
EDMA3, QDMA and IDMA
for the

 Keystone Platform

Outline

 Introduction to EDMA3

 Example 1: Single Block Transfer

 Programming EDMA3 with CSL 3.0

 Example 2: Multiple Block Transfer

 Linking vs. Chaining

QDMA

 IDMA

Why Use DMA?

D0

D1

D2

D3

buf_0

buf_1

 The primary function of DMA is to move data without direct CPU involvement

 What information does a DMA controller need to perform a transfer?

• Source address

• Destination address

• Length (or size)

 What options might be useful to perform the transfer?

• Do you want to interrupt the CPU when the transfer is complete?

• Is this transfer synchronized to an event (like the McBSP RCV buffer is full)?

• How do the source and destination addresses update? (same, +1, -1, +4 ?)

What are DMA and EDMA3 ?
 When we say “DMA”, what do we mean? Well, there are MANY
 forms of “DMA” (Direct Memory Access) on this device:

• EDMA3 – “Enhanced” DMA handles 64 DMA CHs and 8 QDMA CHs

DMA – 64 channels that can be triggered manually or by events/chaining

QDMA – 8 channels of “Quick” DMA triggered by writing to a “trigger word”

• IDMA – 2 CHs of “Internal” DMA (Periph Cfg, Xfr L1 ↔ L2)

• Peripheral “DMA”s – Each master device hooked to the TeraNet Switched

 Central Resource (SCR) has its own DMA (e.g. SRIO, EMAC, etc.)

Ch0
L1D

L2
PERIPH Ch1 L1 L2

IDMA

Q0

Q1

Q2

Q3

TC0

TC1

TC2

TC3
TeraNet

QDMA

EVTx

Chain

Manual

EDMA3

DMA

Trigger Word

TeraNet

Switched

Central

Resource

(SCR)

64

8 Q4

Q5

TC4

TC5

EDMA3 Terminology

Frame 1

ACNT Bytes

Array1 Array2 Array BCNT

Frame 2
Array1 Array2 Array BCNT

Frame CCNT
Array1 Array2 Array BCNT

CCNT

Frames

BCNT Arrays

 3-dimensional transfer consisting of ACNT, BCNT and CCNT:

• ACNT = Array = # of contiguous ACNT bytes (16-bit unsigned, 0-65535)

• BCNT = Frame = # of ACNT arrays (16-bit unsigned, 0-65535)

• CCNT = Block = # of BCNT frames (16-bit unsigned, 0-65535)

 Minimum transfer is an array of ACNT bytes

 Total transfer count = ACNT * BCNT * CCNT

EDMA3 Terminology

Frame 1

ACNT Bytes

Array1 Array2 Array BCNT

Frame 2
Array1 Array2 Array BCNT

Frame CCNT
Array1 Array2 Array BCNT

CCNT

Frames

BCNT Arrays

 3-dimensional transfer consisting of ACNT, BCNT and CCNT:

• ACNT = Array = # of contiguous ACNT bytes (16-bit unsigned, 0-65535)

• BCNT = Frame = # of ACNT arrays (16-bit unsigned, 0-65535)

• CCNT = Block = # of BCNT frames (16-bit unsigned, 0-65535)

 Minimum transfer is an array of ACNT bytes

 Total transfer count = ACNT * BCNT * CCNT

EDMA3 Terminology

Frame 1

ACNT Bytes

Array1 Array2 Array BCNT

Frame 2
Array1 Array2 Array BCNT

Frame CCNT
Array1 Array2 Array BCNT

CCNT

Frames

BCNT Arrays

 3-dimensional transfer consisting of ACNT, BCNT and CCNT:

• ACNT = Array = # of contiguous ACNT bytes (16-bit unsigned, 0-65535)

• BCNT = Frame = # of ACNT arrays (16-bit unsigned, 0-65535)

• CCNT = Block = # of BCNT frames (16-bit unsigned, 0-65535)

 Minimum transfer is an array of ACNT bytes

 Total transfer count = ACNT * BCNT * CCNT

Example: How Do You VIEW the Transfer?

ACNT = 2

BCNT = 2

CCNT = 3

ACNT = 1

BCNT = 4

CCNT = 3

ACNT = 12

BCNT = 1

CCNT = 1

8-bit

 Let‟s start with a simple example – or is it simple?

 We need to transfer 12 bytes from “here” to “there”.

 What are ACNT, BCNT and CCNT?

 You can “view” the transfer several ways:

 Which “view” is the best? Well, that depends on what
your system needs and the type of synchronization…

Note: these are contiguous
 memory locations

Example: How Do You VIEW the Transfer?

ACNT = 2

BCNT = 2

CCNT = 3

ACNT = 1

BCNT = 4

CCNT = 3

ACNT = 12

BCNT = 1

CCNT = 1

8-bit

 Let‟s start with a simple example – or is it simple?

 We need to transfer 12 bytes from “here” to “there”.

 What are ACNT, BCNT and CCNT?

 You can “view” the transfer several ways:

 Which “view” is the best? Well, that depends on what
your system needs and the type of synchronization…

Note: these are contiguous
 memory locations

Example: How Do You VIEW the Transfer?

ACNT = 2

BCNT = 2

CCNT = 3

ACNT = 1

BCNT = 4

CCNT = 3

ACNT = 12

BCNT = 1

CCNT = 1

8-bit

 Let‟s start with a simple example – or is it simple?

 We need to transfer 12 bytes from “here” to “there”.

 What are ACNT, BCNT and CCNT?

 You can “view” the transfer several ways:

 Which “view” is the best? Well, that depends on what
your system needs and the type of synchronization…

Note: these are contiguous
 memory locations

Example: How Do You VIEW the Transfer?

ACNT = 2

BCNT = 2

CCNT = 3

ACNT = 1

BCNT = 4

CCNT = 3

ACNT = 12

BCNT = 1

CCNT = 1

8-bit

 Let‟s start with a simple example – or is it simple?

 We need to transfer 12 bytes from “here” to “there”.

 What are ACNT, BCNT and CCNT?

 You can “view” the transfer several ways:

 Which “view” is the best? Well, that depends on what
your system needs and the type of synchronization…

Note: these are contiguous
 memory locations

Example: How Do You VIEW the Transfer?

ACNT = 2

BCNT = 2

CCNT = 3

ACNT = 1

BCNT = 4

CCNT = 3

ACNT = 12

BCNT = 1

CCNT = 1

8-bit

 Let‟s start with a simple example – or is it simple?

 We need to transfer 12 bytes from “here” to “there”.

 What are ACNT, BCNT and CCNT?

 You can “view” the transfer several ways:

 Which “view” is the best? Well, that depends on what
your system needs and the type of synchronization…

Note: these are contiguous
 memory locations

“A” Synchronization
 An event (like the McBSP receive register full), triggers

the transfer of exactly 1 array of ACNT bytes (2 bytes)

 Example: McBSP tied to a codec (you want to sync each transfer

 of a 16-bit word to the receive buffer being full

 or the transmit buffer being empty).

Frame 1
Array1 Array2 Array BCNT

Frame 2
Array1 Array2 Array BCNT

Frame CCNT
Array1 Array2 Array BCNT

EVTx EVTx EVTx

“AB” Synchronization
 An event triggers a two-dimensional transfer of BCNT arrays

of ACNT bytes (A*B)

 Example: Line of video pixels (each line has BCNT pixels

 consisting of 3 bytes each – Y, Cb, Cr)

Frame 1
Array1 Array2 Array BCNT

Frame 2
Array1 Array2 Array BCNT

Frame CCNT
Array1 Array2 Array BCNT

EVTx

Indexing: „BIDX & „CIDX
 EDMA3 has two types of indexing: „BIDX and „CIDX

 Each index can be set separately for SRC and DST (next slide…)

 „BIDX = index in bytes between ACNT arrays (same for A-sync and AB-sync)

 „CIDX = index in bytes between BCNT frames (different for A-sync vs. AB-sync)

 „BIDX/‟CIDX: signed 16-bit, -32768 to +32767

 „CIDX distance is calculated from the starting address of the previously
transferred block (array for A-sync, frame for AB-sync) to the next frame to
be transferred.

. .

EVTx EVTx EVTx

. .

„BIDX

„CIDXA

A-Sync

. .

EVTx

. .

„BIDX
CIDXAB

AB-Sync

Indexed Transfers

1 3

9 11

5 7

13 15

1 3

5 7

9 11

 EDMA3 has four indexes allowing higher flexibility for
complex transfers:

• SRCBIDX = # bytes between arrays (Ex: SRCBIDX = 2)

• SRCCIDX = # bytes between frames (Ex: SRCCIDXA = 2, SRCCIDXAB = 4)

• Note: „CIDX depends on the synchronization used – “A” or “AB”

• DSTBIDX = # bytes between arrays (Ex: DSTBIDX = 3)

• DSTCIDX = # bytes between frames (Ex: DSTCIDXA = 5, DSTCIDXAB = 8)

SRC (8-bit)

DST (8-bit)

SRCBIDX

SRCCIDXA

DSTBIDX

DSTCIDXA

(contiguous)

(contiguous)

Example: Using Indexing

ACNT = 2

BCNT = 2

CCNT = 3

ACNT = 1

BCNT = 4

CCNT = 3

ACNT = 12

BCNT = 1

CCNT = 1

8-bit

 Remember this example? Fill in the proper SOURCE index
values for each “view” below:

„BIDX = 1

„CIDXA = 1

„CIDXAB = 4

„BIDX = 2

„CIDXA = 2

„CIDXAB = 4

„BIDX = N/A

„CIDXA = N/A

„CIDXAB = N/A

Note: these are contiguous
 memory locations

Example: Using Indexing

ACNT = 2

BCNT = 2

CCNT = 3

ACNT = 1

BCNT = 4

CCNT = 3

ACNT = 12

BCNT = 1

CCNT = 1

8-bit

 Remember this example? Fill in the proper SOURCE index
values for each “view” below:

„BIDX = 1

„CIDXA = 1

„CIDXAB = 4

„BIDX = 2

„CIDXA = 2

„CIDXAB = 4

„BIDX = N/A

„CIDXA = N/A

„CIDXAB = N/A

Note: these are contiguous
 memory locations

Example: Using Indexing

ACNT = 2

BCNT = 2

CCNT = 3

ACNT = 1

BCNT = 4

CCNT = 3

ACNT = 12

BCNT = 1

CCNT = 1

8-bit

 Remember this example? Fill in the proper SOURCE index
values for each “view” below:

„BIDX = 1

„CIDXA = 1

„CIDXAB = 4

„BIDX = 2

„CIDXA = 2

„CIDXAB = 4

„BIDX = N/A

„CIDXA = N/A

„CIDXAB = N/A

Note: these are contiguous
 memory locations

Example: Using Indexing

ACNT = 2

BCNT = 2

CCNT = 3

ACNT = 1

BCNT = 4

CCNT = 3

ACNT = 12

BCNT = 1

CCNT = 1

8-bit

 Remember this example? Fill in the proper SOURCE index
values for each “view” below:

„BIDX = 1

„CIDXA = 1

„CIDXAB = 4

„BIDX = 2

„CIDXA = 2

„CIDXAB = 4

„BIDX = N/A

„CIDXA = N/A

„CIDXAB = N/A

Note: these are contiguous
 memory locations

 EDMA3 has 256 Parameter RAM sets (PSETs) that contain

configuration information about a transfer

 64 DMA CHs and 8 QDMA CHs can be mapped to any one of
the 256 PSETs and then triggered to run (by various methods)

PaRAM Set 0

PaRAM Set 1

PSET 63

PSET 64

PSET 255

. .

. .
31 0

Options

Source

Destination

CCNT RSVD

ACNT BCNT

SRCBIDX DSTBIDX

LINK BCNTRLD

SRCCIDX DSTCIDX

 Each PSET contains 12 register fields:

• Options (interrupt, chaining, sync mode, etc)

• SRC/DST addresses

• ACNT/BCNT/CCNT (size of transfer)

• Four SRC/DST Indexes

• BCNTRLD (BCNT reload for 3D xfrs)

• LINK (pointer to another PSET)

.

.
63

64 DMA CHs

0

0
.
.
3

8 QDMA CHs

Note: PSETs are dedicated EDMA RAM (not part of IRAM)

EDMA3 Parameter RAM Sets (PSETS)

TeraNet Switch Fabric Connections

Te
ra

N
et

 3
_A

 C
P

U
/3

TeraNet3_B

CPU/3

TeraNet2_A

CPU/2

TeraNet2_A

CPU/2

TeraNet3P_A

CPU/3

TeraNet3_E

CPU/3

TeraNet6P_A

CPU/3

TeraNet3_G

CPU/3
TeraNet3_H

CPU/3

TeraNet3_D

CPU/3

TeraNet3_F

CPU/3

Cores

Bridge 1-4

Bridge 5-10

Bridge 12-14

SLA
V

ES

M
A

STER
S

For more information, refer to your device-specific data manual.

