
Mesh Lens Distortion Correction (Mesh LDC)

Geometric Transform Engine

Arbitrary Image Warping with 2D Mesh LUT

8-bit and/or 12-bit YUV I/O Images

Second output image with 8/12-bit conversion

Error Concealment and Report

1/28/2020 TI Information – Selective Disclosure 72

Mesh LDC Features

• Image formats

– 8-bit YUV422 (UYVY)

– 8-bit or 12-bit YUV420, or Y-only, or UV-only

• Image size

– Up to 8192 x 8192 (for both input and output)

• Image warping

– 2D projective transform: 3x4 homogeneous transform (16-bit int)

– Arbitrary geometric transform: 2D mesh LUT with down-sampling

• Pixel interpolation

– Spatial resolution: 1/8 pixel

– Bi-linear Y and bi-linear Cb/Cr: 1 cycle/pixel

– Bi-cubic Y and bi-linear Cb/Cr: 2 cycles/pixel

– Anti-aliasing filter before interpolation: Not available

• Output format conversion
– 422 to 420 conversion

– From 8- or 12-bit input pixel to 8- or 12-bit output pixels

• Up to two output images for one input image

• Simultaneous YUV-12b and YUV-8b output

1/28/2020 TI Information – Selective Disclosure 73

Mesh LDC Features

• Block based image processing

– Autonomous memory-to-memory operation

• Up to 3x3 spatial processing regions for an output image

– Programmable block parameters for each region

– Each output region may be skipped

– Reduce input image memory bandwidth overhead

• Error concealment and error report

– Out of image frame boundary or mesh frame boundary

– Missing mesh entries in block interpolation

– Missing pixel values in block interpolation

– Projective transform overflow/underflow

– ECC support on Mesh Data internal storage

1/28/2020 TI Information – Selective Disclosure 74

Lens Distortion Correction Examples

• Original Nikon D70 picture from Wikipedia under CC BY-SA 3.0 license

– The original photo was taken by participant/team The Squirrels

– The original photo is modified and transformed for illustrations on this page and the other

7 pages in this LDC section

• Perspective views created by LDC

– 1280x1280 LDC input image (resized and border adjusted from the original photo)

– 180-degree equisolid fisheye projection model approximates lens distortion fairly well

– 90-degree (H and V) and 120-degree rectilinear views

TI Information – Selective Disclosure 75 1/28/2020

https://en.wikipedia.org/wiki/File:The_Squirrels_0048.jpg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://commons.wikimedia.org/wiki/Category:Images_from_Wikis_Take_Manhattan_by_The_Squirrels
https://commons.wikimedia.org/wiki/Category:Images_from_Wikis_Take_Manhattan_by_The_Squirrels

Mesh LDC Operations

1/28/2020 TI Information – Selective Disclosure 76

Perspective Warp
Mesh Warp

Back Mapping

Mesh LDC

Image Interpolation

Input frame Output frame

Mesh frame

Mesh LDC: Functional Overview

1/28/2020 TI Information – Selective Disclosure 77

• H/V counters: undistorted coordinates

– Processing in small 2D pixel blocks to optimize memory throughput

• Perspective transform on undistorted coordinates

• Mesh warp: undistorted coordinates  distorted coordinates

– Flexible mesh LUT with down-sampling at 1, 2, 4, …, 128 (relative to mesh frame size)

– Down-sampled mesh LUT will by bi-linearly interpolated by LDC H/W

• Bi-cubic or bi-linear pixel interpolation

• Output LUT

• Second output image through LUT

• External frame buffers

– YUV422: UYVY (8-bit)

– YUV420: NV12 (8-bit or 12-bit)

– Y-only

– 420UV-only

H, V

Counters

Perspective

Transform

Mesh

LUT

Pixel

Buffer

Frame

Buffer I/F
Frame

Buffers

Bicubic/

Bilinear

Interpolation

Mesh

Warp

Mesh

Buffer

Output

LUT

LDC Back Mapping: Definitions

• 2D projective transform before distortion correction

• Mesh based distortion correction

– (Δh, Δv) is bilinear interpolated from mesh LUT given (hp, vp)

