
Texas Instruments Incorporated Software Design Document
Revision 0.6

20450 Century Boulevard

Germantown, MD 20874

EMAC Low Level Driver

Software Design Document

Revision 0.7

November 27, 2018

Texas Instruments Incorporated Software Design Document
Revision 0.6

Document License

This work is licensed under the Creative Commons Attribution-Share Alike 3.0

United States License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/3.0/us/ or send a letter to Creative
Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Contributors to this document

 Copyright (C) 2010-2018 Texas Instruments Incorporated - http://www.ti.com/

http://creativecommons.org/licenses/by-sa/3.0/us/
http://www.ti.com/

Texas Instruments Incorporated Software Design Document
Revision 0.6

 Revision Record

Document Title: Software Design Specification

Date

Revision

Description of Change

04-04-2017 0.1 Initial Release

04-10-2017 0.2 Added feature list

07-07-2017 0.3 Addressed all the peer review comments

06-13-2018 0.3 Added feature list for AM65XX

07-13-2018 0.4 Added driver details for AM65xx

10-04-2018 0.5 Added document license for Creative Commons

10-05-2018 0.6 WIP draft Incorporated subset of review comments

11-27-2018 0.7 Added sections for IOCTL commands, driver
initialization , TX Time Stamp, TX Software Descriptor

Return Queue Processing, RX Time Stamp

TABLE OF CONTENTS

1. PURPOS E ... 1

2. FUNCTIONAL OVERVIEW .. 1

3. ASSUMPTIONS .. 1

4. DEFINITIONS, ABBREVIATIONS, ACRONYMS ... 1

5. REFERENCES .. 1

6. DES IGN CONSTRAINTS .. 2

6.1 EXTERNAL CONSTRAINTS / FEATURES .. 2
6.2 EXTERNAL CONSTRAINTS / SYSTEM PERFORMANCE .. 2
6.3 INTERNAL CONSTRAINTS / REQUIREMENTS.. 2

7. SYSTEM OVERVIEW ... 2

7.1 SYSTEM CONTEXT .. 2
7.2 FUNCTIONAL DESCRIPTION... 3
7.3 CPPI BASED IP DRIVER: IP VERSION 0/1/4 ... 4

7.3.1 EMAC Peripheral configuration .. 4
7.3.2 Queue Management .. 5
7.3.3 Packet Descriptor.. 5
7.3.4 Packet TX.. 5
7.3.5 Packet RX ... 6
7.3.6 Single Critical Section.. 6
7.3.7 Multi-core Critical section .. 6
7.3.8 Interrupts .. 7

7.4 UDMA/NAVSS BASED IP DRIVER: IP VERSION 5 ... 7
7.4.1 Memory ... 8
7.4.2 EMAC Driver Initialization configuration.. 8
7.4.3 Packet TX.. 9
7.4.4 TX Software Descriptor Return Queue Processing...10
7.4.5 TX Time Stamp...10
7.4.6 Packet RX ...10
7.4.7 RX Time Stamp ..11
7.4.8 New APIs ..12
7.4.9 Platform Specific functions/configuration ..14
7.4.10 Interrupts ...14
7.4.11 Multi- Core Support ..14
7.4.12 Interposer Card Support...14

7.5 EMAC POLLING LINK STATUS .. 15
7.6 ERROR HANDLING .. 16

8. STANDARDS, CONVENTIONS AND PROCEDURES ...17

8.1 DOCUMENTATION STANDARDS .. 17
8.2 NAMING CONVENTIONS ... 17
8.3 PROGRAMMING STANDARDS .. 17
8.4 SOFTWARE DEVELOPMENT TOOLS ... 17

9. IP FEATURE LIS T COMPARISON ..17

10. SYSTEM DES IGN..22

10.1 DESIGN APPROACH ... 22
10.2 DEPENDENCIES .. 22

10.3 DECOMPOSITION OF SYSTEM... 23
10.3.1 Platform Independent APIs ..23
10.3.2 Platform specific functions/configurations..23
10.3.3 Operating System Abstraction Layer (OSAL) ...23
10.3.4 CSL Functional Layer ...23
10.3.5 CSL Register Layer..24

11. OMAPL13X INTEGRATION...24

11.1 PLATFORM INDEPENDENT API .. 24
11.2 PLATFORM SPECIFIC FUNCTIONS/CONFIGURATION .. 24
11.3 OSAL.. 24
11.4 CSL ... 24
11.5 BUILD SETUP.. 24

1. Purpose

This document describes the functionality, architecture, and operation of the Ethernet Media

Access Controller (EMAC) Low Level Driver. Also the data types, data structures and
application programming interfaces (API) provided by the EMAC driver are explained in this

document.

2. Functional Overview

EMAC driver provides a well-defined API layer which allows applications to use the EMAC
peripheral to control the flow of packet data from the processor to the PHY and the MDIO

module to control PHY configuration and status monitoring.

3. Assumptions

NA

4. Definitions, Abbreviations, Acronyms

Term Description

API Application Programming Interface

CSL Chip Support Library

EMAC Ethernet Media Access Controller

LLD Low Level Driver Design

ISR Interrupt Service Routine

MDIO Managed Data Input Output

MMR Memory Mapped Registers

NDK Network Development Kit

NIMU Network Interface Management Unit

OSAL Operating System Adaptation Layer

PHY Physical layer

Table 1 : Abbreviations and acronyms

5. References

Following references are related to the features described in this document and shall be consulted as

necessary.

 TRM for SoCs being supported by EMAC LLD

 Migrating_Applications_from_EDMA_to_UDMA_using_TI-RTOS.pdf

(ti/drv/udma/docs)

6. Design Constraints

6.1 External Constraints / Features

 EMAC LLD should access OS components only through OSAL.

6.2 External Constraints / System Performance

EMAC LLD should allow applications to transfer and receive through Ethernet port and
communicate with the network devices at maximum possible speed as supported by HW.