IDMA = Internal DMA
 C64x+ IDMA – Performs background data movement or peripheral programming
 WITHOUT using EDMA bandwidth/resources or TeraNet SCR (internal to CorePac).

Channel 0 (IDMA0 – Hi Priority)

• Performs rapid programming of peripheral configuration registers

• Avoids unnecessary wait states through CFG bus vs. traditional use of
 the CPU copying config structures from L2 to the peripheral registers

• Typically used when new config structures are needed quickly. A copy
 of the structures can be stored in L1D/L2 and then transferred during run-time.

L1D

L2

PERIPH

Cfg

Channel 1 (IDMA1 – Lo Priority)

• Rapid block transfers between L1P, L1D, L2
L1P L1D L2

IDMA0

Outline

 Introduction to EDMA3

 Example 1: Single Block Transfer

 Programming EDMA3 with CSL 3.0

 Example 2: Multiple Block Transfer

 Linking vs. Chaining

QDMA

 IDMA

Single Block Transfer Process

1. Trigger the transfer to start

2. EDMA3 executes the transfer

3. Post-transfer actions

 notify the CPU (interrupt)

 start another transfer (chaining)

Trigger an EDMA3 Transfer to Start
 Each of the 64 DMA channels can be triggered by any of the following:

Event Triggering (from a peripheral) – EER/ER

Manual Triggering - ESR

Chain Triggering - CER

Examples

• McBSP 0/1 (REVT0/1, XEVT0/1)

• Timer 0/1 (TEVTLO/HI 0/1)

• GPIO (GPINT[15:5])

• Chip Int Cntlr 3 (CIC3[15:0])

• VCP2 (VCP2REVT/XEVT)

• TCP2 (TCP2REVT/XEVT)

• FSEVT[13:4]

• I2C (ICREVT/XEVT)

 Each event is tied to a specific DMA channel (e.g. XEVT1 → Ch 14) and can be
 enabled/disabled via EER register

Evt Reg (ER)

Evt Enable Reg

(EER)

Periphs

 CPU writes a “1” to the corresponding bit of the
 Event Set Register (ESR)

Evt Set Reg

(ESR)

Chain Evt Reg

(CER)

 Used to execute a sequence of TRs after a single event

 Ex: EVT0 triggers Ch0, Ch0 completes and triggers Ch1 (TCC=1)

 Chained events are captured in the Chain Event Register (CER)

E0 E1 E63

Trigger an EDMA3 Transfer to Start
 Each of the 64 DMA channels can be triggered by any of the following:

Event Triggering (from a peripheral) – EER/ER

Manual Triggering - ESR

Chain Triggering - CER

Examples

• McBSP 0/1 (REVT0/1, XEVT0/1)

• Timer 0/1 (TEVTLO/HI 0/1)

• GPIO (GPINT[15:5])

• Chip Int Cntlr 3 (CIC3[15:0])

• VCP2 (VCP2REVT/XEVT)

• TCP2 (TCP2REVT/XEVT)

• FSEVT[13:4]

• I2C (ICREVT/XEVT)

 Each event is tied to a specific DMA channel (e.g. XEVT1 → Ch 14) and can be
 enabled/disabled via EER register

Evt Reg (ER)

Evt Enable Reg

(EER)

Periphs

 CPU writes a “1” to the corresponding bit of the
 Event Set Register (ESR)

Evt Set Reg

(ESR)

Chain Evt Reg

(CER)

 Used to execute a sequence of TRs after a single event

 Ex: EVT0 triggers Ch0, Ch0 completes and triggers Ch1 (TCC=1)

 Chained events are captured in the Chain Event Register (CER)

E0 E1 E63

Parameters for a Single Block Transfer

&myDest:

8 bits

8

9

10

11

7

8

9

10

• Transfer a block of 8-bit pixels from

 &pixel_7 to &myDest

• Transfer all pixels as quickly as possible

 (single EVTx – xfr all data, AB-sync)

31 0

Options

Source

Destination

CCNT RSVD

ACNT BCNT

SRCBIDX DSTBIDX

LINK BCNTRLD

SRCCIDX DSTCIDX

13

14

15

16

19

20

21

22

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

8-bit Pixels

(Src: &pixel_7)

Goals:

31 0

Options

&pixel_7

&myDest

1 RSVD

4 3

6 4

0xFFFF (later) = BCNT

0 0

Solution Param Set (active)

• Why can‟t we use ACNT=1?

• How does this transfer work
 inside the EDMA?

• What happens when the transfer
 completes?

• How do you program this transfer?

Note: data values are
in contiguous memory

Parameters for a Single Block Transfer

&myDest:

8 bits

8

9

10

11

7

8

9

10

• Transfer a block of 8-bit pixels from

 &pixel_7 to &myDest

• Transfer all pixels as quickly as possible

 (single EVTx – xfr all data, AB-sync)

31 0

Options

Source

Destination

CCNT RSVD

ACNT BCNT

SRCBIDX DSTBIDX

LINK BCNTRLD

SRCCIDX DSTCIDX

13

14

15

16

19

20

21

22

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

8-bit Pixels

(Src: &pixel_7)

Goals:

31 0

Solution Param Set (active)

• Why can‟t we use ACNT=1?

• How does this transfer work
 inside the EDMA?

• What happens when the transfer
 completes?

• How do you program this transfer?

Note: data values are
in contiguous memory

Parameters for a Single Block Transfer

&myDest:

8 bits

8

9

10

11

7

8

9

10

• Transfer a block of 8-bit pixels from

 &pixel_7 to &myDest

• Transfer all pixels as quickly as possible

 (single EVTx – xfr all data, AB-sync)

31 0

Options

Source

Destination

CCNT RSVD

ACNT BCNT

SRCBIDX DSTBIDX

LINK BCNTRLD

SRCCIDX DSTCIDX

13

14

15

16

19

20

21

22

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

8-bit Pixels

(Src: &pixel_7)

Goals:

31 0

Solution Param Set (active)

• Why can‟t we use ACNT=1?

• How does this transfer work
 inside the EDMA?

• What happens when the transfer
 completes?

• How do you program this transfer?

Note: data values are
in contiguous memory

Parameters for a Single Block Transfer

&myDest:

8 bits

8

9

10

11

7

8

9

10

• Transfer a block of 8-bit pixels from

 &pixel_7 to &myDest

• Transfer all pixels as quickly as possible

 (single EVTx – xfr all data, AB-sync)

31 0

Options

Source

Destination

CCNT RSVD

ACNT BCNT

SRCBIDX DSTBIDX

LINK BCNTRLD

SRCCIDX DSTCIDX

13

14

15

16

19

20

21

22

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

8-bit Pixels

(Src: &pixel_7)

Goals:

31 0

AB-sync

1

4 3

Solution Param Set (active)

• Why can‟t we use ACNT=1?

• How does this transfer work
 inside the EDMA?

• What happens when the transfer
 completes?

• How do you program this transfer?

Note: data values are
in contiguous memory

Parameters for a Single Block Transfer

&myDest:

8 bits

8

9

10

11

7

8

9

10

• Transfer a block of 8-bit pixels from

 &pixel_7 to &myDest

• Transfer all pixels as quickly as possible

 (single EVTx – xfr all data, AB-sync)

31 0

Options

Source

Destination

CCNT RSVD

ACNT BCNT

SRCBIDX DSTBIDX

LINK BCNTRLD

SRCCIDX DSTCIDX

13

14

15

16

19

20

21

22

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

8-bit Pixels

(Src: &pixel_7)

Goals:

31 0

AB-sync

1

4 3

Solution Param Set (active)

• Why can‟t we use ACNT=1?

• How does this transfer work
 inside the EDMA?

• What happens when the transfer
 completes?

• How do you program this transfer?

Note: data values are
in contiguous memory

Parameters for a Single Block Transfer

&myDest:

8 bits

8

9

10

11

7

8

9

10

• Transfer a block of 8-bit pixels from

 &pixel_7 to &myDest

• Transfer all pixels as quickly as possible

 (single EVTx – xfr all data, AB-sync)

31 0

Options

Source

Destination

CCNT RSVD

ACNT BCNT

SRCBIDX DSTBIDX

LINK BCNTRLD

SRCCIDX DSTCIDX

13

14

15

16

19

20

21

22

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

8-bit Pixels

(Src: &pixel_7)

Goals:

31 0

AB-sync

4 3

Solution Param Set (active)

• Why can‟t we use ACNT=1?

• How does this transfer work
 inside the EDMA?

• What happens when the transfer
 completes?

• How do you program this transfer?

Note: data values are
in contiguous memory

1

Parameters for a Single Block Transfer

&myDest:

8 bits

8

9

10

11

7

8

9

10

• Transfer a block of 8-bit pixels from

 &pixel_7 to &myDest

• Transfer all pixels as quickly as possible

 (single EVTx – xfr all data, AB-sync)

31 0

Options

Source

Destination

CCNT RSVD

ACNT BCNT

SRCBIDX DSTBIDX

LINK BCNTRLD

SRCCIDX DSTCIDX

13

14

15

16

19

20

21

22

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

8-bit Pixels

(Src: &pixel_7)

Goals:

31 0

4

Solution Param Set (active)

• Why can‟t we use ACNT=1?

• How does this transfer work
 inside the EDMA?

• What happens when the transfer
 completes?

• How do you program this transfer?

Note: data values are
in contiguous memory

A-sync?

Parameters for a Single Block Transfer

&myDest:

8 bits

8

9

10

11

7

8

9

10

• Transfer a block of 8-bit pixels from

 &pixel_7 to &myDest

• Transfer all pixels as quickly as possible

 (single EVTx – xfr all data, AB-sync)

31 0

Options

Source

Destination

CCNT RSVD

ACNT BCNT

SRCBIDX DSTBIDX

LINK BCNTRLD

SRCCIDX DSTCIDX

13 - 11

14 - 12

15 - 13

16 - 14

19 - 15

20 - 16

21 - 17

22 - 18

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

8-bit Pixels

(Src: &pixel_7)

Goals:

31 0

12

Solution Param Set (active)

• Why can‟t we use ACNT=1?

• How does this transfer work
 inside the EDMA?

• What happens when the transfer
 completes?

• How do you program this transfer?

Note: data values are
in contiguous memory

A-sync?

Parameters for a Single Block Transfer

&myDest:

8 bits

8

9

10

11

7

8

9

10

• Transfer a block of 8-bit pixels from

 &pixel_7 to &myDest

• Transfer all pixels as quickly as possible

 (single EVTx – xfr all data, AB-sync)

31 0

Options

Source

Destination

CCNT RSVD

ACNT BCNT

SRCBIDX DSTBIDX

LINK BCNTRLD

SRCCIDX DSTCIDX

13

14

15

16

19

20

21

22

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

8-bit Pixels

(Src: &pixel_7)

Goals:

31 0

AB-sync

1

4 3

Solution Param Set (active)

• Why can‟t we use ACNT=1?

• How does this transfer work
 inside the EDMA?

• What happens when the transfer
 completes?

• How do you program this transfer?

Note: data values are
in contiguous memory

&pixel_7

&myDest

Parameters for a Single Block Transfer

&myDest:

8 bits

8

9

10

11

7

8

9

10

• Transfer a block of 8-bit pixels from

 &pixel_7 to &myDest

• Transfer all pixels as quickly as possible

 (single EVTx – xfr all data, AB-sync)

31 0

Options

Source

Destination

CCNT RSVD

ACNT BCNT

SRCBIDX DSTBIDX

LINK BCNTRLD

SRCCIDX DSTCIDX

13

14

15

16

19

20

21

22

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

8-bit Pixels

(Src: &pixel_7)

Goals:

31 0

AB-sync

1

4 3

Solution Param Set (active)

• Why can‟t we use ACNT=1?

• How does this transfer work
 inside the EDMA?

• What happens when the transfer
 completes?

• How do you program this transfer?

Note: data values are
in contiguous memory

&pixel_7

&myDest

6

Parameters for a Single Block Transfer

&myDest:

8 bits

8

9

10

11

7

8

9

10

• Transfer a block of 8-bit pixels from

 &pixel_7 to &myDest

• Transfer all pixels as quickly as possible

 (single EVTx – xfr all data, AB-sync)

31 0

Options

Source

Destination

CCNT RSVD

ACNT BCNT

SRCBIDX DSTBIDX

LINK BCNTRLD

SRCCIDX DSTCIDX

13

14

15

16

19

20

21

22

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

8-bit Pixels

(Src: &pixel_7)

Goals:

31 0

AB-sync

1

4 3

Solution Param Set (active)

• Why can‟t we use ACNT=1?

