Initrd

Initrd

After kernel booted, it tries to mount a file system. Using Linux on DaVinci, there are several options where this file

system can come from. Options are

* Harddisk or CompactFlash card

* MMC/SD card

« Nrs ! (see DVEVM Getting Started Guide, sprue66c.pdf, section 4.3.4 [2])
e (Flash) file system in NOR or NAND

* Ramdisk

The last option, an initial file system in a ram disk is called initrd 131 (initial ramdisk). Note that using an initrd with
recent kernels is still possible and has some advantages, but isn't recommended any more. Using initramfs 41is the

preferred way today.

initrd/initramfs (and NFS) is a file system option not permanently stored at the target device and thus normally used
while development. initrd/initramfs is typically new installed/downloaded each time the target board is power cycled
(using e.g. boot loader U-Boot). The two other options above (hard disk and flash file system) give the target system
permanently access to its file system without any external debug connection (e.g. network download) and thus are

used after development in production ready devices.
initrd

Creation
To create an (initially empty) initrd use the following steps:

Note: Change count to your required filesystem size. E.g. with count=8192 you will get a SMB ramdisk.

host > dd if=/dev/zero of=/dev/ram0 bs=1lk count=<count>
host > mke2fs -vm0 /dev/ramQO <count>
host > tune2fs -c 0 /dev/ramO

host > dd if=/dev/ram0 bs=1k count=<count> | gzip -v9 > ramdisk.gz

Now, we have a (empty) gzipped ramdisk image with (extracted) size of <count>.

Filling
To fill empty ramdisk created above with all files needed for ramdisk, mount the image and fill it. Content would be

e.g. BusyBox 51 and/or other applications and/or libraries.

host > mkdir mnt

host > gunzip ramdisk.gz

host > mount -o loop ramdisk mnt/

host > copy stuff you want to have in ramdisk to mnt...
host > umount mnt

host > gzip -v9 ramdisk

The resulting ramdisk.gz is now ready for usage. Note its size is smaller than <count> cause of compression.
Note: Don't forget to create/copy some basic /dev/xxx nodes to ramdisk.

Note: If BusyBox or applications in ramdisk are linked dynamically, don't forget to copy dynamic libraries (*.s0) to

ramdisk (to correct directory) as well.

http://processors.wiki.ti.com/index.php?title=Linux_Toolchain%23KernelLinux
http://en.wikipedia.org/wiki/Network_file_system
http://focus.ti.com/general/docs/techdocsabstract.tsp?abstractName=sprue66c
http://processors.wiki.ti.com/index.php?title=Filesystem_in_NOR_or_NAND
http://www.ibm.com/developerworks/linux/library/l-initrd.html
http://processors.wiki.ti.com/index.php?title=Initrd%23initrd_vs._initramfs
http://linuxdevices.com/articles/AT4017834659.html
http://www.busybox.net/

Initrd

Kernel options
To make initrd work, you have to configure kernel properly:
#

General setup
#

CONFIG_BLK_DEV_INITRD=y
CONFIG_INITRAMFS_SOURCE=""

#
UBI - Unsorted block images
#

CONFIG_BLK_DEV_RAM=y
CONFIG_BLK_DEV_RAM_COUNT=1
CONFIG_BLK_DEV_RAM SIZE=8192
CONFIG_BLK_DEV_RAM_ BLOCKSIZE=1024

Note: The ramdisk size e.g. 8192 above has to be configured for your individual setup.

Installation

Now, you can install the ramdisk via u-boot e.g. in NOR flash. For this copy filled ramdisk created above to your
tftpboot directory on host (e.g. /tftpboot/ramdisk.gz). Then start target and copy the data into RAM and flash:

UBOOT # tftp 0x87000000 ramdisk.gz
UBOOT # erase 0x2200000 +0x<filesize>
UBOOT # cp.b 0x87000000 0x2200000 Ox<filesize>

Note: Replace filesize above by the value the tftp download command gives you as Bytes transferred.
Now, last step is to update kernel boot parameters and save them

UBOOT # setenv bootargs ... root=/dev/ram0 rw initrd=0x87000000, 8M
UBOOT # setenv bootcmd cp.b 0x2200000 0x87000000 Ox<filesize>; bootm
UBOOT # saveenv

Note: In example above with "8M" we assume that your ramdisk is S8MBytes. Adapt this to your needs.
Note: Your ramdisk filled above should have a /dev/ram0 node

brw-—rw———— 1 root disk 1, 0 Sep 11 1999 /dev/ramO

to make this work properly.

