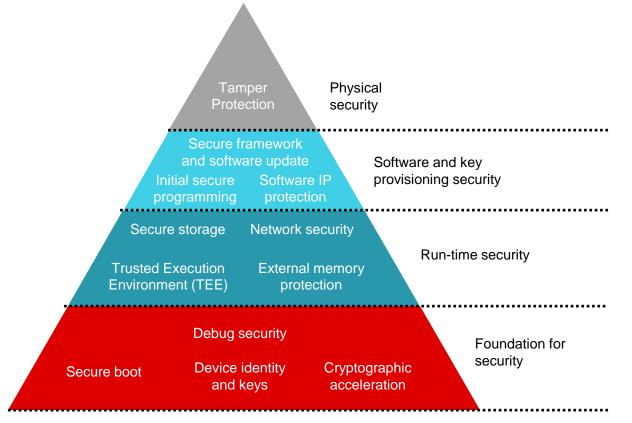
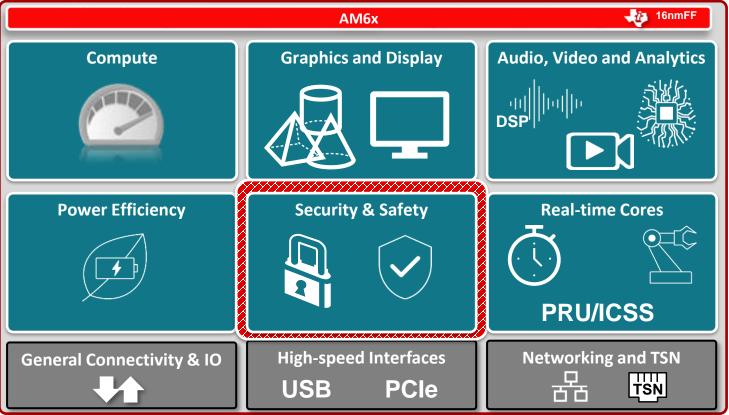

Application Processor Security

Processors Security Overview

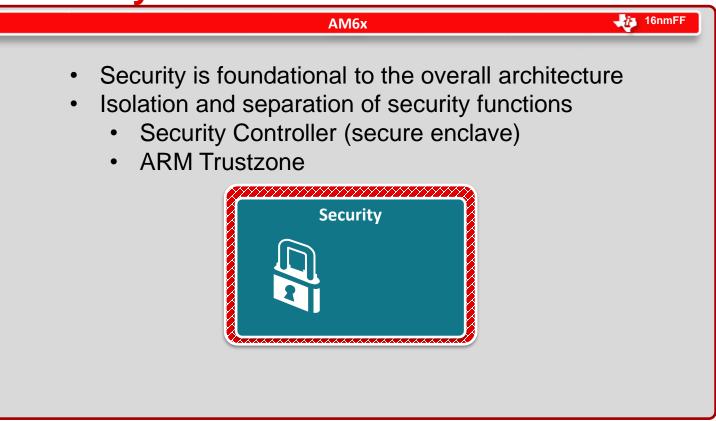

Security basics and enablers

"TI's security toolbox of **security enablers** helps address the emerging threats of an increasingly connected and complex world"

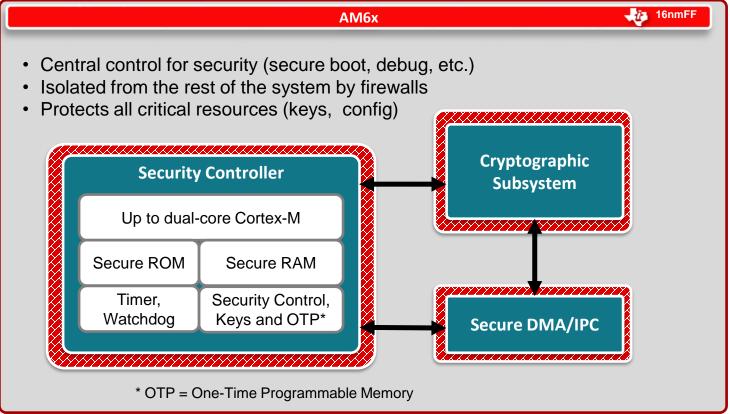
Security enablers in embedded systems


Security foundational enablers

Processor Security Enabler	Description
Secure boot	Cornerstone of embedded security. Authenticates boot images and ensures their integrity. Establishes Root of Trust.
Device Identity and keys	Maintains device identity in a network
Crypto Acceleration	Dedicated HW acceleration for low latency and high throughput Crypto functions
Debug Security	Locks down JTAG in the Field. Board debug port can be opened only by authenticated SW.