• How does this transfer work
 inside the EDMA?

• What happens when the transfer
 completes?

• How do you program this transfer?

Note: data values are
in contiguous memory

&pixel_7

&myDest

6 4

Parameters for a Single Block Transfer

&myDest:

8 bits

8

9

10

11

7

8

9

10

• Transfer a block of 8-bit pixels from

 &pixel_7 to &myDest

• Transfer all pixels as quickly as possible

 (single EVTx – xfr all data, AB-sync)

31 0

Options

Source

Destination

CCNT RSVD

ACNT BCNT

SRCBIDX DSTBIDX

LINK BCNTRLD

SRCCIDX DSTCIDX

13

14

15

16

19

20

21

22

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

8-bit Pixels

(Src: &pixel_7)

Goals:

31 0

AB-sync

1

4 3

0 0

Solution Param Set (active)

• Why can‟t we use ACNT=1?

• How does this transfer work
 inside the EDMA?

• What happens when the transfer
 completes?

• How do you program this transfer?

Note: data values are
in contiguous memory

&pixel_7

&myDest

6 4

Parameters for a Single Block Transfer

&myDest:

8 bits

8

9

10

11

7

8

9

10

• Transfer a block of 8-bit pixels from

 &pixel_7 to &myDest

• Transfer all pixels as quickly as possible

 (single EVTx – xfr all data, AB-sync)

31 0

Options

Source

Destination

CCNT RSVD

ACNT BCNT

SRCBIDX DSTBIDX

LINK BCNTRLD

SRCCIDX DSTCIDX

13

14

15

16

19

20

21

22

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

8-bit Pixels

(Src: &pixel_7)

Goals:

31 0

AB-sync

1

4 3

BCNT or any
0 0

Solution Param Set (active)

• Why can‟t we use ACNT=1?

• How does this transfer work
 inside the EDMA?

• What happens when the transfer
 completes?

• How do you program this transfer?

Note: data values are
in contiguous memory

&pixel_7

&myDest

6 4

Parameters for a Single Block Transfer

&myDest:

8 bits

8

9

10

11

7

8

9

10

• Transfer a block of 8-bit pixels from

 &pixel_7 to &myDest

• Transfer all pixels as quickly as possible

 (single EVTx – xfr all data, AB-sync)

31 0

Options

Source

Destination

CCNT RSVD

ACNT BCNT

SRCBIDX DSTBIDX

LINK BCNTRLD

SRCCIDX DSTCIDX

13

14

15

16

19

20

21

22

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

8-bit Pixels

(Src: &pixel_7)

Goals:

31 0

AB-sync

1

4 3

0xffff 3

0 0

Solution Param Set (active)

• Why can‟t we use ACNT=1?

• How does this transfer work
 inside the EDMA?

• What happens when the transfer
 completes?

• How do you program this transfer?

Note: data values are
in contiguous memory

&pixel_7

&myDest

6 4

Parameters for a Single Block Transfer

&myDest:

8 bits

8

9

10

11

7

8

9

10

• Transfer a block of 8-bit pixels from

 &pixel_7 to &myDest

• Transfer all pixels as quickly as possible

 (single EVTx – xfr all data, AB-sync)

31 0

Options

Source

Destination

CCNT RSVD

ACNT BCNT

SRCBIDX DSTBIDX

LINK BCNTRLD

SRCCIDX DSTCIDX

13

14

15

16

19

20

21

22

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

8-bit Pixels

(Src: &pixel_7)

Goals:

31 0

AB-sync

1

4 3

0xffff 3

0 0

Solution Param Set (active)

• Why can‟t we use ACNT=1?

• How does this transfer work
 inside the EDMA?

• What happens when the transfer
 completes?

• How do you program this transfer?

Note: data values are
in contiguous memory

&pixel_7

&myDest

6 4

Transfer Complete Code (TCC)

 TCC is generated when a transfer completes.

 TCC can be used to trigger a CPU interrupt and/or another transfer (chaining)

 Each TR below represents one “Transfer Request” which is either ACNT bytes (A-sync)

or ACNT * BCNT bytes (AB-sync).

TR TR TR TR

EVTx EVTx EVTx EVTx TCC

31 18 17 12

Options Reg TCC
11 0

0-63

Transfer Complete Code (TCC)

 TCC is generated when a transfer completes.

 TCC can be used to trigger a CPU interrupt and/or another transfer (chaining)

 Each TR below represents one “Transfer Request” which is either ACNT bytes (A-sync)

or ACNT * BCNT bytes (AB-sync).

TR TR TR TR

EVTx EVTx EVTx EVTx TCC

31 18 17 12

Options Reg TCC
11 0

0-63

Transfer Completion

Transfer Completion indicates a COMPLETE transfer sequence has been completed.

 Chain Event Register (CER[TCC]) gets set if selected by TCCHEN (chaining)

 Interrupt Pending Register (IPR[TCC]) set if selected by TCINTEN (this can interrupt the CPU)

31 23 22

OPT TCINTEN

20 17 0

TCCHEN

TR TR TR

EVTx EVTx EVTx EVTx

TR

 Each TR (Transfer Request) can be ACNT bytes (A-sync) or ACNT*BCNT bytes (AB-sync)

 This “Final” TCC is for only the LAST TR of a transfer.

EVTx =

• ER (sync)

• ESR (manual)

• CER (chain)

Final

12

TCC

Ch 0-63

Outline

 Introduction to EDMA3

 Example 1: Single Block Transfer

 Programming EDMA3 with CSL 3.0

 Example 2: Multiple Block Transfer

 Linking vs. Chaining

QDMA

 IDMA

EDMA3 Programming Model

1. Initialize EDMA3 Module

2. Configure Channel

A. Channel #, Handle

B. Options Register

C. Other Channel Parameters (ACNT, BCNT, etc)

D. Write Config Values to PARAM

3. Start the Channel Running (manual, sync, …)

Example 1: Single Block Transfer

&myDest:

8 bits

8

9

10

11

7

8

9

10

 From the proceeding slides, our goal
 is to program this example transfer

 We need to program:

31 0

Options

Source

Destination

CCNT RSVD

ACNT BCNT

SRCBIDX DSTBIDX

LINK BCNTRLD

SRCCIDX DSTCIDX

13

14

15

16

19

20

21

22

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

8-bit Pixels

(Src: &pixel_7)

31 0

TCC & AB-sync

&pixel_7

&myDest

1 RSVD

4 3

6 4

0xFFFF = BCNT

0 0

Solution Parameter Set (n)

Note: data values are
in contiguous memory

• Options Register
 (TCC, Sync: A or AB)

• ACNT, BCNT, CCNT

• „BIDX, „CIDX

• Src/Dst Addrs

Let’s look at the CSL code

required to program this

example transfer…

Step 1: Initialize EDMA3 Module

#include <csl.h>

#include <csl_edma3.h>
CSL_Edma3Context context;

CSL_Status status;

CSL_Edma3Handle hEdmaModule;

CSL_Edma3Obj edmaObj;

// Init is a CSL placeholder function for consistency (must be executed first)

status = CSL_edma3Init(&context);

// Open populates the Object and returns the Module handle

hEdmaModule = CSL_edma3Open(&edmaObj, CSL_EDMA3, NULL, &status);

Declarations

Init EDMA3
Module

Get Handle to
EDMA3 Module

Step 2A: Open Channel

CSL_Edma3ChannelObj chObj;

CSL_Edma3ChannelAttr chAttr;

CSL_Edma3ChannelHandle hChannel;

chAttr.regionNum = CSL_EDMA3_REGION_GLOBAL;

chAttr.chaNum = CSL_EDMA3_CHA_4; // Channel w/ no event tied to it

hChannel = CSL_edma3ChannelOpen(&chObj, CSL_EDMA3, &chAttr, &status);

Declarations

Ch Selection

Open Ch

 CSL_edma3ChannelOpen() is similar to <mod>Open.

In this case, it populates the CHANNEL object and

returns a handle to the opened CHANNEL.

 In the following code, we can use this handle

(hChannel) to write to the channel‟s register set.

Let’s first review the OPTIONS register…

Channel OPTions Register

 The Options register contains bit fields that configure how the channel operates

 Each field has a corresponding description in the Param Setup code comments

TCC = Transfer Complete Code to signal completion

SYNCDIM = A-sync or AB-sync

Step 2B: Configure Options

CSL_Edma3ParamSetup myParamSetup = {

CSL_EDMA3_OPT_MAKE (

 CSL_EDMA3_ITCCH_DIS,

 CSL_EDMA3_TCCH_DIS,

 CSL_EDMA3_ITCINT_DIS,

 CSL_EDMA3_TCINT_DIS,

 CSL_EDMA3_CHA_4, // TCC (ex., match ch)

 CSL_EDMA3_TCC_NORMAL,

 CSL_EDMA3_FIFOWIDTH_NONE,

 CSL_EDMA3_STATIC_DIS,

 CSL_EDMA3_SYNC_AB, // Sync mode (A or AB)

 CSL_EDMA3_ADDRMODE_INCR,

 CSL_EDMA3_ADDRMODE_INCR),

 . . .

Step 2C: Configure Channel Params

 &pixel_7, // Source Addr

 CSL_EDMA3_CNT_MAKE(4, 3), // aCntbCnt - (ACNT, BCNT)

 &myDest, // Dest Addr

 CSL_EDMA3_BIDX_MAKE(6, 4), // srcDstBidx - (SRCBIDX, DSTBIDX)

 CSL_EDMA3_LINKBCNTRLD_MAKE(0xFFFF, 3), // linkBcntrld - (LINK, BCNTRLD)

 CSL_EDMA3_CIDX_MAKE(0 ,0), // srcDstCidx - (SRCCIDX, DSTCIDX)

 1 // cCnt - CCNT

};

31 0

Options

Source

Destination

CCNT RSVD

ACNT BCNT

SRCBIDX DSTBIDX

LINK BCNTRLD

SRCCIDX DSTCIDX

31 0

Options

&pixel_7

&myDest

1 RSVD

4 3

6 4

0xFFFF (later) = BCNT

0 0

Step 2D: Write Channel Params to PSET

// write the PaRAM setup values to PaRAM – this gets the handle to the PSET (e.g. #249)

PsetNum = 249;

hParam = CSL_edma3GetParamHandle(hChannel, PsetNum, NULL);

status = CSL_edma3ParamSetup(hParam, &myParamSetup);

// map the channel (#4) to the PSET (#249)

CSL_edma3HwChannelSetupParam(hChannel, PsetNum)

// map the channel (#4) to a queue

CSL_edma3HwChannelSetupQue(hChannel, CSL_EDMA3_QUE_1)

31 0

Options

Source

Destination

CCNT RSVD

ACNT BCNT

SRCBIDX DSTBIDX

LINK BCNTRLD

SRCCIDX DSTCIDX

31 0

Options

&pixel_7

&myDest

1 RSVD

4 3

6 4

0xFFFF (later) = BCNT

0 0

Step 3: Enable and Start Channel

CSL_edma3HwChannelControl(hChannel, CSL_EDMA3_CMD_CHANNEL_ENABLE, NULL);

CSL_edma3HwChannelControl(hChannel, CSL_EDMA3_CMD_CHANNEL_SET, NULL);

• Event Sync from peripheral (Event Enable Register – set bit in EER, next example)

• Manually Trigger the channel to Run (Event Set Register – ESR) (shown below)

• Chain Event from another channel (Chain Event Register – CER)

 Start the Channel Running (3 options)

 Notice both call CSL_edma3HwChannelControl().
This is used to enable the channel or to start it manually,
i.e. it controls the Ch‟s operation.

Outline

 Introduction to EDMA3

 Example 1: Single Block Transfer

 Programming EDMA3 with CSL 3.0

 Example 2: Multiple Block Transfer

 Linking vs. Chaining

QDMA

 IDMA

Linking Ping → Pong → Ping → Etc.

 CPU EDMA3

CHAN 15

Rcv

ADC

DAC

McBSP1
REVT1

XEVT1

CHAN 14

Xmt

COPY
Ping AIC23

Audio Codec

Dest = DXR

LINK = PSETZ

Src = XmtPing

Dest = DXR

LINK = PSETZ

Src = XmtPing

PaRAM Ping

Dest = DXR

LINK = PSETY

Src = XmtPong

PaRAM Pong

PSETX (Active) PSETY Ping PSETZ Pong

Channel XEVT1

Pong

How do we link transfers for ping and pong?

Linking Ping → Pong → Ping → Etc.

