|5]6 —— 8 ; i
7]8] 9 [10[aa]12 /AX\‘ 9 - tcfgy — tcfgy [
13|14[15[16[17|18 10
19[20[21]22[23|24 wyn 11
25|26|27]28[29[30 \—/
Source = &loc start
Transfer 4 bytes there, and back BCNT=1 | ACNT=4
Destination = &loc_end
_requestChannel (..., X, ...); DSTBIDX =0 [SRCBIDX =0
DSTCIDX=0[SRCCIDX =0
/I € set up tcfgX parameters here > CCNT = 1

_requestChannel (..., Y, ...);
/I € set up tcfgY parameters here >

chainOpt.tcchEn = TCCHEN_EN; / this will turn ON chaining for ChX
chainOpt tcintEn = TCINTEN_DIS; // this will turn OFF ints for ChX

_chainChannel (..., X, Y, &ChainOpt); //pokes ChY id into ChX's TCC field

_enableTransfer (..., X, ...); //this triggers ChX xfr, which then kicks off (i.e. chains to) ChY

In this example, when Ch X finishes its transfer, it will trigger Ch Y to run. As before, you must
request two PARAM sets — one for X and one for Y. In this case, both channels will be “active”

channels.

In order for chaining to work, you must enable chaining in the configuration of the channel that
“chains” to another channel (so in this example, we must turn on chaining for Ch X). You can

also modify other OPTions register bits (e.g. interrupts) at the same time as shown in the

example.

Using the chainChannel() API, the channel id for the chained channel (Y in this case) is poked

into Ch X’s TCC field.

Then, channel X is triggered with _enableTransfer. When Ch X finishes, it triggers Ch Y to run.

DSP/BIOS Integration Workshop - EDMA3 Low Level Driver

16 - 37

LLD — More Events, Transfers and Actions

Transfer Config — Channel Sorting

Channel Sort — “Transfer Config” — Overview
T

(xfer config) @
T :.-

Source £ i 1]2]3]4]s]s

B s : 78] 9101122

E;%.mm.. A wereareapl 0} I B G i B

Cnt Reload | Lirk Addr i 191201211 22123 24

(event) | _Index | Index (action) i 25|26 27| 28|29 30
[__Rsvd C

¢ Need: De-interleave (sort) two (or more) ¢ How does channel sorting work?

channels + Usercan specify the ‘BIDX and ‘CIDX
+ Ex: stereoaudio (LRLR)into L & R buffers values to accompish auto sorting
¢ Solution: Use DMA indexing to perform PERIPH MEM
sorting automatically [0 EDMA Lml
¢ Concept: Eg BIDX / 2
+ Inmany applications, data comes from the RL |~ I CIDX I \ RO
peripheral as interleaved data (LRLR, etc.) 2 RT
+ Most algos that run on data require these R2 RO

channels to be de-interleaved

+ Indexing, built into the EDMA3, can auto-sort
these channels with no time penalty

Let's see how this works in more detail...

Channel sorting is the process of grouping together like data — for example, the Left and Right
channels of stereo audio. The audio comes through the serial port L0, RO, L1, R1...and what you
want to do is “sort” this data into separate “channels” such as L0, L1, L2, etc. and
RO/R1/R2...and so forth. The indexing capability of the EDMA allows you to easily channel sort
with NO overhead. The picture near the bottom right of this slide tells the story well.

Through a combination of ‘BIDX and ‘CIDX, you can easily sort data into 2 or more channels of
information.

The following slides take you through the math and concepts involved with channel sorting.

The LLD code to perform channel sorting is shown in one of our examples. It is basically a wise
use of the indexing capabilities of the EDMA.