– Mesh LUT has optional 2^m 2D down-sampling (m = 0,1,…,7)

• Mesh LUT size: ceil(mesh_frame_width / 2^m) + 1 by ceil(mesh_frame_height / 2^m) + 1

1/28/2020 TI Information – Selective Disclosure 78

zv

h

v

h

aff

aff

p

p 1






































































11

u

u

aff

aff

v

h

hg

fed

cba

z

v

h (hu, vu): U13

(a, b, d, e): S16Q12

(c, f): S16Q3

(g, h): S16Q23

(haff, vaff): U16Q3 (1/8 pixel resolution)

z: U16Q14

(hp, vp): U16Q3 (1/8 pixel resolution)
































v

h

v

h

v

h

p

p

d

d
(hd, vd): U16Q3 (1/8 pixel resolution)

(hp, vp): U16Q3 (1/8 pixel resolution)

(∆h, ∆v): S16Q3 (1/8 pixel resolution)

LDC Back Mapping: Mathematical Lens Model

• Equisolid projection

• Pinhole perspective projection

• Parameters
– Image size: 1280x1280

– Image center: (640, 640)

– f (focal length): 1280/4/sin(45º)

– s (mesh coverage): 4

– m (down-sampling): 4

• Mesh LUT

TI Information – Selective Disclosure 79 1/28/2020





tan/

sin2
2









sfr

fr

u

d

c

cp

cp

c

c

d

d

u

d
c

u

cpcpu

f
hv

hh

v

h

v

h

s
r

r
f

fsr

vvhhr









































cos

cos

)/arctan(

)()(

2

22






2
cos

cos



 s

r

r

u

d

LDC Back Mapping: From Lens Model to Mesh LUT

• Distortion correction is specified by offsets stored in a mesh table

• Mesh LUT of WxH frame with down-sampling rate 2m (m=0,1,…,7)

– Interleaved h and v offsets in raster scan order

– Mesh size: ceil(W/2^m)+1 by ceil(H/2^m)+1

– Mesh coverage scale: s

 1 W = 1280; hc = W/2;
 2 H = 1280; vc = H/2;
 3 f = W/4/sin(pi/4); s = 2; m = 4;
 4 [h_p, v_p] = meshgrid(0:W, 0:H);
 5 r_u = sqrt((h_p-hc).^2 + (v_p-vc).^2);
 6 theta = atan(r_u * s / f);
 7 f_c = s * cos(theta) ./ cos(theta/2);
 8 h_d = hc + (h_p-hc) .* f_c;
 9 v_d = vc + (v_p-vc) .* f_c;
10 h_delta = round((h_d - h_p) * 8);
11 v_delta = round((v_d - v_p) * 8);
12 mh = h_delta(1:2^m:end, 1:2^m:end)';
13 mv = v_delta(1:2^m:end, 1:2^m:end)';
14 dlmwrite('mesh.txt', [mh(:), mv(:)], 'delimiter', ' ');

1/28/2020 TI Information – Selective Disclosure 80
































p

p

d

d

v

h

v

h

v

h (∆h, ∆v): S16Q3 (1/8 pixel resolution)

(hd, vd): U16Q3 (1/8 pixel resolution)

(hp, vp): U16Q3 (1/8 pixel resolution)

LDC Back Mapping: From Lens Specification to Mesh LUT

• Read the distortion specification table (angle and height)
1 function lut = read_spec(spec_file, pitch_in_mm)
2 lut0 = dlmread(spec_file);
3 theta = lut0(:,1)/180*pi;
4 lut = [theta, lut0(:,2)/pitch_in_mm];

• Back map
1 function [h_d, v_d] = xyz2distorted(x, y, z, hc, vc, spec_file, pitch_in_mm)
2 xt = x-hc; yt = y-vc; zt = z*ones(size(xt));
3 [phi, r] = cart2pol(xt, yt);
4 theta = atan2(r, zt);
5 lut = read_spec(spec_file, pitch_in_mm);
6 r_d = interp1(lut(:,1), lut(:,2), theta);
7 [h_d, v_d] = pol2cart(phi, r_d);
8 h_d = h_d + hc; v_d = v_d + vc;