6.3 Internal Constraints / Requirements

EMAC LLD should use CSL layer for register access to abstract the HW dependencies and

maintain portability across the platforms.

7. System Overview

7.1 System Context

EMAC LLD is designed to be functional as part of TI processor SDK driver package. There will
be several components in the processor SDK, apart from applications, which uses EMAC LLD.

Driver design ensures that it fits into system properly and provides suitable APIs for utilizing
EMAC HW functionality.
The following figure shows the architecture of processor SDK sub-system around the LLD

modules.

Figure 1 : Process SDK driver subsystem architecture

7.2 Functional Description

The EMAC driver is responsible for the following:-

• EMAC/MDIO configuration & Queue Management

• Providing a well-defined API to interface with the applications

• Well defined operating system adaptation layer API which supports single core and multiple

core critical section protection

The next couple of sections document each of the above mentioned responsibilities in greater

detail:

7.3 CPPI Based IP Driver: IP Version 0/1/4

7.3.1 EMAC Peripheral configuration

The EMAC driver test application provides a sample implementation sequence which initializes
and configures the EMAC IP block. This implementation is sample only and application
developers are recommended to modify it as deemed fit.

The initialization sequence is not a part of the EMAC driver library. This was done because the

EMAC initialization sequence has to be modified and customized by application developers.
The following figure shows the EMAC API the application can call to initialize the EMAC
peripheral:-

Figure 2 : EMAC configuration

Please note that the call flow dedicated above is basic illustration of how emac_open is handled

internally and may differ from amongst different IP versions of the driver. At the API level from
application point of view, it’s the same.

Refer to the EMAC_OPEN_CONFIG_INFO_T as defined in emac_drv.h for details of
configuration parameters passed into the driver at the time of emac_open API call.

When this API is called, the EMAC driver will first initialize common EMAC configurations

(e.g. loopback mode, MDIO enable, PHY address, packet size, etc.) which applies to all the
cores, and then initialize the core specific configurations (e.g. channel/MAC address
configuration, TX/RX packet descriptor queue size, call back functions, etc.). The driver may

EMAC

LLD
App

emac_open(port_num, &open_cfg)

emac_config(port_num, &emac_cfg)

CSL

EMAC_commonInit(port_num, &commonCfg, hEmac)

EMAC_coreDeInit(hEmac)

EMAC_coreInit(hEmac, hApp, &coreCfg, hCore)

CSL_semInit(&rx_sem_context)*

CSL_semInit(&tx_sem_context)*

SGMII_reset()**

SGMII_config(&SgmiiCfg)**

EMAC_setReceiveFilter(hEmac, rx_filter, master_chn)

EMAC_setMulticast(hEmac, mcast_cnt, &mcast_list)

Notes:

* Only called for C6474 device

** Only called for C6457 & C6474 devices

also need to do some device specific configurations (e.g. C6457 & C6474 have a SGMII
interface in the EMAC peripheral which need to be configured, and C6474 has a hardware

semaphore which also needs to be configured).

The emac_config() API passes the following configuration parameters to the EMAC driver:

 EMAC port number

 EMAC packet receive filter level

 Multicast configurations

NOTE: This API is currently only implemented for v0 version of the driver.

7.3.2 Queue Management

The EMAC driver manages one TX packet descriptor queue and one RX packet descriptor queue

per each EMAC port, the TX/RX queue size is initialized by the application. The driver pre-
allocates the packet buffer for each packet descriptor pushed to the RX queue when an EMAC
port is opened. The driver frees both TX/RX queues when an EMAC port is closed.

7.3.3 Packet Descriptor

By default, the EMAC driver uses CPPI RAM(8K-byte) for EMAC IP managed Packet
Descriptor memory. This internal 8K-byte memory is used to manage the buffer descriptors that

are 4-word(16-bytes) deep. The maximum number of descriptors that can be used for managing
the packets being transferred is 512. Application shall allocate the packet descriptors for TX, RX
and should pass the information to driver using EMAC_OPEN_CONFIG_INFO_T structure

during driver open.

7.3.4 Packet TX

The application can send a packet by calling emac_send () API, the application needs to allocate
an application managed packet descriptor from the application queue, copy the packet data and

convert it to the EMAC driver managed packet descriptor format.

The following figure shows the EMAC/CSL API for a packet sent:-

Figure 3 : EMAC TX function

EMAC
LLD

App

emac_send(port_num, &app_pkt_desc)

CSL

EMAC_sendPacket(hEmac, &csl_pkt_desc);

EMAC_txEoiWrite(EMAC_CORE_NUM)*
CSL_semHwControl(hTxSem, SEM_CMD_FREE_DIRECT, NULL)*

EMAC_TxServiceCheck(hEmac)
CSL_semGetHwStatus(hTxSem, SEM_QUERY_DIRECT,&resp)*

Notes :
* Only called for C6474 device

TX Interrupt
free_pkt_cb(port_num, &app_pkt_desc)

7.3.5 Packet RX

When a packet is received, the EMAC driver will convert the packet descriptor received to the

application managed packet descriptor format and pass it to the application by calling the
rx_pkt_cb() callback function.

The following figure shows the EMAC/CSL API for a packet received:-

Figure 4 : EMAC RX function

7.3.6 Single Critical Section

The EMAC driver maintains certain per core specific data structures. These data structures need
to be protected from access by multiple users running on the same core. Users are defined as
entities in the system which uses the EMAC Driver API’s. The critical section defined here

should also take into account the context of these users (Thread or Interrupt) and define the
critical sections appropriately.

For example: In the EMAC RX interrupt service routine, if RX interrupt is not disabled, a new
RX interrupt may pre-empt the existing RX ISR and cause data corruption in CSL CPPI packet

descriptors.