16 - 38 DSP/BIOS Integration Workshop - EDMA3 Low Level Driver

LLD — More Events, Transfers and Actions

How Channel Sorting Works
How Channel Sorting Works (RCV only)

1 2 3 4 5 6 7 8 9 10
E
D
M
SRC nght 1

Frame #1 "

Given:

& Two channels: Left, Right BCNTACNT 2 2
+ Buffers each 10 ACNTslong | DST.BIDX.CIDX

¢ ACNT = 2bytes (audio) Src Addr McBSP
EDMA setup: Dst Addr Left

¢ To sort L/R data, we need to
set up EDMA with ACNT =2,
BCNT =2,CCNT =2

Assuming that the serial port provides you with data in this format: LRLRLR, the first sample
will be L0 and is placed at the top (or left in the diagram above) of “Left”. The next value needs
to jump the buffer size (in this case 10 16-bit locations) to get to the top of the “Right” channel.
Because this is audio, ACNT is 16 bits or 2 bytes. Because we have stereo audio (2 channels),
BCNT is also 2 (BCNT is almost always the number of channels you are sorting to).

So, the first L sample is transferred to its spot. Which index is employed to get from the top of the
left buffer to the top of the right buffer? When BCNT decrements, ‘BIDX is involved. So, after
transferring the first L value, we have to jump 10 spots (or 20 bytes) to store the first R value.

What would CCNT be in this application? We have 10 pairs of L/R data, so CCNT = 10. Quickly
do the math: ACNT * BCNT * CCNT =2 * 2 * 10 = 40 bytes. Is that right? 20 samples of 16-bit
L and R each — ok, that’s 40 bytes. Maybe we’re right for once.

DSP/BIOS Integration Workshop - EDMA3 Low Level Driver 16 - 39

LLD — More Events, Transfers and Actions

How Channel Sorting Works
1 3 4 5 6 7 & 9 10
E
D
M
SRC Right: | 1
<«<—>
2 bytes
Given:
Two channels: Left, Right BCNTACNT 2 2
+ Buffers each 10 ACNTslong | DST.BIDX.CIDX
¢ ACNT = 2bytes (audio) Src Addr McBSP
EDMA setup: Dst Addr Left
¢ To sort L/R data, we need to
set UP_EDMA W'th_'?‘)CNT =2, After EDMA writes Left[1]
BCNT =2, CCNT =7 how many bytes must be skipped to Right[1]

Ok, we’ve already covered the news on this slide. We know we need to skip 20 bytes from the
first L to the first R. Geez these people are slow... ©

Good question below...how do we get BACK to the left buffer for the L2 transfer?

How Channel Sorting Works
1 2 3 4 5 6 7 8 9 10
E
D
M
SRC Right: | 1
2 byt -
&s
= Frame 2
Given:
+ Two channels: Left, Right BCNT.ACNT 2 2
+ Buffers each 10 ACNTslong | DST.BIDX.CIDX 20
¢ ACNT = 2bytes (audio) Src Addr McBSP
EDMA setup: Dst Addr Left
¢ To sort L/R data, we need to
set up EDMA with ACNT =2,
BCNT =2, CCNT =2 How many bytes to go back to Left[2]?

16 - 40 DSP/BIOS Integration Workshop - EDMA3 Low Level Driver

LLD — More Events, Transfers and Actions

How Channel Sorting Works

¢ To sort L/R data, we need to
set up EDMA with ACNT =2,
BCNT = 2,CCNT =?

1 3 4 5 7 8 9 10

E

D

M

A Left: 1

SRC Right: | 1
2 byt -
€s .,
= Frame 2

Given:
Two channels: Left, Right BCNTACNT 2 2
+ Buffers each 10 ACNTslong | DST.BIDX.CIDX 20 -18
¢ ACNT = 2bytes (audio) Src Addr MCBSP
EDMA setup: Dst Addr Left

What is CCNT ?

Ok, sneaky thought here. We have two indexes: ‘BIDX and ‘CIDX. When BCNT decrements to
zero, CCNT gets decremented by one (this is at the point where the R1 value has been transferred
in the diagram below. Now, how do we get BACK to L2 placement? When CCNT decrements,

‘CIDX is employed.

If you go back an entire buffer minus one data item (let’s see, buffer is 20 bytes minus one 16-bit
value is, uh....., 18 bytes) — going back 18 bytes is a -18 for ‘CIDX. Beautiful. We do that 10
times and our channel sorting (not snorting) is complete.

What is CCNT? We already figured that out — it’s 10. 10 I tell you. Again, these people are

S—L—O—W.