 CPU EDMA3

CHAN 15

Rcv

ADC

DAC

McBSP1
REVT1

XEVT1

CHAN 14

Xmt

COPY
Ping AIC23

Audio Codec

Dest = DXR

LINK = PSETZ

Src = XmtPing

Dest = DXR

LINK = PSETZ

Src = XmtPing

PaRAM Ping

Dest = DXR

LINK = PSETY

Src = XmtPong

PaRAM Pong

PSETX (Active) PSETY Ping PSETZ Pong

Channel XEVT1

Pong

How do we link transfers for ping and pong? Use the Active PSET plus two Link PSETs. Assign
different Src addresses to use the desired buffer.

Linking Ping → Pong → Ping → Etc.

 CPU EDMA3

CHAN 15

Rcv

ADC

DAC

McBSP1
REVT1

XEVT1

CHAN 14

Xmt

COPY
Ping AIC23

Audio Codec

Dest = DXR

LINK = PSETZ

Src = XmtPing

Dest = DXR

LINK = PSETZ

Src = XmtPing

PaRAM Ping

Dest = DXR

LINK = PSETY

Src = XmtPong

PaRAM Pong

PSETX (Active) PSETY Ping PSETZ Pong

Channel XEVT1

Pong

How do we link transfers for ping and pong? Use the Active PSET plus two Link PSETs. Assign
different Src addresses to use the desired buffer. Set LINK field to point to the NEXT PSET to use.

Linking Ping → Pong → Ping → Etc.

 CPU EDMA3

CHAN 15

Rcv

ADC

DAC

McBSP1
REVT1

XEVT1

CHAN 14

COPY
AIC23

Audio Codec

Dest = DXR

LINK = PSETY

Src = XmtPing

Channel XEVT1

Dest = DXR

LINK = PSETZ

Src = XmtPing

PaRAM Ping

Dest = DXR

LINK = PSETY

Src = XmtPong

PaRAM Pong

PSETX (Active) PSETY Ping PSETZ Pong

Dest = DXR

LINK = PSETY

Src = XmtPong

Channel XEVT1

How do we link transfers for ping and pong? When Active Ch PSETX is complete, PSETZ Pong
is COPIED to Active Ch PSETX.

Xmt
Ping

Pong

Linking Ping → Pong → Ping → Etc.

 CPU EDMA3

CHAN 15

Rcv

ADC

DAC

McBSP1
REVT1

XEVT1

CHAN 14

COPY
AIC23

Audio Codec

Dest = DXR

LINK = PSETY

Src = XmtPing

Channel XEVT1

Dest = DXR

LINK = PSETZ

Src = XmtPing

PaRAM Ping

Dest = DXR

LINK = PSETY

Src = XmtPong

PaRAM Pong

PSETX (Active) PSETY Ping PSETZ Pong

Dest = DXR

LINK = PSETZ

Src = XmtPing

Channel XEVT1

How do we link transfers for ping and pong? When Active Ch PSETX is complete, PSETZ Pong
is COPIED to Active Ch PSETX. When Pong is done, PSETY Ping is COPIED to Active Ch PSETX.

Xmt
Ping

Pong

Example 2: Multiple Block Transfer

• Transfer two blocks of 16-bit audio
 data from &audio_7 & _37 to McBSP1 DXR

• Trigger an interrupt to CPU after both blocks
 have been transferred.

• Link between ping (_7) & pong (_37) using PSets

Options

Source

Destination

CCNT RSVD

ACNT BCNT

SRCBIDX DSTBIDX

LINK BCNTRLD

SRCCIDX DSTCIDX

Goals:

PSETX (Active)

McBSP1

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

16-bit Audio Data

30 31 32 33 34 35

36 37 38 39 40 41

42 43 44 45 46 47

48 49 50 51 52 53

54 55 56 57 58 59

Dst: &DXR

PSETZ Pong

Options

&audio_37

&DXR

2 4

2 0

PSETY 4

6 0

3

PSETY Ping

Options

&audio_7

&DXR

2 4

2 0

PSETZ 4

6 0

3

Ping Src: &audio_7

Pong Src: &audio_37

• What kind of Sync? (A or AB)

• Sizes of ACNT, BCNT, CCNT and indexes?

• Which Channel should we use and why?

Questions:

• When should we
 generate an interrupt?

• How do we generate
 an interrupt at the end
 of the transfer?

• How do we write the code
 to generate an interrupt?

EDMA Interrupt

Example 2: Multiple Block Transfer

• Transfer two blocks of 16-bit audio
 data from &audio_7 & _37 to McBSP1 DXR

• Trigger an interrupt to CPU after both blocks
 have been transferred.

• Link between ping (_7) & pong (_37) using PSets

Options

Source

Destination

CCNT RSVD

ACNT BCNT

SRCBIDX DSTBIDX

LINK BCNTRLD

SRCCIDX DSTCIDX

Goals:

PSETX (Active)

McBSP1

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

16-bit Audio Data

30 31 32 33 34 35

36 37 38 39 40 41

42 43 44 45 46 47

48 49 50 51 52 53

54 55 56 57 58 59

Dst: &DXR

PSETZ Pong

Options

&audio_37

&DXR

2 4

2 0

PSETY 4

6 0

3

PSETY Ping

Options

&audio_7

&DXR

2 4

2 0

PSETZ 4

6 0

3

Ping Src: &audio_7

Pong Src: &audio_37

• What kind of Sync? (A or AB)

• Sizes of ACNT, BCNT, CCNT and indexes?

• Which Channel should we use and why?

Questions:

• When should we
 generate an interrupt?

• How do we generate
 an interrupt at the end
 of the transfer?

• How do we write the code
 to generate an interrupt?

EDMA Interrupt

Example 2: Multiple Block Transfer

• Transfer two blocks of 16-bit audio
 data from &audio_7 & _37 to McBSP1 DXR

• Trigger an interrupt to CPU after both blocks
 have been transferred.

• Link between ping (_7) & pong (_37) using PSets

Options

Source

Destination

CCNT RSVD

ACNT BCNT

SRCBIDX DSTBIDX

LINK BCNTRLD

SRCCIDX DSTCIDX

Goals:

PSETX (Active)

McBSP1

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

16-bit Audio Data

30 31 32 33 34 35

36 37 38 39 40 41

42 43 44 45 46 47

48 49 50 51 52 53

54 55 56 57 58 59

Dst: &DXR

PSETZ Pong

Options

&audio_37

&DXR

2 4

2 0

PSETY 4

6 0

3

PSETY Ping

Options

&audio_7

&DXR

2 4

2 0

PSETZ 4

6 0

3

Ping Src: &audio_7

Pong Src: &audio_37

• What kind of Sync? (A or AB)

• Sizes of ACNT, BCNT, CCNT and indexes?

• Which Channel should we use and why?

Questions:

• When should we
 generate an interrupt?

• How do we generate
 an interrupt at the end
 of the transfer?

• How do we write the code
 to generate an interrupt?

EDMA Interrupt

XEVT1

Example 2: Multiple Block Transfer

• Transfer two blocks of 16-bit audio
 data from &audio_7 & _37 to McBSP1 DXR

• Trigger an interrupt to CPU after both blocks
 have been transferred.

• Link between ping (_7) & pong (_37) using PSets

Options – A-sync

Source

Destination

CCNT RSVD

ACNT BCNT

SRCBIDX DSTBIDX

LINK BCNTRLD

SRCCIDX DSTCIDX

Goals:

PSETX (Active)

McBSP1

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

16-bit Audio Data

30 31 32 33 34 35

36 37 38 39 40 41

42 43 44 45 46 47

48 49 50 51 52 53

54 55 56 57 58 59

Dst: &DXR

PSETZ Pong

Options

&audio_37

&DXR

2 4

2 0

PSETY 4

6 0

3

PSETY Ping

Options

&audio_7

&DXR

2 4

2 0

PSETZ 4

6 0

3

Ping Src: &audio_7

Pong Src: &audio_37

• What kind of Sync? A-sync for 2 bytes per XEVT1

• Sizes of ACNT, BCNT, CCNT and indexes?

• Which Channel should we use and why?

Questions:

• When should we
 generate an interrupt?

• How do we generate
 an interrupt at the end
 of the transfer?

• How do we write the code
 to generate an interrupt?

EDMA Interrupt

XEVT1

Example 2: Multiple Block Transfer

• Transfer two blocks of 16-bit audio
 data from &audio_7 & _37 to McBSP1 DXR

• Trigger an interrupt to CPU after both blocks
 have been transferred.

• Link between ping (_7) & pong (_37) using PSets

Options – A-sync

Source

Destination

CCNT RSVD

ACNT BCNT

SRCBIDX DSTBIDX

LINK BCNTRLD

SRCCIDX DSTCIDX

Goals:

PSETX (Active)

McBSP1

16-bit Audio Data

30 31 32 33 34 35

36 37 38 39 40 41

42 43 44 45 46 47

48 49 50 51 52 53

54 55 56 57 58 59

Dst: &DXR

PSETZ Pong

Options

&audio_37

&DXR

2 4

2 0

PSETY 4

6 0

3

PSETY Ping

Options

&audio_7

&DXR

2 4

2 0

PSETZ 4

6 0

3

Ping Src: &audio_7

Pong Src: &audio_37

• What kind of Sync?

• Sizes of ACNT, BCNT, CCNT and indexes?

• Which Channel should we use and why?

Questions:

• When should we
 generate an interrupt?

• How do we generate
 an interrupt at the end
 of the transfer?

• How do we write the code
 to generate an interrupt?

EDMA Interrupt

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

Example 2: Multiple Block Transfer

• Transfer two blocks of 16-bit audio
 data from &audio_7 & _37 to McBSP1 DXR

• Trigger an interrupt to CPU after both blocks
 have been transferred.

• Link between ping (_7) & pong (_37) using PSets

Options – A-sync

Source

Destination

CCNT RSVD

2 BCNT

SRCBIDX DSTBIDX

LINK BCNTRLD

SRCCIDX DSTCIDX

Goals:

PSETX (Active)

McBSP1

16-bit Audio Data

30 31 32 33 34 35

36 37 38 39 40 41

42 43 44 45 46 47

48 49 50 51 52 53

54 55 56 57 58 59

Dst: &DXR

PSETZ Pong

Options

&audio_37

&DXR

2 4

2 0

PSETY 4

6 0

3

PSETY Ping

Options

&audio_7

&DXR

2 4

2 0

PSETZ 4

6 0

3

Ping Src: &audio_7

Pong Src: &audio_37

• What kind of Sync?

• Sizes of ACNT, BCNT, CCNT and indexes?

• Which Channel should we use and why?

Questions:

• When should we
 generate an interrupt?

• How do we generate
 an interrupt at the end
 of the transfer?

• How do we write the code
 to generate an interrupt?

EDMA Interrupt

XEVT1 0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

ACNT = 2

Example 2: Multiple Block Transfer

• Transfer two blocks of 16-bit audio
 data from &audio_7 & _37 to McBSP1 DXR

• Trigger an interrupt to CPU after both blocks
 have been transferred.

• Link between ping (_7) & pong (_37) using PSets

Options – A-sync

Source

Destination

CCNT RSVD

2 4
SRCBIDX DSTBIDX

LINK

SRCCIDX DSTCIDX

Goals:

PSETX (Active)

McBSP1

16-bit Audio Data

30 31 32 33 34 35

36 37 38 39 40 41

42 43 44 45 46 47

48 49 50 51 52 53

54 55 56 57 58 59

Dst: &DXR

PSETZ Pong

Options

&audio_37

&DXR

2 4

2 0

PSETY 4

6 0

3

PSETY Ping

Options

&audio_7

&DXR

2 4

2 0

PSETZ 4

6 0

3

Ping Src: &audio_7

Pong Src: &audio_37

• What kind of Sync?

• Sizes of ACNT, BCNT, CCNT and indexes?

• Which Channel should we use and why?

Questions:

• When should we
 generate an interrupt?

• How do we generate
 an interrupt at the end
 of the transfer?

• How do we write the code
 to generate an interrupt?

EDMA Interrupt

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

ACNT = 2

BCNT = 4

4

Example 2: Multiple Block Transfer

• Transfer two blocks of 16-bit audio
 data from &audio_7 & _37 to McBSP1 DXR

• Trigger an interrupt to CPU after both blocks
 have been transferred.

• Link between ping (_7) & pong (_37) using PSets

Options – A-sync

Source

Destination

RSVD

2 4

SRCBIDX DSTBIDX

LINK 4

SRCCIDX DSTCIDX

Goals:

PSETX (Active)

McBSP1

16-bit Audio Data

30 31 32 33 34 35

36 37 38 39 40 41

42 43 44 45 46 47

48 49 50 51 52 53

54 55 56 57 58 59

Dst: &DXR

PSETZ Pong

Options

&audio_37

&DXR

2 4

2 0

PSETY 4

6 0

3

PSETY Ping

Options

&audio_7

&DXR

2 4

2 0

PSETZ 4

6 0

3

Ping Src: &audio_7

Pong Src: &audio_37

• What kind of Sync?