The EMAC driver uses the Emac_osalEnterSingleCoreCriticalSection() API to enter the single
core critical section and Emac_osalExitSingleCoreCriticalSection to exit the single core critical
section.

7.3.7 Multi-core Critical section

The EMAC driver supports multiple cores sharing the same EMAC port. The driver defines the
following common data structures that are shared by all the cores:

• EMAC_Device emac_comm_dev

• EMAC_COMMON_PCB_T emac_comm_pcb

EMAC

LLD
App CSL

EMAC_rxEoiWrite(EMAC_CORE_NUM)*

CSL_semHwControl(hRxSem, SEM_CMD_FREE_DIRECT, NULL)*

EMAC_RxServiceCheck(hEmac)

CSL_semGetHwStatus(hRxSem, SEM_QUERY_DIRECT,&resp)*

Notes:

* Only called for C6474 device

RX Interrupt

rx_pkt_cb(port_num, &app_pkt_desc)

emac_comm_dev contains common EMAC device instance information, it is defined in the
EMAC driver, but is managed by the EMAC CSL.

emac_comm_pcb contains common port control block information that is managed by the
EMAC driver.

The EMAC driver defines a pragma data section “emacComm” for these two data structures, the
application needs to put “emacComm” data section in the shared memory (either shared L2 data

if available or external memory)

The EMAC driver calls Emac_osalEnterMultipleCoreCriticalSection() and
Emac_osalExitMultipleCoreCriticalSection() API to enter and exit critical section to access
shared resource by multiple cores. The EMAC multicore test application shows an example how

to implement semaphore protection for shared resource access among multiple cores. C6472 uses
IPC GateMP module to implement a software semaphore, and C6474 uses CSL hardware

semaphore.

For shared memory access, the EMAC driver calls Emac_osalBeginMemAccess() and

Emac_osalEndMemAccess() to protect cache coherence when cache is enabled. The driver
always performs an invalidate cache operation before reading data and write back cache

operation after writing data. The start address of emac_comm_dev and emac_comm_pcb need to
be set aligned to the cache line size of the device by the application.

The following figure shows an example how the EMAC driver can access the shared resource:-

App
EMAC

LLD

Emac_osalEnterMultipleCoreCriticalSection(port_num)

Emac_osalBeginMemAccess(&emac_comm_dev, sizeof(EMAC_Device))

Emac_osalEndMemAccess(&emac_comm_dev, sizeof(EMAC_Device))

Emac_osalExitMultipleCoreCriticalSection(port_num)

Read/Write emac_comm_dev

Figure 5 : EMAC Critical section access

7.3.8 Interrupts

Interrupt configuration is specified in SOC’s init configuration and is provided to the EMAC

LLD at time of emac_open API. Interrupt registration is done within the LLD at time of
emac_open. Once interrupt is received, application provided callbacks are invoked.

7.4 UDMA/NavSS based IP Driver: IP Version 5

IP version 5 supports SOCs based on NavSS/UDMA based DMA interface eg:AM65XX. The

LLD provides a common set of APIs to service both CPSW and ICSS-G hardware IP ports. This

is possible due to the NavSS IP which groups together various different hardware IP blocks (in
this case CPSW/ICSS-G) and whose purpose is to support the efficient transfer of data between

various software, firmware and hardware entities via the use of channels.

A channel is a DMA instance/resource of which there are the following 2 types:

1. Receive (RX) Channel

a. RX Packet Channel: EMAC LLD receives packets from the network via ICSSG/CPSW subsystem

b. RX Config Channel EMAC LLD receives configuration packets (for example configuration

request responses or TX timestamp or PSI) from ICSSG subsystem.

ICSS Switch supports 4 RX channels distributed as follows:

 Physical port 0 data packets from network

 Configuration and related responses from firmware to EMAC LLD for Slice 0 (logical ‘half’ of an ICSS)

 Physical Port 1 data packets from network

 Configuration and related responses from firmware to EMAC LLD for Slice 1

Each RX channel can be “divided” into to N sub channels where each sub-channel can be

considered a distinct flow having each having its own free and completion ring pair. This allow
for “bining” packets of different types to be delivered to the EMAC LLD via different flows.

Note that when a channel is created using the UDMA driver, the default flow is created by
“default” and is considered by the driver is the 1st sub-channel or flow.
Default SOC configuration as specified by the emac_soc.c file (see sub-sequent section for

overview) provides configuration for the LLD to create 1 RX Packet Channel with N sub-
channels and 1 RX Config Response Channel with M sub-channels per slice.

2. Transmit (TX) Channel: EMAC LLD transmits packets to the network via ICSSG/CPSW subsystem

Default SOC configuration as specified in the emac_soc.c file provides configuration for the

LLD to create 4 TX channels per physical port (slice). LLD provides the application the option
to choose which TX channel to transmit. More details about transmitting packets in subsequent
sections below. Note the highest priority TX channel (i.e., channel 3) is used to

carry configuration messages to firmware as well.

7.4.1 Memory

There is no constraint on where Packet Descriptor, packet buffer, and Ring memory resides
except that the memory block/region must cache size aligned on cores which are not hardware
cache coherent such as the R5F (there may be performance impacts however). Application shall

allocate the packet descriptors for TX, RX and Ring memory and should pass the information to
LLD using EMAC_OPEN_CONFIG_INFO_T structure during driver open.

7.4.2 EMAC Driver Initialization configuration

The emac_open() API is used for driver initialization. Refer to the

EMAC_OPEN_CONFIG_INFO_T as defined in emac_drv.h for details of configuration
parameters passed into the driver at the time of emac_open API call.

The EMAC driver test unit test application provides a sample implementation sequence which
initializes and configures the EMAC driver. This implementation is sample only and application

developers are recommended to modify it as deemed fit.

7.4.3 Packet TX

EMAC LLD for AM65XX will support UDMAP operations to transfer data between the host

processor and network peripherals. A valid port number and EMAC_PKT_DESC_T are required
arguments to the emac_send API.