AM6x Cortex[®]-A based architecture

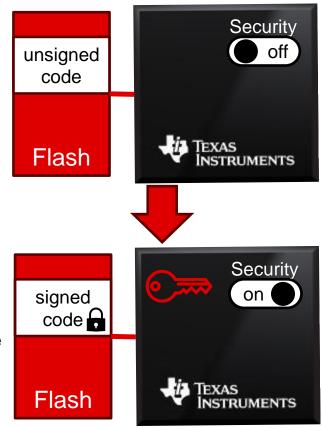


AM6x security

AM6x Security Controller

Security foundational enablers

Processor Security Enabler	Description					
Secure boot	Cornerstone of embedded security. Authenticates boot images and ensures their integrity. Establishes Root of Trust.					
Device Identity and keys	Maintains device identity in a network					
Crypto Acceleration	Dedicated HW acceleration for low latency and high throughput Crypto functions					
Debug Security	Locks down JTAG in the Field. Board debug port can be opened only by authenticated SW.					

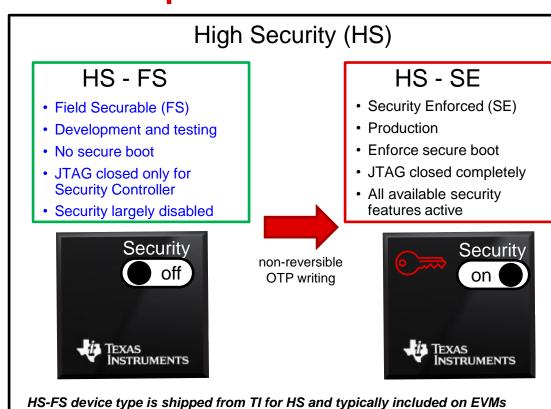


Secure boot

Secure boot is a hardware based "Root of Trust" to authenticate and protect boot code and data. Customers program their own keys using software/tools supplied by TI.

- When security is enabled, the device will only boot code specifically prepared for the device using asymmetric encryption and hashing
- Takeover Protection
 - My device only runs my software (authenticity and integrity)
 - Non-volatile one-time-programmable memory within device is configured so device will only boot "trusted" software. Ensure external flash content is not modified.
 - Overwriting flash or changing the boot source to load new code that is not signed will result in a boot failure
- Chain of Trust can be extended to following boot stages (i.e. OS or Application Image)

Non-secure Boot

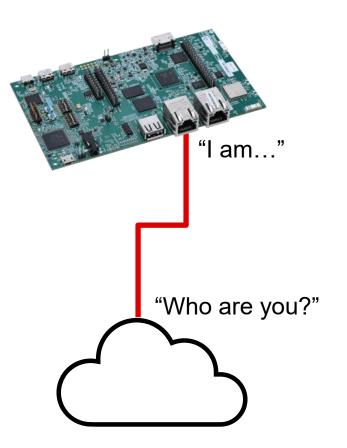


Device Types – simplified development flow

General Purpose (GP)

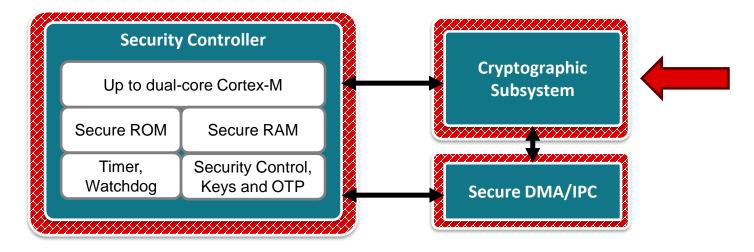
- Device not used for secure operation
- No Security switch, security features disabled and cannot be enabled
- JTAG Enabled (unlocked)
- Crypto cores enabled

Security foundational enablers


Processor Security Enabler	Description
Secure boot	Cornerstone of embedded security. Authenticates boot images and ensures their integrity. Establishes Root of Trust.
Device Identity and keys	Maintains device identity in a network
Crypto Acceleration	Dedicated HW acceleration for low latency and high throughput Crypto functions
Debug Security	Locks down JTAG in the Field. Board debug port can be opened only by authenticated SW.