• Sizes of ACNT, BCNT, CCNT and indexes?

• Which Channel should we use and why?

Questions:

• When should we
 generate an interrupt?

• How do we generate
 an interrupt at the end
 of the transfer?

• How do we write the code
 to generate an interrupt?

EDMA Interrupt

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

ACNT = 2

BCNT = 4

CCNT = 3

3

Example 2: Multiple Block Transfer

• Transfer two blocks of 16-bit audio
 data from &audio_7 & _37 to McBSP1 DXR

• Trigger an interrupt to CPU after both blocks
 have been transferred.

• Link between ping (_7) & pong (_37) using PSets

Options – A-sync

Source

Destination

RSVD

2 4

SRCBIDX DSTBIDX

LINK 4

SRCCIDX DSTCIDX

Goals:

PSETX (Active)

McBSP1

16-bit Audio Data

30 31 32 33 34 35

36 37 38 39 40 41

42 43 44 45 46 47

48 49 50 51 52 53

54 55 56 57 58 59

Dst: &DXR

PSETZ Pong

Options

&audio_37

&DXR

2 4

2 0

PSETY 4

6 0

3

PSETY Ping

Options

&audio_7

&DXR

2 4

2 0

PSETZ 4

6 0

3

Ping Src: &audio_7

Pong Src: &audio_37

• What kind of Sync?

• Sizes of ACNT, BCNT, CCNT and indexes?

• Which Channel should we use and why?

Questions:

• When should we
 generate an interrupt?

• How do we generate
 an interrupt at the end
 of the transfer?

• How do we write the code
 to generate an interrupt?

EDMA Interrupt

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

3

Example 2: Multiple Block Transfer

• Transfer two blocks of 16-bit audio
 data from &audio_7 & _37 to McBSP1 DXR

• Trigger an interrupt to CPU after both blocks
 have been transferred.

• Link between ping (_7) & pong (_37) using PSets

Options – A-sync

Source

Destination

RSVD

2 4

LINK 4

SRCCIDX DSTCIDX

Goals:

PSETX (Active)

McBSP1

16-bit Audio Data

30 31 32 33 34 35

36 37 38 39 40 41

42 43 44 45 46 47

48 49 50 51 52 53

54 55 56 57 58 59

Dst: &DXR

PSETZ Pong

Options

&audio_37

&DXR

2 4

2 0

PSETY 4

6 0

3

PSETY Ping

Options

&audio_7

&DXR

2 4

2 0

PSETZ 4

6 0

3

Ping Src: &audio_7

Pong Src: &audio_37

• What kind of Sync?

• Sizes of ACNT, BCNT, CCNT and indexes?

• Which Channel should we use and why?

Questions:

• When should we
 generate an interrupt?

• How do we generate
 an interrupt at the end
 of the transfer?

• How do we write the code
 to generate an interrupt?

EDMA Interrupt

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

3

SRCBIDX = 2 = ACNT

DSTBIDX = 0 (DXR)

0 2

Example 2: Multiple Block Transfer

• Transfer two blocks of 16-bit audio
 data from &audio_7 & _37 to McBSP1 DXR

• Trigger an interrupt to CPU after both blocks
 have been transferred.

• Link between ping (_7) & pong (_37) using PSets

Options – A-sync

Source

Destination

RSVD

2 4

2 0

LINK 4

0

Goals:

PSETX (Active)

McBSP1

16-bit Audio Data

30 31 32 33 34 35

36 37 38 39 40 41

42 43 44 45 46 47

48 49 50 51 52 53

54 55 56 57 58 59

Dst: &DXR

PSETZ Pong

Options

&audio_37

&DXR

2 4

2 0

PSETY 4

6 0

3

PSETY Ping

Options

&audio_7

&DXR

2 4

2 0

PSETZ 4

6 0

3

Ping Src: &audio_7

Pong Src: &audio_37

• What kind of Sync?

• Sizes of ACNT, BCNT, CCNT and indexes?

• Which Channel should we use and why?

Questions:

• When should we
 generate an interrupt?

• How do we generate
 an interrupt at the end
 of the transfer?

• How do we write the code
 to generate an interrupt?

EDMA Interrupt

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

3

SRCBIDX = 2 = ACNT

DSTBIDX = 0 (DXR)

SRCCIDX = 6

DSTCIDX = 0 (DXR)

6

Example 2: Multiple Block Transfer

• Transfer two blocks of 16-bit audio
 data from &audio_7 & _37 to McBSP1 DXR

• Trigger an interrupt to CPU after both blocks
 have been transferred.

• Link between ping (_7) & pong (_37) using PSets

Options – A-sync

Source

Destination

RSVD

2 4

2 0

LINK 4

6 0

Goals:

PSETX (Active)

McBSP1

16-bit Audio Data

30 31 32 33 34 35

36 37 38 39 40 41

42 43 44 45 46 47

48 49 50 51 52 53

54 55 56 57 58 59

Dst: &DXR

PSETZ Pong

Options

&audio_37

&DXR

2 4

2 0

PSETY 4

6 0

3

PSETY Ping

Options

&audio_7

&DXR

2 4

2 0

PSETZ 4

6 0

3

Ping Src: &audio_7

Pong Src: &audio_37

• What kind of Sync?

• Sizes of ACNT, BCNT, CCNT and indexes?

• Which channel should we use and why?

Questions:

• When should we
 generate an interrupt?

• How do we generate
 an interrupt at the end
 of the transfer?

• How do we write the code
 to generate an interrupt?

EDMA Interrupt

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

3

Example 2: Multiple Block Transfer

• Transfer two blocks of 16-bit audio
 data from &audio_7 & _37 to McBSP1 DXR

• Trigger an interrupt to CPU after both blocks
 have been transferred.

• Link between ping (_7) & pong (_37) using PSets

Options – A-sync

Source

Destination

RSVD

2 4

2 0

LINK 4

6 0

Goals:

PSETX (Active)

McBSP1

16-bit Audio Data

30 31 32 33 34 35

36 37 38 39 40 41

42 43 44 45 46 47

48 49 50 51 52 53

54 55 56 57 58 59

Dst: &DXR

PSETZ Pong

Options

&audio_37

&DXR

2 4

2 0

PSETY 4

6 0

3

PSETY Ping

Options

&audio_7

&DXR

2 4

2 0

PSETZ 4

6 0

3

Ping Src: &audio_7

Pong Src: &audio_37

• What kind of Sync?

• Sizes of ACNT, BCNT, CCNT and indexes?

• Which channel should we use and why?

Questions:

• When should we
 generate an interrupt?

• How do we generate
 an interrupt at the end
 of the transfer?

• How do we write the code
 to generate an interrupt?

EDMA Interrupt

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

3

XEVT1

XEVT1 event

XEVT1 = 14

Example 2: Multiple Block Transfer

• Transfer two blocks of 16-bit audio
 data from &audio_7 & _37 to McBSP1 DXR

• Trigger an interrupt to CPU after both blocks
 have been transferred.

• Link between ping (_7) & pong (_37) using PSets

Options – A-sync

Source

Destination

RSVD

2 4

2 0

LINK 4

6 0

Goals:

PSETX (Active)

McBSP1

16-bit Audio Data

30 31 32 33 34 35

36 37 38 39 40 41

42 43 44 45 46 47

48 49 50 51 52 53

54 55 56 57 58 59

Dst: &DXR

PSETZ Pong

Options

&audio_37

&DXR

2 4

2 0

PSETY 4

6 0

3

PSETY Ping

Options

&audio_7

&DXR

2 4

2 0

PSETZ 4

6 0

3

Ping Src: &audio_7

Pong Src: &audio_37

• What kind of Sync?

• Sizes of ACNT, BCNT, CCNT and indexes?

• Which channel should we use and why?

• Src/Dst addresses?

Questions:

• When should we
 generate an interrupt?

• How do we generate
 an interrupt at the end
 of the transfer?

• How do we write the code
 to generate an interrupt?

EDMA Interrupt

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

3

Example 2: Multiple Block Transfer

• Transfer two blocks of 16-bit audio
 data from &audio_7 & _37 to McBSP1 DXR

• Trigger an interrupt to CPU after both blocks
 have been transferred.

• Link between ping (_7) & pong (_37) using PSets

Options – A-sync

RSVD

2 4

2 0

LINK 4

6 0

Goals:

PSETX (Active)

McBSP1

16-bit Audio Data

30 31 32 33 34 35

36 37 38 39 40 41

42 43 44 45 46 47

48 49 50 51 52 53

54 55 56 57 58 59

Dst: &DXR

PSETZ Pong

Options

&audio_37

&DXR

2 4

2 0

PSETY 4

6 0

3

PSETY Ping

Options

&audio_7

&DXR

2 4

2 0

PSETZ 4

6 0

3

Ping Src: &audio_7

Pong Src: &audio_37

• What kind of Sync?

• Sizes of ACNT, BCNT, CCNT and indexes?

• Which channel should we use and why?

• Src/Dst addresses?

Questions:

• When should we
 generate an interrupt?

• How do we generate
 an interrupt at the end
 of the transfer?

• How do we write the code
 to generate an interrupt?

EDMA Interrupt

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

3

&DXR

&audio_7

Example 2: Multiple Block Transfer

• Transfer two blocks of 16-bit audio
 data from &audio_7 & _37 to McBSP1 DXR

• Trigger an interrupt to CPU after both blocks
 have been transferred.

• Link between ping (_7) & pong (_37) using PSets

Options – A-sync

RSVD

2 4

2 0

LINK 4

6 0

Goals:

PSETX (Active)

McBSP1

16-bit Audio Data

30 31 32 33 34 35

36 37 38 39 40 41

42 43 44 45 46 47

48 49 50 51 52 53

54 55 56 57 58 59

Dst: &DXR

PSETZ Pong

Options

&audio_37

&DXR

2 4

2 0

PSETY 4

6 0

3

PSETY Ping

Options

&audio_7

&DXR

2 4

2 0

PSETZ 4

6 0

3

Ping Src: &audio_7

Pong Src: &audio_37

• How do we transfer the second block?

Questions:

• When should we
 generate an interrupt?

• How do we generate
 an interrupt at the end
 of the transfer?

• How do we write the code
 to generate an interrupt?

EDMA Interrupt

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

3

&DXR

&audio_7

Example 2: Multiple Block Transfer

• Transfer two blocks of 16-bit audio
 data from &audio_7 & _37 to McBSP1 DXR

• Trigger an interrupt to CPU after both blocks
 have been transferred.

• Link between ping (_7) & pong (_37) using PSets

Options – A-sync

RSVD

2 4

2 0

4

6 0

Goals:

PSETX (Active)

McBSP1

16-bit Audio Data

30 31 32 33 34 35

36 37 38 39 40 41

42 43 44 45 46 47

48 49 50 51 52 53

54 55 56 57 58 59

Dst: &DXR

PSETZ Pong

Options

&audio_37

&DXR

2 4

2 0

PSETY 4

6 0

3

PSETY (Pong)

Options – A-sync

&audio_37

&DXR

2 4

2 0

NULL 4

6 0

3

Ping Src: &audio_7

Pong Src: &audio_37

• How do we transfer the second block?

Questions:

• When should we
 generate an interrupt?

• How do we generate
 an interrupt at the end
 of the transfer?

• How do we write the code
 to generate an interrupt?

EDMA Interrupt

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

3

&DXR

&audio_7

PSETY

Example 2: Multiple Block Transfer

• Transfer two blocks of 16-bit audio
 data from &audio_7 & _37 to McBSP1 DXR

• Trigger an interrupt to CPU after both blocks
 have been transferred.

• Link between ping (_7) & pong (_37) using PSets

Options – A-sync

RSVD

2 4

2 0

4

6 0

Goals:

PSETX (Active)

McBSP1

16-bit Audio Data

30 31 32 33 34 35

36 37 38 39 40 41

42 43 44 45 46 47

48 49 50 51 52 53

54 55 56 57 58 59

Dst: &DXR

PSETZ Pong

Options

&audio_37

&DXR

2 4

2 0

PSETY 4

6 0

3

PSETY (Pong)

Options – A-sync

&audio_37

&DXR

2 4

2 0

NULL 4

6 0

3

Ping Src: &audio_7

Pong Src: &audio_37

• How do we transfer the second block?

• How do we generate an interrupt?

Questions:

• When should we
 generate an interrupt?

• How do we generate
 an interrupt at the end
 of the transfer?

• How do we write the code
 to generate an interrupt?

EDMA Interrupt

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

3

&DXR

&audio_7

PSETY

Interrupt: EDMA Channels
EDMA Channels

Channel #

TCINTEN=0

TCINTEN=0

TCINTEN=1

TCINTEN=0

TCC=0

TCC=1

TCC=14

TCC=63
63

. . .