DSP/BIOS Integration Workshop - EDMA3 Low Level Driver

16 -41

LLD — More Events, Transfers and Actions

How Channel Sorting Works
1 2 3 4 5 6 7 &8 9 10
E
D
M
A Left: § 1§ 2
SRC Right: | 1
2 byt -
€s .,
= Frame 2
Given:
Two channels: Left, Right BCNTACNT 2 2
+ Buffers each 10 ACNTslong | DST.BIDX.CIDX 20 -18
¢ ACNT = 2bytes (audio) CCNT! 10
EDMA setup: Src Addr McBSP
¢ To sort L/R data, we need to Dst Addr Left
set up EDMA with ACNT =2,
BCNT = 2,CCNT =10 ACNT * BCNT * CCNT = 2* 2 * 10 = 40bytes

Yep — and we already did that math 4 weeks ago. Then it goes on an on until the xfr is done. Got
it. BCNTRLD is also necessary because the transfer controller knows ACNT implicitly, but not
BCNT. If you have an A*B transfer and BCNT is greater than one, you have to specify the BCNT

RELOAD value (which is just BCNT again).

Counter Reload

E
D
XI Left: | 1 | 2
Right: | 1 [2
What happens when BCNT goes
to zero? BCNT.ACNT 2 2
, . e DST.BIDX.CIDX 20 -18
There’s aregister for this -, BCNTRLD.LINK 2
CCNT 10
Src Addr McBSP
Dst Addr Left

16 - 42 DSP/BIOS Integration Workshop - EDMA3 Low Level Driver

LLD — More Events, Transfers and Actions

Given:

¢ Two channels: Left, Right
¢ Buffers each 10 ACNTSs long
¢ ACNT = 2bytes (audio)

EDMA setup:

¢ To sort L/R data, we need to
set up EDMA with ACNT =2,
BCNT = 2, CCNT =10

BCNT.ACNT
DST.BIDX.CIDX

CCNT,
Src Addr
Dst Addr

Let’s Do Some Math...

> BUFFSIZE =# 16-bit valuesinL + R =10+ 10 = 20. BUFFSIZE = 20.

> Total Transfer (bytes) = ACNT * BCNT* CCNT =2 * 2* 10 = 40bytes

> We have 2 channels: left and right (NUM_CHANNELS = 2)

> So, let’s write some SYMBOLIC values for our EDMA Channel Sorting:
e ACNT = 2 bytes (audio system)

BCNT = NUM_CHANNELS = 2 (left & right)

CCNT = BUFFSIZE/NUM_CHANNELS = 20/2 = 10

BIDX(bytes) = 2*BUFFSIZE/NUM_CHANNELS = 2*20/2 = 20

CIDX(bytes) = -(2*BUFFSIZE/NUM_CHANNELS-2) =
-(2*%20/2-2) = -(20-2) = -18

2 2
20 -18
10

McBSP
Left

If you’re in the mood to do some fancy math with symbols (which is handy in code because it can
flex with different needs — i.e. more channels, fewer channels, bigger buffers, etc.), then the slide
above is for YOU. Most of the time, it is best to architect your code so that it can move and
weave with the wind — so you don’t keep changing 15 values in 974 spots in your code every 10

minutes.

This is just an example of how you can make the values symbolic in an N-channel system.

DSP/BIOS Integration Workshop - EDMA3 Low Level Driver

16 - 43

EDMAS Architecture & Performance Tips

EDMAS3 Architecture & Performance Tips
rerips EDMASJ3 Architecture

E63 E1E0
| &« e | |
) T3
Evt Reg (ER) Queue SEETT CC TC
Evt Enable Reg PSET 1 TCO [*
(EER) Qo
- TR TC1 DATA
Evt Set Reg Q1| o — ; >
cory . 0 Submit TCc2 SCR
Q2 PSET 126
Chain Evt Reg|_| PSET 127
(CER)
EDMAINT | Int Pending Reg — IPR Completionl, | .-
Int Enable Reg - IER Detection
I SCR = Switched Central Resource

¢ EDMA consists of two parts: Channel Controller (CC) and Transfer Controller (TC)

¢ Anevent (from periph-EREER, manual-ESR or via chaining-CER) sends the transfer
to 1 of 3 queues (Q0 is mapped to TCO, Q1-TC1, etc.)