For DUAL MAC use case, the port number is the physical port used to transmit the packet to the
network.
For switch use case, we will use virtual port concept for the port number when calling

emac_send. For directed packet to a specific physical port, use port number 9 to send on port 0 of
the switch and use port 10 to send on port 1 of the switch. For un-directed packets use virtual

port 11. In this case, the driver will take care of transmitting the packet out on the switch port(s).

The transmit submit ring to be used for the transmission should be specified in the PktChannel

field of the EMAC_PKT_DESC_T passed in. In other words, the application decides on which
of the Transmit Channels(rings) to use. The driver will support configuration of up to 4 TX

channels per port (at time of emac_open) each associated with a transmit submit ring/completion
ring pair.

The TX port queue (0-7) inside ICSSG that is used to transmit the packet from the ICSSG
firmware to the PHY can be specified in the TxPortQPrior field of the EMAC_PKT_DESC_T

passed in in the emac_send API call. In other words, the application can select which TX port
queue to use. In addition, The application can set the TxPortQPrior field to 0xFF and in this case,
the firmware will determine which port queue to use based on the priority REGEN(remap) and

TCI mapping that is configured for the host port.

The following sequence occurs during emac_send API call:

1. LLD/driver maintains hardware TX descriptor free linked list (in software) setup at time

of emac_open

2. At time of emac_send API call, LLD will pop a free TX descriptor from free linked list

and populate free TX descriptor with packet length, pointer to packet buffer and any

META data that is passed in the application descriptor. This provides ZERO copy

transfer of data. ZERO copy is achieved by transferring ownership of the passed in

descriptor and linked packet buffer to the LLD which is directly “linked” to the TX

descriptor which is queued on the Transmit Submit ring. Note that no “memcpy” is

performed by the driver during emac_send API call.

3. LLD will push the TX descriptor using UDMA ring queue API to the specified transmit

submit ring associated with the port number passed into the API call.

4. The emac_send will return failure code to the calling application in case the port is closed

or the driver is unable to submit the packet for transmission on the transmit ring due to

the ring being full. NOTE: The DMA is used to move the packet from the host owned

buffer to ICSSG firmware, which then will copy the packet to the TX port queue. Thus

the DMA for TX packets in TX ring is controlled by firmware and firmware will not

allow the DMA of the packet if there is no room in TX port queue in ICSS. So packets

will remain in the TX ring in this event and firmware will service another TX channel.

7.4.4 TX Software Descriptor Return Queue Processing

Note that at the time of emac_send(), the software descriptor passed in’s ownership is given to

the driver and needs to returned back to the calling application as specified in the section above.
The following 3 means are provided by the driver to provide the software descriptor back to the
calling application.

1. EMAC_MODE_INTERRUPT: emac_poll_pkt() API will PEND on a SEMAPHORE which is posted by

TX ISR(ISR registration/SEMAPHORE creation done at time of emac_open), invoke TX callback and

again PEND on SEMAHPORE. This is a blocking API call and will only return to user application if

PORT status is closed. Task context is required in INTERRUPT mode.

2. EMAC_MODE_POLL: emac_poll_ctrl() API will directly query the TX completion queue and invoke the

TX callback is packet is present in completion queue. Will return to user application after each

emac_poll_ctrl() call.

3. Return queue processing at time of next emac_send().Ownership of the passed in descriptor is returned to

the application at time of next call to emac_send. The mode of operation can be configured at time of

emac_open()

7.4.5 TX Time Stamp

The emac_send() API will allow a packet to be marked as TX timestamp required and will allow

the application to provide a piece of opaque data (i.e. timestamp id) that can be used to associate
a TX timestamp with the packet when the TX timestamp is delivered later. Application will also
need to register a callback at time of emac_open which driver will call to provide the timestamp.

1. Update Flags field in EMAC_PKT_DESC_T with EMAC_PKT_FLAG_TX_TS_REQ

2. Update ts_id field in EMAC_PKT_FLAG_TX_TS_REQ with 32 bit id which will be returned with

timestamp and can be used by application to correlate TX timestamp request with response

3. Register at time of emac_open to receive TX timestamp response by using tx_ts_cb field of

EMAC_OpenConfigInfo. Prototype of tx_ts-cb: uint32_t port_num, uint32_t ts_id, uint64_t time_stamp

4. In order to retrieve the timestamp, the application will need to use the emac_poll_ctrl as follows:

a. emac_poll_ctrl(port_num, rxPktRings, rxCfgRings, txRings) where rxCfgRings is a bitmap of RX

Config rings to poll needs to have bit 2 set. If timestamp Config packet is available, tx_ts_cb will

be invoked.

7.4.6 Packet RX

When a packet is received, the EMAC driver will convert the packet descriptor received to the
application managed packet descriptor format (EMAC_PKT_DESC_T)and pass it to the

application by calling the rx_pkt_cb() callback function. Registration of rx_pkt_cb() is done at
time of emac_open() API call. For both mode of operation specified below, rx_pkt_cb() will get

called to provide the packet to the application.

For receive packets, the following 2 modes of operation are supported and can be configured at
time of emac_open() for specified port (note the default mode is INTERRUPT).

1. EMAC_MODE_INTERRUPT: emac_poll_pkt() API will PEND on a SEMAPHORE which is posted by

RX ISR(ISR registration/SEMAPHORE creation done at time of emac_open), invoke RX callback and

again PEND on SEMAHPORE. This is a blocking API call and will only return to user application if

PORT status is closed. Task context is required in INTERRUPT mode.

2. EMAC_MODE_POLL: emac_poll_ctrl() API will directly query the RX completion queue and invoke the

RX callback if packet is received. Will return to user application after each emac_poll_ctrl() call.