1

0

Options

Options TCC TCINTEN

20 17 12

EDMA Interrupt Generation

0

0

1

0

IPR

IER0 = 0

IER1 = 0

IER14 = 1

IER63 = 0

IER

EDMA3CC_GINT

TCC

edmaIntr.region = CSL_EDMA3_REGION_GLOBAL ;

edmaIntr.intrh = 1 << (CSL_EDMA3_CHA_XEVT1-32); // high 32 bits

edmaIntr.intr = 1 << (CSL_EDMA3_CHA_XEVT1); // low 32 bits

CSL_edma3HwControl(hModule, CSL_EDMA3_CMD_INTR_ENABLE, &edmaIntr);

To set the proper EDMA IER bit for XEVT1:

IER – EDMA Interrupt Enable Register (NOT the CPU IER)
IPR – EDMA Interrupt Pending Register (set by TCC)

Generate an EDMA Interrupt

EDMA Channels

Channel #

TCINTEN=0

TCINTEN=0

TCINTEN=1

TCINTEN=0

TCC=0

TCC=1

TCC=14

TCC=63
63

. . .

1

0

Options

Options TCC TCINTEN

20 17 12

EDMA Interrupt Generation

0

0

1

0

IPR

IER0 = 0

IER1 = 0

IER14 = 1

IER63 = 0

IER

EDMA3CC_GINT

TCC

edmaIntr.region = CSL_EDMA3_REGION_GLOBAL ;

edmaIntr.intrh = 1 << (CSL_EDMA3_CHA_XEVT1-32); // high 32 bits

edmaIntr.intr = 1 << (CSL_EDMA3_CHA_XEVT1); // low 32 bits

CSL_edma3HwControl(hModule, CSL_EDMA3_CMD_INTR_ENABLE, &edmaIntr);

To set the proper EDMA IER bit for XEVT1:

IER – EDMA Interrupt Enable Register (NOT the CPU IER)
IPR – EDMA Interrupt Pending Register (set by TCC)

Generate an EDMA Interrupt

EDMA Channels

Channel #

TCINTEN=0

TCINTEN=0

TCINTEN=1

TCINTEN=0

TCC=0

TCC=1

TCC=14

TCC=63
63

. . .

1

0

Options

Options TCC TCINTEN

20 17 12

EDMA Interrupt Generation

0

0

1

0

IPR

IER0 = 0

IER1 = 0

IER14 = 1

IER63 = 0

IER

EDMA3CC_GINT

TCC

edmaIntr.region = CSL_EDMA3_REGION_GLOBAL ;

edmaIntr.intrh = 1 << (CSL_EDMA3_CHA_XEVT1-32); // high 32 bits

edmaIntr.intr = 1 << (CSL_EDMA3_CHA_XEVT1); // low 32 bits

CSL_edma3HwControl(hModule, CSL_EDMA3_CMD_INTR_ENABLE, &edmaIntr);

To set the proper EDMA IER bit for XEVT1:

IER – EDMA Interrupt Enable Register (NOT the CPU IER)
IPR – EDMA Interrupt Pending Register (set by TCC)

Check the IPRbit
 If there are 64 channels, 64 IPR bits and only ONE EDMA interrupt

(EDMA3CC_GINT), how do you know which IPR got set?

void edmaHwi(void) {

 Uint32 intr;

 intr = *pEdmaChannelPendReg; // Set intr = EDMA IPR

 if (intr & (0x01 << CSL_EDMA3_CHA_XEVT1)) { // Check IPR to see if XEVT1 is set

 SEM_post(&xmtBuffReady);

 }

 *pEdmaChannelClearReg = intr; // Clear EDMA IPR – user must clear this bit

}

 You check the appropriate IPR bit. In this example, to check the

proper EDMA IPR bit for XEVT1, you could use:

 Or, you can use the EDMA Interrupt Dispatcher (shown next)…

Check the IPRbit
 If there are 64 channels, 64 IPR bits and only ONE EDMA interrupt

(EDMA3CC_GINT), how do you know which IPR got set?

void edmaHwi(void) {

 Uint32 intr;

 intr = *pEdmaChannelPendReg; // Set intr = EDMA IPR

 if (intr & (0x01 << CSL_EDMA3_CHA_XEVT1)) { // Check IPR to see if XEVT1 is set

 SEM_post(&xmtBuffReady);

 }

 *pEdmaChannelClearReg = intr; // Clear EDMA IPR – user must clear this bit

}

 You check the appropriate IPR bit. In this example, to check the

proper EDMA IPR bit for XEVT1, you could use:

 Or, you can use the EDMA Interrupt Dispatcher (shown next)…

Check the IPRbit
 If there are 64 channels, 64 IPR bits and only ONE EDMA interrupt

(EDMA3CC_GINT), how do you know which IPR got set?

void edmaHwi(void) {

 Uint32 intr;

 intr = *pEdmaChannelPendReg; // Set intr = EDMA IPR

 if (intr & (0x01 << CSL_EDMA3_CHA_XEVT1)) { // Check IPR to see if XEVT1 is set

 SEM_post(&xmtBuffReady);

 }

 *pEdmaChannelClearReg = intr; // Clear EDMA IPR – user must clear this bit

}

 You check the appropriate IPR bit. In this example, to check the

proper EDMA IPR bit for XEVT1, you could use:

 Or you can use the EDMA Interrupt Dispatcher…

EDMA Interrupt Dispatcher
 Here‟s the interrupt chain from beginning to end:

edma_int_hook(TCC_EDMA_XEVT1, (EdmaTccHandler)&edma_xmt_isr);

EDMA3CC_GINT (#24)

2. Interrupt Selector

HWI_INT5

1. An interrupt occurs 3. HWI_INT5 Properties

4. HWI Dispatcher (ON + Arg) 5. EDMA Interrupt Dispatcher

Read IPR bits

Determine which one is set

Call corresponding handler
(ISR) in Fxn Table

6. ISR (interrupt handler)

void edma_xmt_isr (void)

{

SEM_post (&semaphore);

}

 How does the ISR Fxn Table (in #5 above) get loaded with the proper handler Fxn names?

Outline

 Introduction to EDMA3

 Example 1: Single Block Transfer

 Programming EDMA3 with CSL 3.0

 Example 2: Multiple Block Transfer

 Linking vs. Chaining

QDMA

 IDMA

Linking
Linking – When a channel is done with its transfer, it uses the LINK field to
 determine which PSET will be used to re-load the channel‟s PSET
 register set.

Linking does NOT cause a trigger to occur.

LINK = 0xFFFF = Link-to-NULL. The PSET will be set to all 0‟s.

Dest = DXR

LINK = PONG

Src = XmtPing

Channel XEVT1

Dest = DXR

LINK = PING

Src = XmtPong

PaRAM Pong

Channel‟s PSET PSET Pong

Xfr complete

EDMA copies
PSET Pong to
Channel PSET

Chaining – The TCC of one channel is set to trigger a DIFFERENT channel
 to run when the current channel is finished. For example, Ch #5 has
 OPT.TCC=6 which will trigger Ch #6 to run via the CER (Chain Event
 Register).

 Linking can also be performed along with chaining. For example, when Ch
 #5 is done, it links (copies) PSET #8 and at the same time triggers
 (OPT.TCC=6) Ch #6 to run. When Ch #6 is done, it can link to restore
 its PSET and also chain to a third channel or back to Ch #5.

Linking
Linking – When a channel is done with its transfer, it uses the LINK field to
 determine which PSET will be used to re-load the channel‟s PSET
 register set.

Linking does NOT cause a trigger to occur.

LINK = 0xFFFF = Link-to-NULL. The PSET will be set to all 0‟s.

Dest = DXR

LINK = PING

Src = XmtPong

Channel XEVT1

Dest = DXR

LINK = PING

Src = XmtPong

PaRAM Pong

Channel‟s PSET PSET Pong

Xfr complete

EDMA copies
PSET Pong to
Channel PSET

Chaining – The TCC of one channel is set to trigger a DIFFERENT channel
 to run when the current channel is finished. For example, Ch #5 has
 OPT.TCC=6 which will trigger Ch #6 to run via the CER (Chain Event
 Register).

 Linking can also be performed along with chaining. For example, when Ch
 #5 is done, it links (copies) PSET #8 and at the same time triggers
 (OPT.TCC=6) Ch #6 to run. When Ch #6 is done, it can link to restore
 its PSET and also chain to a third channel or back to Ch #5.

Chaining
Linking – When a channel is done with its transfer, it uses the LINK field to
 determine which PSET will be used to re-load the channel‟s PSET
 register set.

Linking does NOT cause a trigger to occur.

LINK = 0xFFFF = Link-to-NULL. The PSET will be set to all 0‟s.

Dest = DstBuf5

LINK = 0xFFFF

Src = SrcBuf5

Channel 5

Dest = DstBuf6

LINK = 0xFFFF

Src = SrcBuf6

Channel 6
Channel 5‟s PSET Channel 6‟s PSET

Xfr complete

EDMA chains to

Ch 6

Chaining – The TCC of one channel is set to trigger any channel to run
 when the current channel is finished. For example, Ch #5 has
 OPT.TCC=6 which can trigger Ch #6 to run via the CER (Chain Event
 Register).

 Linking can also be performed along with chaining. For example, when Ch
 #5 is done, it links (copies) PSET #8 and at the same time triggers
 (OPT.TCC=6) Ch #6 to run. When Ch #6 is done, it can link to restore
 its PSET and also chain to a third channel or back to Ch #5.

TCC=6

Chaining
Linking – When a channel is done with its transfer, it uses the LINK field to
 determine which PSET will be used to re-load the channel‟s PSET
 register set.

Linking does NOT cause a trigger to occur.

LINK = 0xFFFF = Link-to-NULL. The PSET will be set to all 0‟s.

Dest = DstBuf5

LINK = 0xFFFF

Src = SrcBuf5

Channel 5

Dest = DstBuf6

LINK = 0xFFFF

Src = SrcBuf6

Channel 6
Channel 5‟s PSET Channel 6‟s PSET

Xfr complete

EDMA chains to

Ch 6

Chaining – The TCC of one channel is set to trigger any channel to run
 when the current channel is finished. For example, Ch #5 has
 OPT.TCC=6 which can trigger Ch #6 to run via the CER (Chain Event
 Register).

 Linking can also be performed along with chaining. For example, when Ch
 #5 is done, it links (copies) PSET #8 and at the same time triggers
 (OPT.TCC=6) Ch #6 to run. When Ch #6 is done, it can link to restore
 its PSET and also chain to a third channel or back to Ch #5.

TCC=6

Chaining
Linking – When a channel is done with its transfer, it uses the LINK field to
 determine which PSET will be used to re-load the channel‟s PSET
 register set.

Linking does NOT cause a trigger to occur.

LINK = 0xFFFF = Link-to-NULL. The PSET will be set to all 0‟s.

Dest = 0

LINK = 0xFFFF

Src = 0

Dest = DstBuf6

LINK = 0xFFFF

Src = SrcBuf6

Channel 5‟s PSET Channel 6‟s PSET
Xfr complete

EDMA chains to

Ch 6

Chaining – The TCC of one channel is set to trigger any channel to run
 when the current channel is finished. For example, Ch #5 has
 OPT.TCC=6 which can trigger Ch #6 to run via the CER (Chain Event
 Register).

 Linking will also be performed along with chaining. For example, when Ch
 #5 is done, it links (copies) PSET #8 and at the same time triggers
 (OPT.TCC=6) Ch #6 to run. When Ch #6 is done, it can link to restore
 its PSET and also chain to a third channel or back to Ch #5.

Channel 5 Channel 6
TCC=0

Linking & Chaining Combined
Linking – When a channel is done with its transfer, it uses the LINK field to
 determine which PSET will be used to re-load the channel‟s PSET
 register set.

Linking does NOT cause a trigger to occur.

LINK = 0xFFFF = Link-to-NULL. The PSET will be set to all 0‟s.

Dest = DstBuf5

Src = SrcBuf5

Dest = DstBuf6

LINK = 0xFFFF

Src = SrcBuf6

Channel 5‟s PSET Channel 6‟s PSET
Xfr complete

EDMA chains to

Ch 6

Chaining – The TCC of one channel is set to trigger any channel to run
 when the current channel is finished. For example, Ch #5 has
 OPT.TCC=6 which can trigger Ch #6 to run via the CER (Chain Event
 Register).

 Linking will also be performed along with chaining. For example, when Ch
 #5 is done, it links (copies) PSET #8 and at the same time triggers
 (OPT.TCC=6) Ch #6 to run. When Ch #6 is done, it can link to restore
 its PSET and also chain to a third channel or back to Ch #5.

Channel 5 Channel 6
TCC=6

LINK = PSET8

Linking & Chaining Combined
Linking – When a channel is done with its transfer, it uses the LINK field to
 determine which PSET will be used to re-load the channel‟s PSET
 register set.

