
NDK Static Internal Memory Manager

About Memory Manager buffers, buckets, and blocks
Example
How to reduce RAM usage

The NDK has a component called a Memory Manager. The buffers are used as a scratchpad memory resource for many components within the NDK. For example, the bind() function

needs a little memory and the DHCP client needs to store the lease option, this memory is used. This memory is statically defined and placed in the .xxx:NDK_MMBUFFER subsection (xxx

depends on the target). The size of the section is dictated by the following configuration parameters:

Global.memRawPageCount: Number of internal memory buckets.
Global.memRawPageSize: Size of each bucket.

To set these parameters, first open the NDK settings in your application's configuration file (*.cfg) as described in Configuring NDK Memory Use. Once you see the TI-RTOS >
Products > NDK > Networking - Welcome configuration panel, choose the Buffers link.

To reduce external fragmentation and improve performance, there are N buckets in the memory manager. N is determined by the Global.memRawPageCount field. Each bucket manages

a buffer of size M (where M is determined by Global.memRawPageSize).

The following arrays hold the bucket information and the large buffer that will be divided between the buckets. <syntaxhighlight lang='c'> PITENTRY

ti_ndk_config_Global_pit[RAW_PAGE_COUNT]; // RAW_PAGE_COUNT = Global.memRawPageCount UINT8

ti_ndk_config_Global_pitBuffer[RAW_PAGE_SIZE*RAW_PAGE_COUNT]; // RAW_PAGE_SIZE = Global.memRawPageSize </syntaxhighlight>

During startup, the ti_ndk_config_Global_pitBuffer buffer is sliced up into buckets. Each bucket in ti_ndk_config_Global_pit is given a buffer of size Global.memRawPageSize.

Each bucket will slice up its buffer into same-sized blocks at run-time. To reduce internal fragmentation, the valid block sizes are (in MAUs): 48, 96, 128, 256, 512, 1536, and

Global.memRawPageSize.

Global.memRawPageSize should be a multiple of these sizes to minimize wasted memory, since the buffer of size Global.memRawPageSize is sliced up into block-size pieces. For

example, if Global.memRawPageSize is 3072, in a 96-MAU bucket there will be 3072/96 = 32 blocks.

When the internal components of the NDK need memory, they call mmAlloc(). Within mmAlloc(), each bucket is examined to determine which one matches the requested size the best.

This approach reduces the amount of internal fragmentation.

The fixed block-size for a bucket is not determined during start-up. All N buckets are "un-initialized" at start-up and do not have a block size associated with them. When mmAlloc() is

called at run-time, the list of valid block-sizes (48, 96, etc.) is examined to determine the best size to use. The buckets are examined to see if one that is already managing blocks of that

size has free blocks available. If such a bucket exists, that bucket is used for this allocation. Otherwise, an uninitialized bucket is used and becomes associated with that block size.

If you look at the ti_ndk_config_Global_pit array, you might see that it has multiple buckets allocating blocks of the same size. This impacts performance somewhat, but allows a

wide variety of memory allocation scenarios to be used with the NDK.

When mmFree() is called and a bucket has no more allocated blocks, the bucket is uninitialized so that it no longer has an associated block size.

Suppose there are 6 buckets (Global.memRawPageCount = 6), and the size of each bucket is 3072 (Global.memRawPageSize = 3072). At start-up all buckets are "uninitialized".

The 6 buckets would have the allocations shown below if mmAlloc() is called by the NDK with the following sizes (in this order): 62, 1536, 1536, 48, and 1536.

bucket 0: size = 96; number of total blocks: 32 (3072/96); number of free blocks: 31
bucket 1: size = 1536; number of total blocks: 2 (3072/1536); number of free blocks: 0
bucket 2: size = 48; number of total blocks: 64 (3072/48); number of free blocks: 63
bucket 3: size = 1536; number of total blocks: 2 (3072/1536); number of free blocks: 1

Contents

About Memory Manager buffers, buckets, and blocks

Example

https://processors.wiki.ti.com/index.php/TI-RTOS_Networking_Stack_Memory_Usage#Configuring_NDK_Memory_Use
https://processors.wiki.ti.com/index.php/File:Ndkmemory.png

bucket 4: un-initialized
bucket 5: un-initialized

If the 62-MAU block and all the 1536-MAU blocks are then freed (and no more allocation occurs), the buckets would have the following allocations:

bucket 0: un-initialized
bucket 1: un-initialized
bucket 2: size = 48; number of total blocks: 64 (3072/48); number of free blocks: 63
bucket 3: un-initialized
bucket 4: un-initialized
bucket 5: un-initialized

If is difficult to give concrete guidelines for reducing RAM usages since the Memory Manager is very dynamic and application-dependent. You can call the _mmCheck() API to display

current usage, but it is just a single snapshot.

The Memory Manager never uses a bucket with a larger size than is needed to fulfill a request. For example, suppose you have 6 buckets and their sizes are currently 48, 48, 512, 512,

256, and 1536. If a request for 94 MAUs is made, an allocation error will occur. A 256 MAU block will not be allocated for the 94 MAU request.

However, suppose you had 6 buckets and the current sizes were 48, 48, 96, 512, 1536, and uninitialized. The allocation for 94 MAUs would succeed because either the third bucket would

be used, or if it had already allocated all of its blocks, the last bucket would be initialized to manage block sizes of 96.