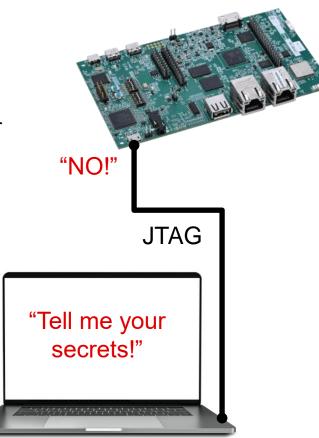
Device identity

- Hardware Unique Identification (ID)
- Useful for network authentication
 - Restrict access to pre-approved IDs
 - Contributes to auto-provisioning
 - Helps detect unauthorized access attempts
- Very helpful for fleet management
 - Often needed for software management and updates
 - Know what devices are running what software at all times
 - Confidently monitor device status and life cycle



Cryptographic acceleration

- Accelerates secure boot operations
- Smart context for non-secure world use
- Supports popular industry standards
 - Asymmetric, Symmetric, Hashing and Random Number Generation


AES : 128,192, 256	 ✓
SHA2: 224, 256, 384, 512	✓
Chinese Crypto (SM2, SM3, SM4)	✓
True RNG	✓
DRBG	✓
PKA: RSA 2K acceleration	✓
PKA: RSA 4K acceleration	✓
PKA: ECC acceleration	✓

JTAG debug security

- Debug (JTAG) port
 - Closed by default on High-Security (HS) devices
 - HS-FS protects JTAG access to the Security Controller
 - HS-SE locks JTAG port
 - Can be closed permanently via eFuse setting
 - Software unlock JTAG with proper verification
 - Device UID or Wildcard match
- Device UID (Unique ID) for unlock
 - Available from tools and software
 - Also output during peripheral boot modes
 - USB, UART & Ethernet

Security foundational enablers

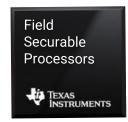
	Processor Security Enabler	Description					
\checkmark	Secure boot	Cornerstone of embedded security. Authenticates boot images and ensures their integrity. Establishes Root of Trust.					
\checkmark	Device Identity and keys	Maintains device identity in a network					
\checkmark	Crypto Acceleration	Dedicated HW acceleration for low latency and high throughput Crypto functions					
\checkmark	Debug Security	Locks down JTAG in the Field. Board debug port can be opened only by authenticated SW.					

Processor security feature highlights

Security Controller

- Up to Dual-core security coprocessor for centralized security control
- Reduces attack surface for critical assets (e.g. Keys)
- Dedicated, Crypto channel, DMA and IPC for HSM
- Field securable (HS-FS) device type
 - Device behaves as non-secure device until the keys are programmed
 - Helps customers test their hardware prior to productization with secure keys
- Secure boot
 - Customer can program hardware (efuse) keys themselves
 - Supports encrypted and authenticated boot
 - Uses industry standard x509-based booting certificates
- Dual root key support
 - Support for two sets of hardware (efuse) root keys
 - Enables customers to switch to a new root key in the field
- Enhanced firewall architecture
 - Dynamic access control to all SoC resources (memories, peripherals, cores, etc.)
 - Provides the ability to promote or demote access to resources
- Smart cryptographic subsystem
 - Chinese Crypto support
 - ECDSA and DRBG standards hardware support, in addition to AES, 3DES, SHA1/2, MD5
 - Ability to proxy security master (e.g. SMS) to promote or demote incoming data streams
 - Improved performance with ability to push data streams to secure world with minimal context switching
- Enhanced debug control
 - Security aware debugging (e.g. ability to lock secure world while debugging public world)
 - SMS controlled challenge-response protocol for opening debug

Processor security experience


One flow for non-secure and secure designs. Simply add security when/if needed with minimal impact to the design. Consistent across TI AM6x Processors.

Podiato Applications Design measures Quality & rela	holds Support & Second 20	Ξ.
tone / Monomioles (MDa) & processes v. / Processors v. /	Anti-based processors	
•	Subartite to und	
AM625 O Monte	 Accesses of the 	_
Human-machine-interaction SoC with	Arm® Cortex®-A53-based edge	
Al and full-HD dual display		_
Al and full-HD dual display		
Al and full-HD dual display	pers	

- One ti.com presence
- One set of collateral (TRM, DS, etc.)
- One set of benchmarks
- One support path (e2e)

- One EVM
- One SDK
- One set of tools
- One software flow

- One device to sample
- One board design
- One device throughout design
- One security experience that can be reused across projects

One Decision: easily add security when needed to any TI HS Processor

Security getting started

Start using security today with a current Starter Kit (SK), Software Development Kits (SDKs), and tools with **Security Academy!**

Learn hands-on how to use secure boot and JTAG:

- 1. Sign software with TI "shared" private keys
- 2. Program "known" public keys to a device
- 3. Verify secure boot
- 4. Unlock JTAG for debug

Device	Academy
AM62x	<u>Link</u>
AM62Ax	<u>Link</u>

Note: This process is very similar for all AM6x family members...

Thank You!