Linking does NOT cause a trigger to occur.

LINK = 0xFFFF = Link-to-NULL. The PSET will be set to all 0‟s.

Dest = DstBuf8

LINK = 0xFFFF

Src = SrcBuf8

Dest = DstBuf6

LINK = 0xFFFF

Src = SrcBuf6

Channel 5‟s PSET Channel 6‟s PSET
Xfr complete

EDMA chains to

Ch 6

Chaining – The TCC of one channel is set to trigger any channel to run
 when the current channel is finished. For example, Ch #5 has
 OPT.TCC=6 which can trigger Ch #6 to run via the CER (Chain Event
 Register).

 Linking will also be performed along with chaining. For example, when Ch
 #5 is done, it links (copies) PSET #8 and at the same time triggers
 (OPT.TCC=6) Ch #6 to run. When Ch #6 is done, it can link to restore
 its PSET and also chain to a third channel or back to Ch #5.

Channel 5 Channel 6
TCC=8

Xfr
complete

Chain?

Reminder: Triggering Transfers

 There are three ways to trigger an EDMA transfer:

1 Event Sync from peripheral

REVT1

XEVT1

McBSP1 EDMA3

ER EER Start Ch Xfr

2 Manually Trigger the Channel to Run

Application Channel y

ESR Start Ch Xfr Set Ch #y;

ER = Event Register (flag)

EER = Event Enable Register (user)

ESR = Event Set Register (user)

3 Chain Event from another channel (next example…)

Channel x Channel y

CER Start Ch Xfr
TCCHEN_EN

TCC = Chy

TCCHEN = TC Chain Enable (OPT)



Reminder: Triggering Transfers

 There are three ways to trigger an EDMA transfer:

1 Event Sync from peripheral

REVT1

XEVT1

McBSP1 EDMA3

ER EER Start Ch Xfr

2 Manually Trigger the Channel to Run

Application Channel y

ESR Start Ch Xfr Set Ch #y;

ER = Event Register (flag)

EER = Event Enable Register (user)

ESR = Event Set Register (user)

3 Chain Event from another channel (next example…)

Channel x Channel y

CER Start Ch Xfr
TCCHEN_EN

TCC = Chy

TCCHEN = TC Chain Enable (OPT)



Reminder: Triggering Transfers

 There are three ways to trigger an EDMA transfer:

1 Event Sync from peripheral

REVT1

XEVT1

McBSP1 EDMA3

ER EER Start Ch Xfr

2 Manually Trigger the Channel to Run

Application Channel y

ESR Start Ch Xfr Set Ch #y;

ER = Event Register (flag)

EER = Event Enable Register (user)

ESR = Event Set Register (user)

3 Chain Event from another channel (next example…)

Channel x Channel y

CER Start Ch Xfr
TCCHEN_EN

TCC = Chy

TCCHEN = TC Chain Enable (OPT)



Chaining Example Overview
EDMA Chain/Evt EDMA Interrupt Gen EDMA Channels

5 = 0

6 = 1

7 = 0

55 = 0

0

1

0

0

 IER IPR

EDMA3CC_GINT

Ch #

55

7

6

5 0

0

1

0

CER

5 = 0

6 = 0

7 = 1

55 = 0

5 = 1

6 = 0

7 = 0

55 = 0

OPT.TCCHEN

ESR

7

0

6

55

• Triggered manually by ESR

• Chains to Ch #7 (Ch #5‟s TCC = 7)

0

0

1

0

CER

OPT.TCC OPT.TCINTEN

7

0

6

55

Channel #5

• Triggered by chaining from Ch #5

• Interrupts the CPU when finished
 (sets TCC = 6)

• ISR checks IPR (TCC=6) to determine which
 channel generated the interrupt

Channel #7

CER = Chain Evt Reg

ESR – Evt Set Reg

TCINTEN = “Final” TCC will
 interrupt the CPU

TCCHEN = “Final” TCC will
chain to next channel

OPT.TCC

• Any Ch can chain to any other Ch by enabling
 OPT.TCCHEN and specifying the next TCC

• Any Ch can interrupt the CPU by enabling its
 OPT.TCINTEN option (and specifying the TCC)

• IPR bit set depends on completed Ch‟s TCC setting

Notes:

Chaining Example 1
EDMA Chain/Evt EDMA Interrupt Gen EDMA Channels

5 = 0

6 = 1

7 = 0

55 = 0

0

1

0

0

 IER IPR

EDMA3CC_GINT

Ch #

55

7

6

5 0

0

1

0

CER

5 = 0

6 = 0

7 = 1

55 = 0

5 = 1

6 = 0

7 = 0

55 = 0

OPT.TCCHEN

ESR

7

0

6

55

• Triggered manually by ESR

• Chains to Ch #7 (Ch #5‟s TCC = 7)

0

0

1

0

CER

OPT.TCC OPT.TCINTEN

7

0

6

55

Channel #5

• Triggered by chaining from Ch #5

• Interrupts the CPU when finished
 (sets TCC = 6)

• ISR checks IPR (TCC=6) to determine which
 channel generated the interrupt

Channel #7

CER = Chain Evt Reg

ESR – Evt Set Reg

TCINTEN = “Final” TCC will
 interrupt the CPU

TCCHEN = “Final” TCC will
chain to next channel

OPT.TCC

• Any Ch can chain to any other Ch by enabling
 OPT.TCCHEN and specifying the next TCC

• Any Ch can interrupt the CPU by enabling its
 OPT.TCINTEN option (and specifying the TCC)

• IPR bit set depends on completed Ch‟s TCC setting

Notes:

Chaining Example 1
EDMA Chain/Evt EDMA Interrupt Gen EDMA Channels

5 = 0

6 = 1

7 = 0

55 = 0

0

1

0

0

 IER IPR

EDMA3CC_GINT

Ch #

55

7

6

5 0

0

1

0

CER

5 = 0

6 = 0

7 = 1

55 = 0

5 = 1

6 = 0

7 = 0

55 = 0

OPT.TCCHEN

ESR

7

0

6

55

• Triggered manually by ESR

• Chains to Ch #7 (Ch #5‟s TCC = 7)

0

0

1

0

CER

OPT.TCC OPT.TCINTEN

7

0

6

55

Channel #5

• Triggered by chaining from Ch #5

• Interrupts the CPU when finished
 (sets TCC = 6)

• ISR checks IPR (TCC=6) to determine which
 channel generated the interrupt

Channel #7

CER = Chain Evt Reg

ESR – Evt Set Reg

TCINTEN = “Final” TCC will
 interrupt the CPU

TCCHEN = “Final” TCC will
chain to next channel

OPT.TCC

• Any Ch can chain to any other Ch by enabling
 OPT.TCCHEN and specifying the next TCC

• Any Ch can interrupt the CPU by enabling its
 OPT.TCINTEN option (and specifying the TCC)

• IPR bit set depends on completed Ch‟s TCC setting

Notes:

Chaining Example 1
EDMA Chain/Evt EDMA Interrupt Gen EDMA Channels

5 = 0

6 = 1

7 = 0

55 = 0

0

1

0

0

 IER IPR

EDMA3CC_GINT

Ch #

55

7

6

5 0

0

1

0

CER

5 = 0

6 = 0

7 = 1

55 = 0

5 = 1

6 = 0

7 = 0

55 = 0

OPT.TCCHEN

ESR

7

0

6

55

• Triggered manually by ESR

• Chains to Ch #7 (Ch #5‟s TCC = 7)

0

0

1

0

CER

OPT.TCC OPT.TCINTEN

7

0

6

55

Channel #5

• Triggered by chaining from Ch #5

• Interrupts the CPU when finished
 (sets TCC = 6)

• ISR checks IPR (TCC=6) to determine which
 channel generated the interrupt

Channel #7

CER = Chain Evt Reg

ESR – Evt Set Reg

TCINTEN = “Final” TCC will
 interrupt the CPU

TCCHEN = “Final” TCC will
chain to next channel

OPT.TCC

• Any Ch can chain to any other Ch by enabling
 OPT.TCCHEN and specifying the next TCC

• Any Ch can interrupt the CPU by enabling its
 OPT.TCINTEN option (and specifying the TCC)

• IPR bit set depends on completed Ch‟s TCC setting

Notes:

Chaining Example 2
EDMA Chain/Evt EDMA Interrupt Gen EDMA Channels

5 = 0

6 = 1

7 = 0

55 = 0

0

1

0

0

 IER IPR

EDMA3CC_GINT

Ch #

55

7

6

5 0

0

1

0

CER

5 = 0

6 = 0

7 = 1

55 = 0

5 = 1

6 = 0

7 = 0

55 = 0

OPT.TCCHEN

ESR

7

0

6

55

• Triggered manually by ESR

• Chains to Ch #7 (Ch #5‟s TCC = 7)

0

0

1

0

CER

OPT.TCC OPT.TCINTEN

7

0

6

55

Channel #5

• Triggered by chaining from Ch #5

• Interrupts the CPU when finished
 (sets TCC = 6)

• ISR checks IPR (TCC=6) to determine which
 channel generated the interrupt

Channel #7

CER = Chain Evt Reg

ESR – Evt Set Reg

TCINTEN = “Final” TCC will
 interrupt the CPU

TCCHEN = “Final” TCC will
chain to next channel

OPT.TCC

• Any Ch can chain to any other Ch by enabling
 OPT.TCCHEN and specifying the next TCC

• Any Ch can interrupt the CPU by enabling its
 OPT.TCINTEN option (and specifying the TCC)

• IPR bit set depends on completed Ch‟s TCC setting

Notes:

Chaining Example 2
EDMA Chain/Evt EDMA Interrupt Gen EDMA Channels

5 = 0

6 = 1

7 = 0

55 = 0

0

1

0

0

 IER IPR

EDMA3CC_GINT

Ch #

55

7

6

5 0

0

1

0

CER

5 = 0

6 = 0

7 = 1

55 = 0

5 = 1

6 = 0

7 = 0

55 = 0

OPT.TCCHEN

ESR

7

0

6

55

• Triggered manually by ESR

• Chains to Ch #7 (Ch #5‟s TCC = 7)

0

0

1

0

CER

OPT.TCC OPT.TCINTEN

7

0

6

55

Channel #5

• Triggered by chaining from Ch #5

• Interrupts the CPU when finished
 (sets TCC = 6)

• ISR checks IPR (TCC=6) to determine which
 channel generated the interrupt

Channel #7

CER = Chain Evt Reg

ESR – Evt Set Reg

TCINTEN = “Final” TCC will
 interrupt the CPU

TCCHEN = “Final” TCC will
chain to next channel

OPT.TCC

• Any Ch can chain to any other Ch by enabling
 OPT.TCCHEN and specifying the next TCC

• Any Ch can interrupt the CPU by enabling its
 OPT.TCINTEN option (and specifying the TCC)

• IPR bit set depends on completed Ch‟s TCC setting

Notes:

Chaining Example 2
EDMA Chain/Evt EDMA Interrupt Gen EDMA Channels

5 = 0

6 = 1

7 = 0

55 = 0

0

1

0

0

 IER IPR

EDMA3CC_GINT

Ch #

55

7

6

5 0

0

1

0

CER

5 = 0

6 = 0

7 = 1

55 = 0

5 = 1

6 = 0

7 = 0

55 = 0

OPT.TCCHEN

ESR

7

0

6

55

• Triggered manually by ESR

• Chains to Ch #7 (Ch #5‟s TCC = 7)

0

0

1

0

CER

OPT.TCC OPT.TCINTEN

7

0

6

55

Channel #5

• Triggered by chaining from Ch #5

• Interrupts the CPU when finished
 (sets TCC = 6)

• ISR checks IPR (TCC=6) to determine which
 channel generated the interrupt

Channel #7

CER = Chain Evt Reg

ESR – Evt Set Reg

TCINTEN = “Final” TCC will
 interrupt the CPU

TCCHEN = “Final” TCC will
chain to next channel

OPT.TCC

• Any Ch can chain to any other Ch by enabling
 OPT.TCCHEN and specifying the next TCC

• Any Ch can interrupt the CPU by enabling its
 OPT.TCINTEN option (and specifying the TCC)

• IPR bit set depends on completed Ch‟s TCC setting

Notes:

Chaining Example 2
EDMA Chain/Evt EDMA Interrupt Gen EDMA Channels

5 = 0

6 = 1

7 = 0

55 = 0

0

1

0

0

 IER IPR

EDMA3CC_GINT

Ch #

55

7

6

5 0

0

1

0

CER

5 = 0

6 = 0

7 = 1

55 = 0

5 = 1

6 = 0

7 = 0

55 = 0

OPT.TCCHEN

ESR

7

0

6

55

• Triggered manually by ESR

• Chains to Ch #7 (Ch #5‟s TCC = 7)

0

0

1

0

CER

OPT.TCC OPT.TCINTEN

7

0

6

55

Channel #5

• Triggered by chaining from Ch #5

• Interrupts the CPU when finished
 (sets TCC = 6)

• ISR checks IPR (TCC=6) to determine which
 channel generated the interrupt

Channel #7

CER = Chain Evt Reg

ESR – Evt Set Reg

TCINTEN = “Final” TCC will
 interrupt the CPU

TCCHEN = “Final” TCC will
chain to next channel

• Any Ch can chain to any other Ch by enabling
 OPT.TCCHEN and specifying the next TCC

• Any Ch can interrupt the CPU by enabling its
 OPT.TCINTEN option (and specifying the TCC)

• IPR bit set depends on completed Ch‟s TCC setting

Notes:

OPT.TCC

Intermediate Transfer Completion

Intermediate transfer completion indicates a TR has been completed EXCEPT THE LAST

 Chain Event Register (CER[TCC]) set if selected by ITCCHEN (“intermediate” chaining)

 Interrupt Pending Register (IPR[TCC]) set if selected by ITCINTEN (this will interrupt the CPU)

31 24 23

OPT ITCINTEN

21 20 0

ITCCHEN

TR TR TR

EVTx EVTx EVTx EVTx

TR

Intermed. Intermed. Intermed.