• Generate the mesh LUT in GNU Octave or Matlab
1 function [] = gen_lut(spec_file, pitch_in_mm, f_in_mm, W, H, hc, vc, s, m)
2 f = f_in_mm/pitch_in_mm;
3 [h_p, v_p] = meshgrid(0:W, 0:H);
4 [h_d, v_d] = xyz2distorted(h_p, v_p, f/s, hc, vc, spec_file, pitch_in_mm);
5 h_delta = round((h_d - h_p)*8);
6 v_delta = round((v_d - v_p)*8);
7 mh=h_delta(1:2^m:end, 1:2^m:end)';
8 mv=v_delta(1:2^m:end,1:2^m:end)';
9 dlmwrite('mesh.txt', [mh(:), mv(:)], 'delimiter', ' ');

1/28/2020 TI Information – Selective Disclosure 81

Angle (deg) Height (mm)

0 0

0.89 0.01405228

1.78 0.02810717

2.67 0.04216725

If necessary, insert your change
of camera view point as a
transform on 3D points (xt, yt, zt)
here between line 2 and 3.

If necessary, clip (h_d, v_d) into your
image boundary between line 4 and 5

Mesh LDC Sample Images

• Perspective front view

– Input image: 2864x2864 (fisheye view)

– Output image: 1280x1280 (90-degree H/V front view)

– Mesh: perspective + lens distortion (m=4)

1/28/2020 TI Information – Selective Disclosure 82

Mesh LDC Sample Images

• Perspective side views

– Input image: 1280x1280 (fisheye view)

– Output images: 1280x1280 (dual 90-degree views with 90-degree separation)

– Mesh: perspective + lens distortion (m=4)

1/28/2020 TI Information – Selective Disclosure 83

Mesh LDC Sample Images

• Cylindrical panorama

– Input image: 1280x1280 (185-degree fisheye)

– Output image: 1280x720 (H: 180-degree; V: 90-degree)

– Mesh: panorama + perspective + lens distortion (m=4)

1/28/2020 TI Information – Selective Disclosure 84

Mesh LDC Artifacts

• Perspective transform + mesh model for radial distortion

– 90-degree perspective view (30-degree and 2-degree rotations)

– Mesh (m=3): s=1 (left, 109-degree mesh coverage) or 4 (right, 160-degree mesh coverage)

• Both perspective transform and mesh change with s (for mesh coverage)

• Artifacts show up around edges for s=4 (for mesh) in the example below

– Due to precision of perspective transform combined with mesh down-sampling

– NOT an aliasing-only or mesh precision-only problem

– May use mesh only to avoid artifacts (turn off perspective transform)

– Mya use lower mesh down-sampling to avoid artifacts (but mesh LUT becomes large)

1/28/2020 TI Information – Selective Disclosure 85

Notes on Mesh LDC

• Artifacts may show up if 2D transform and mesh LUT are used together

– Projective transform (brute force) has limited precision

– Use a dedicated mesh (mesh-only) for your view to avoid artifacts

• Use projective transform only for perspective changes

– When no lens distortion exists (mesh is disabled)

– May use mesh only as well, but not as flexible

• Aliasing may happen at high down-sampling rate
– Perspective change may result in high down-sampling rate

– Mesh LDC has no internal anti-aliasing filter

• One mesh cannot cover the entire 180-degree perspective view

– Mesh is specified relative to the mesh frame size

– A mesh + an input image  a distortion-corrected image

– Fully corrected 180-degree perspective view goes to infinity

• Increase “m” to reduce mesh size
– Small m (e.g., 0,1,2) results in large mesh LUTs for external storage

– Small m causes high DDR traffic for loading mesh LUT into LDC frame by frame

1/28/2020 TI Information – Selective Disclosure 86

Fisheye Lens Calibration for Mesh LDC

• Find the center of your lens accurately

– Point the camera to the intersection of a horizontal line and a vertical line

– Adjust camera so that both lines are as straight as possible

– Capture the LDC input image from camera

– Look at the image to verify that both lines are straight

– Read out the image coordinate of the intersection which is the lens center

• Find the fisheye distortion function for your lens

– Lens vendors typically provide a distortion function

– Typically as a LUT from the angle of incoming ray (degree) to the image height (mm)