Security Features Comparison 1/2

Enabler	Feature	AM335x	AM437x	AM438x	AM570x/ AM574x	AM64x/ AM243x	AM62x/A/P/ AM67x	AM68x/ AM69x	TDA4/ DRA8
	AES : 128,192, 256	✓	1	1	1	1	1	1	✓
	3DES : DES , 3DES		1	1	✓	√	1	1	✓
	SHA2-224, 256	✓	1	1	✓	√	1	1	✓
	SHA2: 384, 512		1	1	1	1	1	1	✓
	Chinese Crypto (SM2, SM3, SM4)						1		
Cryptography Acceleration	True RNG	✓	1	1	1	√	1	1	✓
	DRBG					√	1	1	✓
	PKA: RSA 2K acceleration			1		√	√	1	✓
	PKA: RSA 4K acceleration			1		√	√	1	✓
	PKA: ECC acceleration					1	√	1	✓
	DMA support for crypto	✓	1	1	1	1	√	1	✓
	Device Public ID via ROM API	✓	1	1	1	1	✓	1	✓
Device ID and Keys	Booting keys via OTP (MPK/SMPK, KEK, MEK/SMEK)	✓	~	~	~	*	✓	1	✓
	General OTP bits and other OTP (MSV, SWRV)	✓	1	1	✓	✓ (384b)	√ (1024)	✔ (1024b)	✔ (1024b)
	Customer blows own keys (Standard secure)		1	1	1	1	✓	✓	✓
	RSA 2048-based	✓	1	1	1	√*	√ *	√*	√*
	RSA 4096-based		1	1		√	✓	✓	✓
Secure Boot	ECDSA (NIST Curve)					√*	√ *	√ *	√*
Secure Bool	Authenticated boot	✓	1	1	1	1	√	1	✓
	Encrypted boot	√	1	1	1	√	✓	✓	✓
	Model ID check	√	1	1	1	√	√	✓	✓
	Anti-roll back check	✓	1	1	1	✓	✓	✓	✓
	SW-controlled JTAG access	✓	✓	✓	1	✓	✓	✓	✓
Debug Security	Permanent disable JTAG via efuse					✓	✓	✓	✓
	Security-aware debugging			1		√	✓	√	✓

Not all features may be enabled by software.

Security Features Comparison 2/2

Enabler	Feature	AM335x	AM437x	AM438x	AM570x/ AM574x	AM64x/ AM243x	AM62x/A/P/ AM67x	AM68x/ AM69x	TDA4/ DRA8
External Memory Protection	DDR obfuscation	✓	1	1	1				
	DDR encryption			✓					
	OSPI/HyperFlash Encryption					∕*	√*	√*	√*
	ARM TrustZone: CPU, L1/L2 cache, GIC		√	✓	✓	√**	√**	√ **	√**
	Firewall: RAM, DDR,peripherals		✓	✓	✓	√**	√**	√**	√**
Trusted	Secured crypto context		✓	✓	✓	√**	√**	√ **	√**
Execution Environment	Secure DMA/data-path		✓	✓	1	√**	√**	√ **	√**
(TEE)	Secure WDG/Timer		✓	✓	✓	√**	√**	√ **	√**
	Clock, reset, power management security		✓	✓		√**	√ **	√ **	√**
	Secure IPC		✓	✓	1	√**	√**	√ **	√**
	IPSEC data path acceleration (no inline)					√*	√*	∕*	√*
Networking Security	SRTP/TLS data path acceleration (no inline)					√*	√*	∕*	√*
occurry	Auto key material fetch					√*	√*	∕*	√*
Secure Storage	Secure storage using Linaro OPTEE solution		1	✓	1	√	✓	✓	1
Software IP	Encrypted boot	✓	√	1	1	√	✓	✓	1
Protection	ROM/SW API for software protection	1	1	1	1	√	1	✓	1
Initial Secure	Secure key programming (MEK/SMEK)	1	1	✓	1	√	✓	✓	1
Programming	Random key programming (KEK)	1	1	1	1	✓	✓	✓	1
Secure Firmware	Secure boot loaders (PPA, DMSC etc)	1	1	1	1	√	1	1	1
& Update	Aux keys for updates	✓	✓	1	1	√*	√*	√ *	√ *
	Environmental monitoring (V, F temp, clock)			1					
	Glitch protection (voltage, frequency)			✓					
Physical Security	Enclosure protection (wire mesh, switch)			1					
	1-cycle clear register in case of event			1					
	Internal secure timestamp			1					** TI supports
	Laser/IR deterrent device physical layout			✓					solution in L consult 3P f

* TI supports OPTEE as runtime SW solution in Linux/Android SDK. Must consult 3P for any other OS.