7.4.7 RX Time Stamp

The 64 bit RX timestamp can be extracted from the psinfo[] field of the EMAC_CPPI_DESC_T
hardware descriptor which is dequeued from the UDMA ring. psinfo[1] contains the upper 32

bits of timestamp and psinfo[0] contains lower 32 bits of timestamp.
The RxTimeStamp field of the EMAC_PKT_DESC_T will be updated with the 64 bit timestamp
from the hardware descriptor and provided for each packet received and provided to the calling

application via RX callback.

7.4.8 New APIs

API to retrieve ICSS-G hardware statistics:

1. EMAC_DRV_ERR_E emac_get_statistics_icssg(uint32_t port_num,

EMAC_STATISTICS_ICSS-G_T *p_stats, bool clear)

API to poll receive packet rings, receive configuration response ring and tx completion rings.

2. EMAC_DRV_ERR_E emac_poll_ctrl(uint32_t port_num, uint32_t rxPktRings,

uint32_t rxCfgRings, uint32_t txRings)

rxPktRings is a bitmap of which packet completion rings to poll.

rxCfgRings is a bitmap of which configuration rings to poll.

txRings is a bitmap of which packet transmit completion rings to poll.

API for issuing IOCTL commands for ICSSG ports

3. EMAC_DRV_ERR_E emac_ioctl(uint32_t port_num, uint32_t emacIoctlCmd, void

*emacIoctlParams)

The table below provides a list of IOCTLS supported for ICSSG use case:

IOCTL Command/Sub Command

Description IOCTL

Parameters

RETURN TYPE

EMAC_IOCTL_PROMISCOUS_MODE_CTRL

(MMR update, non-blocking)

Enable/disable

promiscuous mode of

operation (dual-mac use

case, switch TBD)

Port number,

ENABLE(1),

DISABLE(0)

EMAC_DRV_RESULT_OK on

success

EMAC_DRV_RESULT_GENERA
L_ERR on failure (invalid port)

EMAC_IOCTL_UNICAST_FLOOD_CTRL

(CFG message to FW over PSI I/F, blocking call)

Enable/disable flooding of

unknown unicast packets

to host port

Port number,

ENABLE(1),

DISABLE(0)

EMAC_DRV_RESULT_OK on

success

EMAC_DRV_RESULT_GENERA
L_ERR on failure (invalid port)

EMAC_IOCTL_FDB_ENTRY_CTRL/

EMAC_IOCTL_FDB_ENTRY_ADD

(CFG message to FW over PSI I/F, blocking call)

Add forward data base

entry to internal ICSSG

memory.

Switch number,

6 byte mac

address,

vlan_tag,

fdb_entry

EMAC_DRV_RESULT_OK on

success,

EMAC_DRV_RESULT_GENERA

L_ERR

EMAC_IOCTL_FDB_ENTRY_CTRL/

EMAC_IOCTL_FDB_ENTRY_DEL

(CFG message to FW over PSI I/F, blocking call)

Delete forward data base

entry from internal ICSSG

memory

Switch, number,

6 byte mac

address,

vlan_tag,

fdb_entry

EMAC_DRV_RESULT_OK on

success,

EMAC_DRV_RESULT_GENERA
L_ERR (due to timeout)

EMAC_IOCTL_FDB_ENTRY_CTRL/

EMAC_IOCTL_FDB_ENTRY_DEBUG

(CFG message to FW over PSI I/F, blocking call)

Debug IOCTL for

retrieving forward data

base entry from internal

ICSSG memory.

Switch number,

Slot number

EMAC_DRV_RESULT_OK on

success,

EMAC_DRV_RESULT_GENERA

L_ERR (due to timeout)

return 32 bytes of data (6 byte

mac_addr, 1 byte vlan fid, 1 byte

fdb_entry, 4 entries per slot) on
success

EMAC_IOCTL_PORT_CTRL

(CFG message to FW over PSI I/F, blocking call)

Used to set various port

states.

Switch number,

Port_number,

Port_state

(disabled,

blocking, forward,

forward without

learning)

EMAC_DRV_RESULT_OK on

success,

EMAC_DRV_RESULT_GENERA
L_ERR (due to timeout)

EMAC_IOCTL_SAV_CHECK_CTRL

(CFG message to FW over PSI I/F, blocking call)

Source address violation

check enable/disable

control.

Switch number,

Port_number,

ENABLE(1),

DISABLE(0)

EMAC_DRV_RESULT_OK on

success,

EMAC_DRV_RESULT_GENERA

L_ERR (due to timeout)

EMAC_IOCTL_VLAN_CTRL/

EMAC_IOCTL_VLAN_SET_DEFAULT_TBL

(MMR update, non-blocking)

Update ICSSG shared

memory with default vlan

table entries (4096 entries

set to default settings)

Switch number,

vlan_fid,

vlan_info

EMAC_DRV_RESULT_OK on

success

EMAC_DRV_RESULT_GENERA
L_ERR on failure

EMAC_IOCTL_VLAN_CTRL/

EMAC_IOCTL_VLAN_ADD_ENTRY

(MMR update, non-blocking)

Add entry to vlan table for

specified vlan tag value

where tag is from 0 to

4095).

Switch number,

vlan_tag(table

entry),

vlan_fid,

vlan_info

EMAC_DRV_RESULT_OK on

success

EMAC_DRV_RESULT_GENERA
L_ERR on failure

EMAC_IOCTL_VLAN_CTRL/

EMAC_IOCTL_VLAN_AWARE_MODE

(MMR update and CFG message to FW over PSI I/F,

blocking call)

Enable/disable VLAN

aware mode.

Switch number,

ENABLE(1),

DISABLE(0)

EMAC_DRV_RESULT_OK on

success,

EMAC_DRV_RESULT_GENERA
L_ERR (due to timeout)

EMAC_IOCTL_VLAN_CTRL/

EMAC_IOCTL_VLAN_SET -DEFAULT_TAG

(MMR update and CFG message to FW over PSI I/F,

blocking call)

Set default tag for switch

to use when un-tagged or

priority tagged packet is

received.