¢ Xirmapped to 1 of 128 PSETs and submitted to the TC (1 TR —transmit request — per ACNT
bytes or “A*B” CNT bytes — based on sync).

¢ TC performs xfr (read/write) and then sends back a transfer completion code (TCC)
¢ The EDMA can then interrupt the CPU and/or trigger another transfer

Wow — there is a BUNCH of stuff here. This is the 200 page EDMA3 User Guide on one slide.
Let’s start with the two pieces of the EDMA — the CC (Channel Controller) and TC (Transfer
Controller). The CC is the “brain” which sets up the transfers, handles priorities and the queues
and event triggering. The TC is the “dumb” transfer engine that just does what the CC puts on its
plate. It deals with the SCR (Switched Central Resource) bus to contend with other masters for
resources.

An event (from the ER register — which flags any events occurring) could cause a transfer
configuration to be placed in one of 3 queues (DM6437 has 3 queues, other devices have 2 or 4).
The Event Set Register gets set when you do a manual start of a transfer (it ignores everything
else). The Chain Evt Register gets set if one channel chains to another. Ok, so one of these caused
a transfer to enter one of the queues. That transfer is then mapped to a PSET as shown and part of
that PSET is sent to the TC via TR Submit (this is either ACNT bytes or ACNT * BCNT bytes
depending on the sync model you chose). Whatever is in QO gets placed in TCO, Q1 to TC1, etc.

The TC then reads/writes (copies) values from src to dst and deals with bus issues on the SCR.
When the transfer is complete, the TCC value comes back to the CC and sets the proper IPR bit.
And we know that we could either poll this bit or set it up to interrupt the CPU automagically.

16 - 44 DSP/BIOS Integration Workshop - EDMA3 Low Level Driver

EDMAS Architecture & Performance Tips

2
3
4
5

6.

EDMA Performance Tips

Some tips & tricks to help increase EDMA performance
1

Don't use the same priority (e.g. QO0) for too many transfers (causes congestion).

Can adjust TCO-2 priority tothe SCR (see User Guide and QUEPRI).

In general, place small transfers at higher priorities.

Match ACNT tointernal or external bus widths. Src/dst aligned on 16-byte boundaries

Whenever possible, break long non-real-time transfers into smaller transfers using
features like self chaining, with intermediate chaining enabled.

Some LLD functions write directly to the EDMA3 parameter ram (i.e. pset), these
include: EDMA3_DRV_setSrcParams, _setDestParams,
_setSrclndex, _setDestlndex, _setOptField, etc.

You can achieve better EDMA3 performance by writing an entire PSET at once using:
EDMA3_DRV_setPaRAM

If you're only programming the DMA during system init, this shouldn’t be a big deal,
but if you are constantly reprogramming the DMA, take note of this tip. BTW, If you're
programming the same transfer over-and-over again, use the preferred functions to
setup up the first confi %,/_{hen copy the PSET values into a variable using the
EDMA3_DRV_getPaRAM function.

Most of these tips are self-explanatory. QO is actually the highest priority queue by default. So it
is best to put small, very important transfers into this queue. The other queues can be used for
lower priority larger transfers. But be careful — you don’t want to hog a resource and keep the
CPU from getting access to that same resource (like L2 or DDR2 memory spaces). It is usually
best to break large transfers into smaller chunks.

One neat trick we’ve learned is self-chaining. Let’s say you have 16K of memory to move.

Instead of moving the WHOLE darn thing with an AB transfer (ACNT = 1K, BCNT = 16, with
AB-sync), why not use A-sync and self chain (chain to yourself) to move 16 1K blocks — giving
the SCR some breathing room.

DSP/BIOS Integration Workshop - EDMA3 Low Level Driver

16 - 45

References

References

EDMA3 References

¢ DM6437 EDMA3 User Guide (spru9gg?)
¢ DM6437 Datasheet (sPrs345)
¢ EDMAS3 Controller (sPru234)
¢ EDMAS3 Migration Guide (sPraABY)
¢ EDMA Performance (sPraAGS)
¢ TC Optimization Rules (sPRUE23)

For more information on these topics, refer to these User Guides.

16 - 46 DSP/BIOS Integration Workshop - EDMA3 Low Level Driver