Now you should be able to start your kernel and it should find and mount the initrd:

Linux version 2.6.23-davincil

checking if image is initramfs...it isn't (no cpio magic); looks like an initrd

Freeing initrd memory: 8192K

Initrd

RAMDISK driver initialized: 1 RAM disks of 8192K size 1024 blocksize

RAMDISK: Compressed image found at block 0
VFS: Mounted root (ext2 filesystem).

Freeing init memory:

initramfs

To use initramfs a cpio el

archive is embedded directly into the kernel. I.e. you don't create an additional (ramdisk)
image. Instead, the initial file system is directly incorporated into the kernel. With this, the kernel size increases by

the file system size. It's like you embed above ramdisk directly into the kernel.

Creation

Cause initramfs is directly embedded in the the kernel, its creation is simpler. No dd & mount & gzip stuff like with
ramdisk above. You simply have to fill a directory on your host with the target filesystem you like and then pass the

path to this directory to the kernel build process.

Create target file system

host > mkdir target_fs

host > ... copy stuff you want to have in initramfs to target_fs...

[7]

Note: cpio system used for initramfs can't handle hard links *"". If you e.g. created your BusyBox using hard links,

you will get a quite large initramfs cause each command is taken with its size and not as hard link. In cpio initramfs

use symbolic/soft links (8] nstead.

Note: To be able to detect initramfs by kernel properly, the top level directory has to contain a program called init.
For example, this can be done by using a soft link from top level init to /bin/busybox (assuming you are using

BusyBox in your initramfs).

/init -> /bin/busybox

To create the cpio archive execute the following commands.

host > cd target_fs

host > find . | cpio -H newc -o > ../target_£fs.cpio

Kernel options
The only difference from creating an initrd is to give the kernel the path to the target file system you like to embed:
#

General setup

#

CONFIG_BLK DEV_INITRD=y
CONFIG_INITRAMFS_SOURCE="<path_to>/target_£fs>"

http://en.wikipedia.org/wiki/Cpio
http://en.wikipedia.org/wiki/Hard_link
http://en.wikipedia.org/wiki/Soft_link

Initrd

UBI - Unsorted block images
#

CONFIG_BLK_DEV_RAM=y
CONFIG_BLK_DEV_RAM_COUNT=1
CONFIG_BLK_DEV_RAM SIZE=8192
CONFIG_BLK_DEV_RAM_ BLOCKSIZE=1024

Then, if you compile the kernel, e.g. by make ulmage, the cpio archive is generated and embedded into the kernel:

CHK include/linux/compile.h
GEN usr/initramfs_data.cpio.gz
AS usr/initramfs_data.o

LD usr/built-in.o
Installation

No special installation like above with initrd is necessary. The initramfs is already in the kernel. If you start the
kernel, the initramfs is already there. Therefore, there is no root=/dev/ram0 rw initrd=0x87000000,8M bootargs

option necessary. Remove this if you still have it!

initrd vs. initramfs

* Using initrd, kernel and initial file system are splitted. Making changes to kernel or filesystem doesn't touch the
other one. The download size (e.g. while development) of one component is smaller.

* Creating and modifying an initramfs is easier than with initrd (unzip & mount & unmount & zip)

* Having one big image (kernel & initramfs) is easier to handle (e.g. download or flashing) than having two splitted

images.

References

[1] http://en.wikipedia.org/wiki/Network_file_system

[2] http://focus.ti.com/general/docs/techdocsabstract.tsp?abstractName=sprue66¢c
[3] http://www.ibm.com/developerworks/linux/library/l-initrd.html

[4] http://linuxdevices.com/articles/ AT4017834659.html

[5] http://www.busybox.net/

[6] http://en.wikipedia.org/wiki/Cpio

[7] http://en.wikipedia.org/wiki/Hard_link

[8] http://en.wikipedia.org/wiki/Soft_link

http://en.wikipedia.org/wiki/Network_file_system
http://focus.ti.com/general/docs/techdocsabstract.tsp?abstractName=sprue66c
http://www.ibm.com/developerworks/linux/library/l-initrd.html
http://linuxdevices.com/articles/AT4017834659.html
http://www.busybox.net/
http://en.wikipedia.org/wiki/Cpio
http://en.wikipedia.org/wiki/Hard_link
http://en.wikipedia.org/wiki/Soft_link

Article Sources and Contributors

Article Sources and Contributors

Initrd Source: http://processors.wiki.ti.com/index.php?oldid=47945 Contributors: Db, Dirk, Isaac, Jonhunter

	Initrd
	initrd
	Creation
	Filling
	Kernel options
	Installation

	initramfs
	Creation
	Kernel options
	Installation

	initrd vs. initramfs