Switch number,

Port number,

32-bit tag/priority

EMAC_DRV_RESULT_OK on

success,

EMAC_DRV_RESULT_GENERA
L_ERR (due to timeout)

EMAC_IOCTL_PRIO_REGEN_CTRL

(MMR update and CFG message to FW over PSI I/F,

blocking call)

Configure the priority

regeneration table for a

port including the host

port.

Switch number,

Port number (-1

for host port)

ENABLE(1),

DISABLE(0),

8-byte REMAP

array

EMAC_DRV_RESULT_OK on

success,

EMAC_DRV_RESULT_GENERA
L_ERR (due to timeout)

EMAC_IOCTL_TCI_MAPPING_CTRL

((MMR update, non-blocking)

Configure the mapping of

traffic class to port queue.

Switch number,

Port number (-1

for host port),

8-byte TCI to

portQ mapping

EMAC_DRV_RESULT_OK on

success,

EMAC_DRV_RESULT_GENERA
L_ERR (due to timeout)

EMAC_IOCTL_ACCEPTABLE_FRAM_CHECK_CT

RL

(MMR update and CFG message to FW over PSI I/F,

blocking call)

Configure acceptable

frame checking rules per

physical port

Switch number,

Port number,

TBD

EMAC_DRV_RESULT_OK on

success,

EMAC_DRV_RESULT_GENERA
L_ERR (due to timeout)

EMAC_IOCTL_STREAM_FDB_CTRL

TBD TBD TBD

EMAC_IOCTL_CUT_THROUGH_CTRL
TBD TBD TBD

EMAC_IOCTL_HOST_TX_RATE_LIMITER_CTRL
TBD TBD TBD

EMAC_IOCTL_HOST_RX_RATE_LIMTER_CTLR
TBD TBD TBD

EMAC_IOCTL_PKT_TO_FLOW_CLASSI_CTRL
TBD TBD TBD

7.4.9 Platform Specific functions/configuration

Emac_soc_v5.c contains AM65XX SOC specific configuration which includes register address
mapping, interrupts, NAVSS/UDMAP receive and transmit UDMA channel configuration. The
SOC configuration structure will be defined in emac_soc_v5.h.

For details of the UDMA subsystem, please refer to
Migrating_Applications_from_EDMA_to_UDMA_using_TI-RTOS .pdf as listed in the

reference section.

7.4.10 Interrupts

Interrupt registration for receive packet is done within the LLD at time of emac_open which uses
UDMA event registration API. Once interrupt is received, application provided receive packet

callback is invoked.

Interrupt registration for transmit complete is done within the LLD at time of emac_open which

uses UDMA event registration API. Once interrupt is received, application provided transmit
complete callback is invoked.

7.4.11 Multi- Core Support

Still an open issue, most likely APIs will be provided to clone driver context (handles) from

master core and deliver to secondary cores for use with common apis to enqueue/dequeue
packets. Being tracked by PRSDK-5052 (am65xx: UDMA LLD: How to run instance of LLD on
multiple cores, share handles, etc)

7.4.12 Interposer Card Support

Interposer card is an Ethernet wiring adapter to let 2 icss-g subsystems drive 2 Ethernet ports
with dual mac or switch firmware. So that each direction (TX/RX) can be handled by one pair of
PRU cores. The interposer card permits the power of two icss-g instances to be used on a two

port switch or dual EMAC as opposed to the two-port, single icss-g configuration.

The interposer card divides RGMII RX and TX pins for 2 ports and routes them to separate icss-
g RGMII pins as follows:

Interposer eth0 -> RX => icss_g instance 0, slice 0 (RX only) => EMAC LLD port 0

interposer eth0 -> TX => icss_g instance 1, slice1 (TX only) => EMAC LLD port 3

interposer eth1 -> RX => icss_g instance 1, slice 0 (RX only) => EMAC LLD port 2

interposer eth1 -> TX => icss_g instance 0, slice 1 (TX only) => EMAC LLD port 1

To support this card with NDK (or 3rd party stacks), EMAC LLD provides two 'virtual'
ports: EMAC7 (virtual port 7) and EMAC8 (virtual port 8) to be used in dual-EMAC mode.

Under the hood, the EMAC_LLD will treat handling of these virtual ports as follows:

Virtual port 7 handling:

1. emac_open and emac close: internally open ports 0 and 3 with reduced configuration.

Since port 0 is for RX handling only, no UDMA TX channels/rings need to be

configured at time of emac_open. Similarly for port 3 which is for TX handling only, no

UDMA TX channels/rings need to be configured at time of emac_open.

2. emac_poll_pkt: internally poll packets for port 0.

3. emac_send: internally send on port 3.

4. emac_ioctl: internally do IOCTL configuration on port 0 as IOCTL is for RX path

configuration at this time.

5. emac_get_statistics_icssg: internally query for RX statistics from port 0, TX statistics

from port 3

Virtual port 8 handling:

6. emac_open and emac close: internally open ports 2 and 1 with reduced configuration.

Since port 2 is for RX handling only, no UDMA TX channels/rings need to be

configured at time of emac_open. Similarly for port 1 which is for TX handling only, no

UDMA TX channels/rings need to be configured at time of emac_open.

7. emac_poll_pkt: internally poll packets for port 2.

8. emac_send: internally send on port 1.

9. emac_ioctl: internally do IOCTL configuration on port 2 as IOCTL is for RX path

configuration at this time.

emac_get_statistics_icssg: internally query for RX statistics from port 2, TX statistics from port
1.

