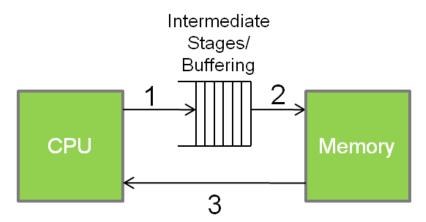
Shared RAM Access Considerations on OMAPL1x/C674x/AM1x

Contents

[hide]

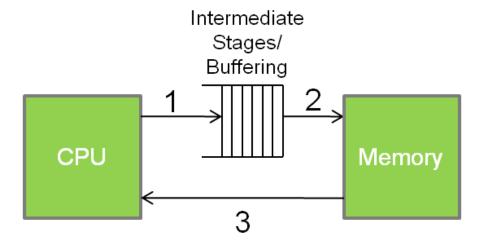
- 1Memory Access Considertions on OMAPL1x/C674x/AM1x Devices
 - 1.1Non-cacheable Writes/Stores
 - 1.2Reads/Loads/Cache Fill
 - 1.3Shared RAM Access Considerations on OMAPL1x/C674x/AM1x


Memory Access Considertions on OMAPL1x/C674x/AM1x Devices

[edit]

Non-cacheable Writes/Stores

[edit]


- "Buffered" or "fire-n-forget"
- Multiple transactions can be in flight at a time.
- Transactions progress through buffers or pipeline elements at each stage of the design
 - In DSP memory system
 - In SCR+ bridges (System Interconnect)
 - In SRAM controller
- CPU doesn't have to wait for first transaction to complete at destination before starting next write
- Latency (at least for sender) is a don't care.

- