
Application Processor Security

Processors Security Overview

Security basics and enablers

THREATS

THEFT CONTROL

ASSETS

IDENTITY

& KEYS

DATA
CODE &

IP

DATA

EXPOSURE POINTS

RUN-

TIME

TRANSFERSTORAGE

“TI’s security toolbox of security enablers helps address

the emerging threats of an increasingly connected and complex world”

TI SECURITY ENABLERS

Security enablers in embedded systems

Tamper

Protection

Secure framework

and software update

Initial secure

programming

Software IP

protection

Secure storage Network security

Trusted Execution

Environment (TEE)

External memory

protection

Secure boot Device identity

and keys

Debug security

Cryptographic

acceleration

Physical

security

Software and key

provisioning security

Run-time security

Foundation for

security

Security foundational enablers

Secure boot Device identity

and keys

Debug security

Cryptographic

acceleration

Foundation for

security

Processor Security Enabler Description

Secure boot Cornerstone of embedded security. Authenticates boot images and ensures

their integrity. Establishes Root of Trust.

Device Identity and keys Maintains device identity in a network

Crypto Acceleration Dedicated HW acceleration for low latency and high throughput Crypto functions

Debug Security Locks down JTAG in the Field. Board debug port can be opened only by

authenticated SW.

AM6x 16nmFF

Compute

General Connectivity & IO High-speed Interfaces

Graphics and Display Audio, Video and Analytics

Power Efficiency Security & Safety Real-time Cores

AM6x Cortex®-A based architecture

Networking and TSN

TSNUSB PCIe

DSP

PRU/ICSS

AM6x 16nmFF

AM6x security

Security

• Security is foundational to the overall architecture

• Isolation and separation of security functions

• Security Controller (secure enclave)

• ARM Trustzone

AM6x 16nmFF

AM6x Security Controller

Security Controller

Up to dual-core Cortex-M

Secure ROM

Timer,

Watchdog

Secure RAM

Security Control,

Keys and OTP* Secure DMA/IPC

Cryptographic
Subsystem

* OTP = One-Time Programmable Memory

• Central control for security (secure boot, debug, etc.)

• Isolated from the rest of the system by firewalls

• Protects all critical resources (keys, config)

Security foundational enablers

Processor Security Enabler Description

Secure boot Cornerstone of embedded security. Authenticates boot images and ensures

their integrity. Establishes Root of Trust.

Device Identity and keys Maintains device identity in a network

Crypto Acceleration Dedicated HW acceleration for low latency and high throughput Crypto functions

Debug Security Locks down JTAG in the Field. Board debug port can be opened only by

authenticated SW.

Secure boot Device identity

and keys

Debug security

Cryptographic

acceleration

Foundation for

security

Secure boot

Secure boot is a hardware based “Root of Trust” to

authenticate and protect boot code and data. Customers

program their own keys using software/tools supplied by TI.

• When security is enabled, the device will only boot code

specifically prepared for the device using asymmetric

encryption and hashing

• Takeover Protection

– My device only runs my software (authenticity and integrity)

– Non-volatile one-time-programmable memory within device is

configured so device will only boot “trusted” software. Ensure

external flash content is not modified.

– Overwriting flash or changing the boot source to load new code

that is not signed will result in a boot failure

• Chain of Trust can be extended to following boot stages

(i.e. OS or Application Image)

Security

off

Flash

unsigned

code

Non-secure Boot

Security

on

Flash

signed

code

Device Types – simplified development flow

HS - FS
• Field Securable (FS)

• Development and testing

• No secure boot

• JTAG closed only for
Security Controller

• Security largely disabled

HS-FS device type is shipped from TI for HS and typically included on EVMs

Security

off

Security

on
non-reversible

OTP writing

HS - SE
• Security Enforced (SE)

• Production

• Enforce secure boot

• JTAG closed completely

• All available security
features active

High Security (HS)General Purpose (GP)

• Device not used for secure operation

• No Security switch, security features

disabled and cannot be enabled

• JTAG Enabled (unlocked)

• Crypto cores enabled

GP device cannot be changed to HS

Security foundational enablers

Processor Security Enabler Description

Secure boot Cornerstone of embedded security. Authenticates boot images and ensures

their integrity. Establishes Root of Trust.

Device Identity and keys Maintains device identity in a network

Crypto Acceleration Dedicated HW acceleration for low latency and high throughput Crypto functions

Debug Security Locks down JTAG in the Field. Board debug port can be opened only by

authenticated SW.

Secure boot Device identity

and keys

Debug security

Cryptographic

acceleration

Foundation for

security

✓

Device identity

• Hardware Unique Identification (ID)

• Useful for network authentication

– Restrict access to pre-approved IDs

– Contributes to auto-provisioning

– Helps detect unauthorized access attempts

• Very helpful for fleet management

– Often needed for software management and

updates

– Know what devices are running what software

at all times

– Confidently monitor device status and life cycle

“Who are you?”

“I am…”

Cryptographic acceleration AES : 128,192, 256

SHA2: 224, 256, 384, 512

Chinese Crypto (SM2, SM3, SM4)

True RNG

DRBG

PKA: RSA 2K acceleration

PKA: RSA 4K acceleration

PKA: ECC acceleration

Security Controller

Up to dual-core Cortex-M

Secure ROM

Timer,

Watchdog

Secure RAM

Security Control,

Keys and OTP Secure DMA/IPC

Cryptographic
Subsystem

• Accelerates secure boot operations

• Smart context for non-secure world use

• Supports popular industry standards

• Asymmetric, Symmetric, Hashing and

Random Number Generation

• Debug (JTAG) port

– Closed by default on High-Security (HS) devices

• HS-FS protects JTAG access to the Security Controller

• HS-SE locks JTAG port

– Can be closed permanently via eFuse setting

– Software unlock JTAG with proper verification

• Device UID or Wildcard match

• Device UID (Unique ID) for unlock

– Available from tools and software

– Also output during peripheral boot modes

• USB, UART & Ethernet

“NO!”

JTAG

“Tell me your

secrets!”

JTAG debug security

Security foundational enablers

Processor Security Enabler Description

Secure boot Cornerstone of embedded security. Authenticates boot images and ensures

their integrity. Establishes Root of Trust.

Device Identity and keys Maintains device identity in a network

Crypto Acceleration Dedicated HW acceleration for low latency and high throughput Crypto functions

Debug Security Locks down JTAG in the Field. Board debug port can be opened only by

authenticated SW.

Secure boot Device identity

and keys

Debug security

Cryptographic

acceleration

Foundation for

security

✓
✓
✓
✓

Processor security feature highlights
• Security Controller

– Up to Dual-core security coprocessor for centralized security control

– Reduces attack surface for critical assets (e.g. Keys)

– Dedicated, Crypto channel, DMA and IPC for HSM

• Field securable (HS-FS) device type

– Device behaves as non-secure device until the keys are programmed

– Helps customers test their hardware prior to productization with secure keys

• Secure boot

– Customer can program hardware (efuse) keys themselves

– Supports encrypted and authenticated boot

– Uses industry standard x509-based booting certificates

• Dual root key support

– Support for two sets of hardware (efuse) root keys

– Enables customers to switch to a new root key in the field

• Enhanced firewall architecture

– Dynamic access control to all SoC resources (memories, peripherals, cores, etc.)

– Provides the ability to promote or demote access to resources

• Smart cryptographic subsystem

– Chinese Crypto support

– ECDSA and DRBG standards hardware support, in addition to AES, 3DES, SHA1/2, MD5

– Ability to proxy security master (e.g. SMS) to promote or demote incoming data streams

– Improved performance with ability to push data streams to secure world with minimal context switching

• Enhanced debug control

– Security aware debugging (e.g. ability to lock secure world while debugging public world)

– SMS controlled challenge-response protocol for opening debug

Security

on

Processor security experience

One flow for non-secure and secure designs. Simply add security when/if needed

with minimal impact to the design. Consistent across TI AM6x Processors.

• One ti.com presence

• One set of collateral

(TRM, DS, etc.)

• One set of benchmarks

• One support path (e2e)

• One EVM

• One SDK

• One set of tools

• One software flow

• One device to sample

• One board design

• One device throughout design

• One security experience that can

be reused across projects

One Decision: easily add security when needed to any TI HS Processor

Security getting started

Start using security today with a current Starter Kit (SK), Software

Development Kits (SDKs), and tools with Security Academy!

JTAG

JTAG

Learn hands-on how to use secure boot and JTAG:

1. Sign software with TI ”shared” private keys

2. Program “known” public keys to a device

3. Verify secure boot

4. Unlock JTAG for debug

Device Academy

AM62x Link

AM62Ax Link

Note: This process is very similar for all AM6x family members…

step by step

instructions

https://www.ti.com/am62security
https://www.ti.com/am62asecurity

Thank You!

Security Features Comparison 1/2
Enabler Feature AM335x AM437x AM438x

AM570x/

AM574x

AM64x/

AM243x

AM62x/A/P/

AM67x

AM68x/

AM69x

TDA4/

DRA8

Cryptography

Acceleration

AES : 128,192, 256

3DES : DES , 3DES

SHA2-224, 256

SHA2: 384, 512

Chinese Crypto (SM2, SM3, SM4)

True RNG

DRBG

PKA: RSA 2K acceleration

PKA: RSA 4K acceleration

PKA: ECC acceleration

DMA support for crypto

Device ID and

Keys

Device Public ID via ROM API

Booting keys via OTP (MPK/SMPK, KEK,

MEK/SMEK)

General OTP bits and other OTP (MSV, SWRV) (384b) (1024) (1024b) (1024b)

Secure Boot

Customer blows own keys (Standard secure)

RSA 2048-based * * * *

RSA 4096-based

ECDSA (NIST Curve) * * * *

Authenticated boot

Encrypted boot

Model ID check

Anti-roll back check

Debug Security

SW-controlled JTAG access

Permanent disable JTAG via efuse

Security-aware debugging

Not all features may be enabled by software.

Enabler Feature AM335x AM437x AM438x
AM570x/

AM574x

AM64x/

AM243x

AM62x/A/P/

AM67x

AM68x/

AM69x

TDA4/

DRA8

External Memory

Protection

DDR obfuscation

DDR encryption

OSPI/HyperFlash Encryption * * * *

Trusted

Execution

Environment

(TEE)

ARM TrustZone: CPU, L1/L2 cache, GIC ** ** ** **

Firewall: RAM, DDR,peripherals ** ** ** **

Secured crypto context ** ** ** **

Secure DMA/data-path ** ** ** **

Secure WDG/Timer ** ** ** **

Clock, reset, power management security ** ** ** **

Secure IPC ** ** ** **

Networking

Security

IPSEC data path acceleration (no inline) * * * *

SRTP/TLS data path acceleration (no inline) * * * *

Auto key material fetch * * * *

Secure Storage Secure storage using Linaro OPTEE solution

Software IP

Protection

Encrypted boot

ROM/SW API for software protection

Initial Secure

Programming

Secure key programming (MEK/SMEK)

Random key programming (KEK)

Secure Firmware

& Update

Secure boot loaders (PPA, DMSC etc)

Aux keys for updates * * * *

Physical Security

Environmental monitoring (V, F temp, clock)

Glitch protection (voltage, frequency)

Enclosure protection (wire mesh, switch)

1-cycle clear register in case of event

Internal secure timestamp

Laser/IR deterrent device physical layout

Security Features Comparison 2/2

Not all features may be enabled by software.

** TI supports OPTEE as runtime SW

solution in Linux/Android SDK. Must

consult 3P for any other OS.