7.5 EMAC Polling Link Status

The application should poll the EMAC periodically (every 100msec) to monitor the PHY link
status change via the MDIO peripheral using the API emac_poll().This should make sure any
changes in the link status (link up or down) should be communicated to the other modules using

the EMAC LLD. The application can disable the polling for link status in the emac_open() API
by disabling the MDIO module. Note that this does not apply for Maxwell and MDIO module is

always enabled in order to poll for link status.

An example for using emac_poll function is shown below

7.6 Error Handling

Error handling is done inside all the LLD APIs and returns following error codes as applicable.

Error status Description

EMAC_DRV_RESULT_GENERAL_ERR
Generic error status code returned or an

unspecified error.

EMAC_DRV_RESULT_INVALID_PORT
Invalid EMAC port number error returned from
EMAC APIs

EMAC_DRV_RESULT_NO_CHAN_AVAIL
Error indicating that there is no channels are

available. It is returned form EMAC_init() API.

EMAC_DRV_RESULT_NO_MEM_AVAIL
Error indicating that there is no free memory
available. Returned from EMAC_init APIs.

EMAC_DRV_RESULT_OPEN_PORT_ERR Error returned from EMAC_open API.

EMAC_DRV_RESULT_CLOSE_PORT_ERR Error returned from EMAC_close API.

EMAC_DRV_RESULT_CONFIG_PORT_ERR Error returned from EMAC_config API.

EMAC_DRV_RESULT_SEND_ERR Error returned from EMAC_send API.

EMAC_DRV_RESULT_POLL_ERR
Error returned form EMAC_poll API to indicate
poll link status error

EMAC_DRV_RESULT_GET_STATS_ERR
Error returned from emac_get_statistics and
emac_get_statistics_icssg APIs.

EMAC_DRV_RESULT_ISR_ERR Interrupt service error form emac_int_service.

8. Standards, Conventions and Procedures

8.1 Documentation Standards

Doxygen format is used for documentation in source code.

8.2 Naming conventions

Processor SDK standard naming conventions are used for file and module naming.

8.3 Programming Standards

• C99 standard data types are used in driver implementation.

• MISRA-C coding standards are followed wherever applicable.

8.4 Software development tools

• TI’s Code Composure Studio for project build setup.

• Make files for source code compilation and Test Applications

• Doxygen for extracting documentation from source code

• Klocworks for static code analysis

9. IP Feature List Comparison

This section gives the details of feature comparison of different EMAC HW IPs and software
support for those IP features.

NOTE: Table entries below marked with “*” are supported but currently not tested.

EMAC IP Features

 OMAPL137 K2G

 HW SW HW SW

IP Driver Version NA 0 NA 1

No. of hardware instance 1 NA 1 NA

Synchronous operations.

10
Mbps

YES YES YES YES *

100
Mbps

YES YES YES YES *

1000
Mbps

NO
NA

YES YES

Standard Media Independent
Interface (MII)

YES YES YES YES *

Reduced Media Independent
Interface (RMII)

YES YES YES YES

GMII NO NA NO NA

RGMII NO NA YES YES

Support quality-of-service (QOS) 2 YES 8 YES *

Ether-Stats and 802.3-Stats
statistics gathering.

YES

NA

With
RMON
Statisti

c
gather

ing NA

Transmit CRC generation YES NO YES NO

Broadcast and Multicast frames
selection

YES YES YES YES *

Promiscuous receive mode YES YES YES YES

Flow control Support YES YES YES YES

Programmable interrupt logic YES NA YES NA

CPPI buffer descriptor memory 8k NA 2k NA

MDIO module for PHY
Management YES

YES
YES

YES

Wire rate switching
(802.1d)

NO
NA

NO
NA

Address Lookup Engine
(ALE)

addre
ss
entrie
s plus
VLAN
s

NO

NA

64

NA
Wire
rate
looku
p

NO

NA

YES NO

 Host
contr
olled
Time-
based
aging

NO

NA

YES NO

Multi
ple
spann
ing
Tree
suppo
rt

NO

NA

YES NO

MAC
authe
nticat
ion
(802.
1x)

NO

NA

YES NO

MAC
addre
ss
blocki
ng

NO

NA

YES NO

Sourc
e port
lockin
g

NO

NA

YES NO

OUI
host
accep
t/den
y

Featu
re

NO

NA

YES NO

VLAN support NO NA YES NO

Digital loopback and FIFO
loopback modes supported

NO
NA

YES NO

Emulation Support NO NA YES TBD

RAM Error Detection and
Correction (SECDED)

NO
NA

YES NO

Programmable transmit Inter-
Packet Gap (IPG)

NO
NA

YES TBD

EMAC IP Features

 AM335x AM437x AM572x AM6x

 HW SW HW SW HW SW HW SW

IP Driver Version NA 4 NA 4 NA 4 NA 5

No. of hardware instance 2 NA 2 NA 2 NA 1 NA

Synchronous operations.

10
Mbps

YES YES YES YES YES YES YES YES *

100
Mbps

YES YES YES YES YES YES YES YES *

1000
Mbps

YES YES YES YES YES YES YES
YES

Standard Media Independent
Interface (MII)

NO NA NO YES NO YES NO NO

Reduced Media Independent
Interface (RMII)

YES YES YES YES YES
 YES

YES NO

GMII
YES YES YES YES YES YES NO

NO

RGMII YES YES YES YES YES YES YES YES

Support quality-of-service (QOS) 4 YES 4 YES 4 YES 8 YES *

Ether-Stats and 802.3-Stats
statistics gathering.