If you reduce the Global.memRawPageCount too much, the likelihood of an allocation error increases. If the Global.memRawPageSize is greater than 1536, we recommend that you set

Global.memRawPageCount to 6 or higher. Note that there are 7 block sizes the NDK can use--48, 96, 128, 256, 512, 1536, and Global.memRawPageSize.

You can reduce the Global.memRawPageSize setting. The best choice depends on the NDK components being used. For example the HTTP Server calls mmAlloc() with a size of 1,676

bytes.

Unfortunately, determining the optimal page size and count is currently done by trial and error. We are looking into the best way to add enhancements related to such optimization.

{{

1. switchcategory:MultiCore=

For technical support on
MultiCore devices, please
post your questions in the
C6000 MultiCore Forum
For questions related to
the BIOS MultiCore SDK
(MCSDK), please use the
BIOS Forum

Please post only comments related
to the article NDK Static Internal
Memory Manager here.

Keystone=

For technical
support on
MultiCore devices,
please post your
questions in the
C6000 MultiCore
Forum
For questions
related to the
BIOS MultiCore
SDK (MCSDK),
please use the
BIOS Forum

Please post only
comments related to the
article NDK Static Internal
Memory Manager here.

C2000=For
technical
support on
the C2000
please
post your
questions
on The
C2000
Forum.
Please
post only
comments
about the
article
NDK
Static
Internal
Memory
Manager
here.

DaVinci=For
technical
support on
DaVincoplease
post your
questions on
The DaVinci
Forum. Please
post only
comments
about the
article NDK
Static Internal
Memory
Manager here.

MSP430=For
technical
support on
MSP430
please post
your
questions on
The MSP430
Forum.
Please post
only
comments
about the
article NDK
Static
Internal
Memory
Manager
here.

OMAP35x=For
technical
support on
OMAP please
post your
questions on
The OMAP
Forum. Please
post only
comments
about the
article NDK
Static Internal
Memory
Manager here.

OMAPL1=For
technical
support on
OMAP please
post your
questions on
The OMAP
Forum.
Please post
only
comments
about the
article NDK
Static
Internal
Memory
Manager
here.

MAVRK=For
technical
support on
MAVRK
please post
your
questions
on The
MAVRK
Toolbox
Forum.
Please post
only
comments
about the
article NDK
Static
Internal
Memory
Manager
here.

For technical su
please post you
questions at
http://e2e.ti.com
Please post on
comments abou
article NDK Sta
Internal Memo
Manager here.
}}

Links
Amplifiers & Linear
Audio
Broadband RF/IF & Digital Radio
Clocks & Timers
Data Converters

DLP & MEMS
High-Reliability
Interface
Logic
Power Management

Processors

ARM Processors
Digital Signal Processors (DSP)
Microcontrollers (MCU)
OMAP Applications Processors

Switches & Multiplexers
Temperature Sensors & Control ICs
Wireless Connectivity

Retrieved from "https://processors.wiki.ti.com/index.php?title=NDK_Static_Internal_Memory_Manager&oldid=182539"

This page was last edited on 28 July 2014, at 06:41.

Content is available under Creative Commons Attribution-ShareAlike unless otherwise noted.

How to reduce RAM usage

http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/default.aspx
http://e2e.ti.com/support/embedded/f/355.aspx
http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/default.aspx
http://e2e.ti.com/support/embedded/f/355.aspx
http://e2e.ti.com/support/microcontrollers/tms320c2000_32-bit_real-time_mcus/f/171.aspx
http://e2e.ti.com/support/dsp/davinci_digital_media_processors/default.aspx
http://e2e.ti.com/support/microcontrollers/msp43016-bit_ultra-low_power_mcus/default.aspx
http://e2e.ti.com/support/dsp/omap_applications_processors/default.aspx
http://e2e.ti.com/support/dsp/omap_applications_processors/default.aspx
http://e2e.ti.com/support/development_tools/mavrk/default.aspx
http://e2e.ti.com/
https://processors.wiki.ti.com/index.php/File:Hyperlink_blue.png
http://www.ti.com/lsds/ti/analog/amplifier_and_linear.page
http://www.ti.com/lsds/ti/analog/audio/audio_overview.page
http://www.ti.com/lsds/ti/analog/rfif.page
http://www.ti.com/lsds/ti/analog/clocksandtimers/clocks_and_timers.page
http://www.ti.com/lsds/ti/analog/dataconverters/data_converter.page
http://www.ti.com/lsds/ti/analog/mems/mems.page
http://www.ti.com/lsds/ti/analog/high_reliability.page
http://www.ti.com/lsds/ti/analog/interface/interface.page
http://www.ti.com/lsds/ti/logic/home_overview.page
http://www.ti.com/lsds/ti/analog/powermanagement/power_portal.page
http://www.ti.com/lsds/ti/dsp/embedded_processor.page
http://www.ti.com/lsds/ti/dsp/arm.page
http://www.ti.com/lsds/ti/dsp/home.page
http://www.ti.com/lsds/ti/microcontroller/home.page
http://www.ti.com/lsds/ti/omap-applications-processors/the-omap-experience.page
http://www.ti.com/lsds/ti/analog/switches_and_multiplexers.page
http://www.ti.com/lsds/ti/analog/temperature_sensor.page
http://focus.ti.com/wireless/docs/wirelessoverview.tsp?familyId=2003§ionId=646&tabId=2735
https://processors.wiki.ti.com/index.php?title=NDK_Static_Internal_Memory_Manager&oldid=182539
http://creativecommons.org/licenses/by-sa/3.0/