– Reformat the LUT into 2 columns as a text file (degree and mm)

• Other information

– Find the center and focal length in mm of your lens

– Find the pixel pitch in mm of your image sensor

– LUT down sampling rate m

– Run the matlab script to generate mesh LUT

– Capture one LDC input image

• Input all above information into tuning tool

• Check the tuning tool preview of the corrected image

1/28/2020 TI Information – Selective Disclosure 87

Programming Mesh LDC

• Internal pixel block buffer

– LDC fetches up to 21KB luma and/or 15KB chroma pixels for each block automatically

– Including input image block with PIXPAD and other overhead

• Internal mesh LUT block buffer

– LDC fetches up to 5KB for each block automatically (10KB total with ping-pong buffering)

– LUT size for each block + memory banking overhead <= 5KB

• Safe condition (may not be tight) when affine/perspective transform is off

– floor(OBW/2 m̂ + 6) * floor(OBH/2 m̂ + 3) <= 1280

• Processing block parameters

– OBW: 8, 16, 24, 32, ……, 248

– OBH: 2, 4, 6, 8, ……, 254

– PIXPAD: 0, 1, 2, 3, ……, 15

• I/O image buffers

– Input from DDR, or SL2

– Output to DDR, or other processing blocks via SL2

• Limitations

– Processing blocks per row: up to 1023 blocks

– Processing pixel block size: up to 1023x1023 pixels

1/28/2020 TI Information – Selective Disclosure 88

Programming Mesh LUT

• Input frame size

– The input image available in memory

– Anything going outside will be clipped back

• Output frame size

– The output image to produce

• Mesh frame size

– Decide the mesh LUT size

– Anything going outside will be clipped back

• Mesh LUT formats

– In 2-column text file: created by the Matlab code earlier and used as tuning tool input

– In DCC xml file: in H/W format with proper row alignment

• Mesh LUT in DDR (i.e., H/W format)

– One 32-bit word for each entry (little endian)

• 16 LSBs: vertical offset

• 16 MSBs: horizontal offset

– Mesh LUT row alignment: 16-Byte alignment

– Tuning tool (DCC) shall take care of the conversion automatically

• From mesh LUT text file to DCC xml file

 1/28/2020 TI Information – Selective Disclosure 89

Mesh LUT Down-sampling

• Mesh down-sampling

– The mesh LUT as a vector field is quite smooth for typical fisheye lens distortion

– Down-sampling at 16x16 (m=4) typically has little impact on image quality

– Lens calibration error may be larger than error caused by mesh down-sampling

• Verify mesh down-sampling with tuning tool
– Generate full mesh LUT and down-sampled mesh LUTs (m=0,1,2,…)

– Use tuning tool to generate output images on test scenes for above LUTs

– Compare full mesh output image to down-sampled mesh output images

– Pick the largest down-sampling factor with acceptable image quality

1/28/2020 TI Information – Selective Disclosure 90

Programming Mesh LDC Projective Transform

• Using projective transform and mesh LUT together may be problematic

– Small edge artifacts may show up

• Caused by the limited precision of projective transform with integer implementation

• Coefficients (a~h) are programed in 16-bit registers

– Some transforms have a~h beyond 16-bit range and therefore cannot be used in LDC

– Use mesh only instead

– Coefficients depend on the mesh LUT

• LDC clips “z” to 16-bit (U16Q14) internally

– Some transforms may result in z beyond 16-bit range and therefore cannot be used

– Use mesh only instead

– This problem can be detected by calculation or looking at tuning tool output image

1/28/2020 TI Information – Selective Disclosure 91





















































11

u

u

aff

aff

v

h

hg

fed

cba

z

v

h (hu, vu): U13

(a, b, d, e): S16Q12

(c, f): S16Q3

(g, h): S16Q23

(haff, vaff): U16Q3 (1/8 pixel resolution)

z: U16Q14