With
RMO

N
Statis

tic
gath
ering NA

With
RMO

N
Statis

tic
gath
ering NA

With
RMON
Statisti

c
gather

ing NA

With
RMON
Statisti

c
gather

ing NA

Transmit CRC generation NO NA NO NA NO NA YES NO

Broadcast and Multicast frames
selection

YES YES YES YES YES YES YES YES

Promiscuous receive mode YES YES YES YES YES YES YES YES

Flow control Support YES YES YES YES YES YES YES NO

Programmable interrupt logic YES NA YES NA YES NA YES NA

CPPI buffer descriptor memory 8k NA 8k NA 8k NA NA NA

MDIO module for PHY
Management YES

YES
YES

YES
YES

YES
YES

YES

Wire rate switching
(802.1d)

YES NO YES NO YES NO NO
NA

Address Lookup Engine
(ALE)

addre
ss
entrie
s plus
VLAN
s

1024

NA

1024

NA

1024

NA

64

NA

Wire
rate
looku
p

YES NO YES NO YES NO YES NO

Host
contr
olled
Time-
based
aging

YES NO YES NO YES NO YES NO

Multi
ple
spann
ing
Tree
suppo
rt

YES NO YES NO YES NO YES NO

MAC
authe
nticat
ion
(802.
1x)

YES NO YES NO YES NO YES NO

MAC
addre
ss
blocki
ng

YES NO YES NO YES NO YES NO

Sourc
e port
lockin
g

YES NO YES NO YES NO YES NO

OUI
host
accep
t/den
y

Featu
re

YES NO YES NO YES NO YES NO

VLAN support YES NO YES NO YES NO YES NO

Digital loopback and FIFO
loopback modes supported

YES NO YES NO YES NO YES NO

RAM Error Detection and
Correction (SECDED)

NO
NA

NO
NA

NO
NA

NO NA

Programmable transmit Inter-
Packet Gap (IPG)

YES NO YES NO YES NO YES NO

10. System Design

10.1 Design Approach

The EMAC driver provides a well-defined API layer which allows applications to use the EMAC
peripheral to control the flow of packet data from the processor to the PHY and the MDIO

module to control PHY configuration and status monitoring.
The EMAC driver is designed to meet the following requirements:

• Support multiple EMAC ports (if available on the device) per core (i.e. A53/R5)

• Support multiple channels per core.

• Support multiple cores to use different channels on the same EMAC port.

• The driver is OS independent and exposes all the operating system callouts via the OSAL

layer.

• EMAC example test application provides standard configurations and demonstrates

measurable benchmarks.

Platform specific functions are mapped to the platform independent APIs using function table
which is given below

 /*! Function to open the specified EMAC port */
 EMAC_OpenFxn openFxn;

 /*! Function to config the specified EMAC port for RX filtering, multicast addresses */
 EMAC_ConfigFxn configFxn;
 /*! Function to close the specified peripheral */

 EMAC_CloseFxn closeFxn;
 /*! Function to send packet to network on specified EMAC port */

 EMAC_SendFxn sendFxn;
 /*! Function to poll link status for specified EMAC port*/
 EMAC_PollFxn pollFxn;

 /*! Function to get EMAC CPSW port statistics*/
 EMAC_GetStatsFxn getStatsFxn;

 /*! Function to poll for receive packets specified EMAC port*/
EMAC_PollPktFxn pollPktFxn;
/*! Function to get EMAC ICSSG port statistics, IP version 5 only*/

EMAC_GetStatsIcssgFxn getStatsIcssgFxn;
/*! Function to send IOCTL command for specified port, IP version 5 only*/

EMAC_IoctlFxn ioctlFxn;
/*! Function to Poll the driver for specified flow/rings, IP version 5 only */
 EMAC_PollCtrlFxn pollCtrl;

10.2 Dependencies

None

10.3 Decomposition of System

The following is an architecture figure which showcases the EMAC driver architecture:-

Figure 6 : EMAC LLD Subsystem Block Diagram

The figure illustrates the following key components:-

10.3.1 Platform Independent APIs

EMAC LLD exposes a set of well-defined APIs which are platform independent and

common across the platforms. These are the functions which are exposed to application

programs.

10.3.2 Platform specific functions/configurations

Platform specific functions implement actual functionality of EMAC LLD for a given

platform. These functions can be specific to one or set of platforms. There will be multiple

versions of platform specific functions based on the number of platforms supported.

Platform specific configurations will define high-level configurations specific to each

platform. This includes register address mapping, interrupts, function table initialization etc.

These configurations are included in soc file.

10.3.3 Operating System Abstraction Layer (OSAL)

The EMAC LLD is OS independent and exposes all the operating system callouts via this

OSAL layer.

10.3.4 CSL Functional Layer

The EMAC driver uses the CSL EMAC functional layer to program the device IP by
accessing the MMR.

 Platform specific

functions/configurations

 CSL Register Layer

OSAL

Interface

 Platform independent APIs

10.3.5 CSL Register Layer

The register layer is the IP block memory mapped registers which are generated by the IP
owner. The EMAC driver does not directly access the MMR registers but uses the EMAC CSL

Functional layer for this purpose.

11. OMAPL13x Integration

This section describes the changes required for adding OMAPL13x platform support to EMAC
LLD.

v0 version of EMAC LLD supported on C6657 platform will be used as reference for the

OMAPL13x integration.

11.1 Platform Independent API

There will be no change to platform independent APIs during OMAPL13x integration.

11.2 Platform Specific functions/configuration

EMAC_soc.c file will be added which defines platform specific configurations for OMAPL13x.

Gigabit support

There is gigabit speed support for OMAPL13x platform but existing v0 EMAC driver supports

gigabit mode through SGMII. Need to create new version of driver based on v0 for OMAPL13x
if we need to avoid SOC specific defines in the driver.

DNUM dependencies

DNUM register is used in the EMAC LLD to decide the core number. OMAPL13x platform

DNUM register returns a value 1 even though there is only one DSP core which is different from
other platforms. LLD changes are needed to handle this case.

11.3 OSAL

No changes are expected for EMAC LLD OSAL for integration of OMAPL13x platform.

11.4 CSL

New version of CSL-RL file is added for OMAPL13x platform.

11.5 Build Setup

Update make files to add support for OMAPL13x platform.