 Reminder: A TR (transfer request) can either by ACNT bytes (A-sync) or A*B bytes (AB-sync)

 “Intermediate” completion is for all TRs of a transfer EXCEPT the LAST. “Final” TCC is for
only the LAST TR of a transfer.

EVTx =

• ER (sync)

• ESR (manual)

• CER (chain)

Final

Intermediate vs. Final Completion

TR TR TR

EVTx EVTx EVTx EVTx

TR

TCC TCC TCC

FINAL

“Intermediate”

 In the example below, BOTH “Intermediate” and “Final” Completion are being used
in the same transfer.

 If a transfer has multiple TRs (as shown below), “Intermediate” completion will generate
a TCC code after every TR – EXCEPT THE LAST. “Intermediate” completion is configured
by setting the OPT.ITCCHEN bit.

 “Final” completion is generated only on the LAST (FINAL) TR. Depending on your system,
 you could enable OPT.TCCHEN to chain after the last TR or send a CPU interrupt by
 enabling OPT.TCINTEN, or both.

“Final”

TCC

Outline

 Introduction to EDMA3

 Example 1: Single Block Transfer

 Programming EDMA3 with CSL 3.0

 Example 2: Multiple Block Transfer

 Linking vs. Chaining

QDMA

 IDMA

QDMA = Quick DMA
 QDMA is used for simple transfers where syncing to an event

is not required. Address/count updates and linking are not

performed. CCNT = 1 (single event transfer).

 A transfer can be triggered by two methods:

(1) writing to a trigger word; (2) using the CSL DAT module.

 It‟s “quick” because the CPU can initiate a transfer with as

few as ONE write to a channel register

 How does it work?

 QDMA channel is “auto-triggered” when CPU writes to the “trigger” word

 Eliminates the need to write to PSET and kick off transfer w/ separate write to ESR

 Selection of the trigger word allows CPU to modify only words of interest in a PSET

 Assumes OPT.STATIC = 1. Count and address updates and linking NOT performed.

 Example:

 If ACNT/BCNT/CCNT are typically static for a given algorithm, but SRC is different

for each transfer, then SRC could be defined as the trigger word. CPU can initiate a

transfer with a single write to the SRC address for the specified PSET.

QDMA Mapping

DAT Module: QDMA Made Easy
#include <csl_dat.h>; // DAT Module header file

DAT_Setup datSetup; //use for QDMA example

int32_t id;

uint32_t fillVal;

datSetup.qchNum = CSL_DAT_QCHA_0; // pick a QDMA channel 0-7

datSetup.regionNum = CSL_DAT_REGION_GLOBAL ;

datSetup.tccNum = 0; // pick a TCC

datSetup.paramNum = 0; // pick a PSET

datSetup.priority = CSL_DAT_PRI_1; // pick a queue/TC (0-5)

DAT_open(&datSetup);

// Fill a linear block of memory with the specified fillVal using QDMA

fillVal = 0;

id = DAT_fill (gBufXmt, sizeof(gBufXmt), &fillVal); // similar to memset()

id = DAT_fill (gBufRcv, sizeof(gBufRcv), &fillVal);

DAT_wait (id); // optional

DAT_copy(gBufRcv, gBufXmt, BUFFSIZE); // similar to memcpy()

Outline

 Introduction to EDMA3

 Example 1: Single Block Transfer

 Programming EDMA3 with CSL 3.0

 Example 2: Multiple Block Transfer

 Linking vs. Chaining

QDMA

 IDMA

IDMA = Internal DMA
 C64x+ IDMA – Performs background data movement or peripheral programming
 WITHOUT using EDMA bandwidth/resources or TeraNet SCR (internal to CorePac).

Channel 0 (IDMA0 – Hi Priority)

• Performs rapid programming of peripheral configuration registers

• Avoids unnecessary wait states through CFG bus vs. traditional use of
 the CPU copying config structures from L2 to the peripheral registers

• Typically used when new config structures are needed quickly. A copy
 of the structures can be stored in L1D/L2 and then transferred during run-time.

L1D

L2

PERIPH

Cfg

Channel 1 (IDMA1 – Lo Priority)

• Rapid block transfers between L1P, L1D, L2

IDMA0

IDMA = Internal DMA
 C64x+ IDMA – Performs background data movement or peripheral programming
 WITHOUT using EDMA bandwidth/resources or TeraNet SCR (internal to CorePac).

Channel 0 (IDMA0 – Hi Priority)

• Performs rapid programming of peripheral configuration registers

• Avoids unnecessary wait states through CFG bus vs. traditional use of
 the CPU copying config structures from L2 to the peripheral registers

• Typically used when new config structures are needed quickly. A copy
 of the structures can be stored in L1D/L2 and then transferred during run-time.

L1D

L2

PERIPH

Cfg

Channel 1 (IDMA1 – Lo Priority)

• Rapid block transfers between L1P, L1D, L2

IDMA0

IDMA = Internal DMA
 C64x+ IDMA – Performs background data movement or peripheral programming
 WITHOUT using EDMA bandwidth/resources or TeraNet SCR (internal to CorePac).

Channel 0 (IDMA0 – Hi Priority)

• Performs rapid programming of peripheral configuration registers

• Avoids unnecessary wait states through CFG bus vs. traditional use of
 the CPU copying config structures from L2 to the peripheral registers

• Typically used when new config structures are needed quickly. A copy
 of the structures can be stored in L1D/L2 and then transferred during run-time.

L1D

L2

PERIPH

Cfg

Channel 1 (IDMA1 – Lo Priority)

• Rapid block transfers between L1P, L1D, L2
L1P L1D L2

IDMA0

IDMA0: Programming Details
 IDMA0 operates on a block of 32 contiguous 32-bit registers (both src/dst blocks
 must be aligned on a 32-word boundary). Optionally generate CPU interrupt if needed.

 User provides: Src, Dst, Count and “mask” (Reference: SPRU871)

0

31

.

.

32-bits

L1D/L2
Src 0

31

.

.

32-bits

Periph Cfg
Dst Count = # of 32-register blocks to xfr (up to 16)

Mask = 32-bit mask determines WHICH registers
 to transfer (“0” = xfr, “1” = NO xfr)

Source

address
0 1 4 5 6

8 10 12

2322

312927

Destination

address
0 1 4 5 6

8 10 12

2322

312927

Mask = 01010111001111111110101010001100

 Example Transfer using MASK (not all regs typically need to be programmed):

 User must write to IDMA0 registers in the following order (COUNT written – triggers transfer):

IDMA0_MASK = 0x573FEA8C; //set mask for 13 regs above

IDMA0_SOURCE = reg_ptr; //set src addr in L1D/L2

IDMA0_DEST = MMR_ADDRESS; //set dst addr to config location

IDMA0_COUNT = 0; //set mask for 1 block of 32 registers

IDMA0: Programming Details
 IDMA0 operates on a block of 32 contiguous 32-bit registers (both src/dst blocks
 must be aligned on a 32-word boundary). Optionally generate CPU interrupt if needed.

 User provides: Src, Dst, Count and “mask” (Reference: SPRU871)

0

31

.

.

32-bits

L1D/L2
Src 0

31

.

.

32-bits

Periph Cfg
Dst Count = # of 32-register blocks to xfr (up to 16)

Mask = 32-bit mask determines WHICH registers
 to transfer (“0” = xfr, “1” = NO xfr)

Source

address
0 1 4 5 6

8 10 12

2322

312927

Destination

address
0 1 4 5 6

8 10 12

2322

312927

Mask = 01010111001111111110101010001100

 Example Transfer using MASK (not all regs typically need to be programmed):

 User must write to IDMA0 registers in the following order (COUNT written – triggers transfer):

IDMA0_MASK = 0x573FEA8C; //set mask for 13 regs above

IDMA0_SOURCE = reg_ptr; //set src addr in L1D/L2

IDMA0_DEST = MMR_ADDRESS; //set dst addr to config location

IDMA0_COUNT = 0; //set mask for 1 block of 32 registers

IDMA0: Programming Details
 IDMA0 operates on a block of 32 contiguous 32-bit registers (both src/dst blocks
 must be aligned on a 32-word boundary). Optionally generate CPU interrupt if needed.

 User provides: Src, Dst, Count and “mask” (Reference: SPRU871)

0

31

.

.

32-bits

L1D/L2
Src 0

31

.

.

32-bits

Periph Cfg
Dst Count = # of 32-register blocks to xfr (up to 16)

Mask = 32-bit mask determines WHICH registers
 to transfer (“0” = xfr, “1” = NO xfr)

Source

address
0 1 4 5 6

8 10 12

2322

312927

Destination

address
0 1 4 5 6

8 10 12

2322

312927

Mask = 01010111001111111110101010001100

 Example Transfer using MASK (not all regs typically need to be programmed):

 User must write to IDMA0 registers in the following order (COUNT written – triggers transfer):

IDMA0_MASK = 0x573FEA8C; //set mask for 13 regs above

IDMA0_SOURCE = reg_ptr; //set src addr in L1D/L2

IDMA0_DEST = MMR_ADDRESS; //set dst addr to config location

IDMA0_COUNT = 0; //set mask for 1 block of 32 registers

IDMA1: Programming Details
 IDMA1 is optimized for contiguous burst transfers between L1P, L1D and L2

 Cannot access CFG port registers (only used for internal memory transfers)

 User provides: Src, Dst, Count (Reference: SPRU871)

 All src/dest addresses increment linearly throughout the transfer

 IDMA1_COUNT = #bytes to transfer

 Example:

IDMA1_SOURCE = outBuffFast; //set src addr in L1D

IDMA1_DEST = outBuff; //set dst addr to L2

IDMA1_COUNT = 7 << IDMA_PRI_SHIFT | //PRI low vs. cache/EDMA

 1 << IDMA_INT_SHIFT | //interrupt CPU on completion

 buffsize; //set count to buffer size (bytes)

1

2

3

1

2

3

Src Dst

IDMA1: Programming Details
 IDMA1 is optimized for contiguous burst transfers between L1P, L1D and L2

 Cannot access CFG port registers (only used for internal memory transfers)

 User provides: Src, Dst, Count (Reference: SPRU871)

 All src/dest addresses increment linearly throughout the transfer

 IDMA1_COUNT = #bytes to transfer

 Example:

IDMA1_SOURCE = outBuffFast; //set src addr in L1D

IDMA1_DEST = outBuff; //set dst addr to L2

IDMA1_COUNT = 7 << IDMA_PRI_SHIFT | //PRI low vs. cache/EDMA

 1 << IDMA_INT_SHIFT | //interrupt CPU on completion

 buffsize; //set count to buffer size (bytes)

1

2

3

1

2

3

Src Dst

IDMA1: Programming Details
 IDMA1 is optimized for contiguous burst transfers between L1P, L1D and L2

 Cannot access CFG port registers (only used for internal memory transfers)

 User provides: Src, Dst, Count (Reference: SPRU871)

 All src/dest addresses increment linearly throughout the transfer

 IDMA1_COUNT = #bytes to transfer

 Example:

IDMA1_SOURCE = outBuffFast; //set src addr in L1D

IDMA1_DEST = outBuff; //set dst addr to L2

IDMA1_COUNT = 7 << IDMA_PRI_SHIFT | //PRI low vs. cache/EDMA

 1 << IDMA_INT_SHIFT | //interrupt CPU on completion

 buffsize; //set count to buffer size (bytes)

1

2

3

1

2

3

Src Dst

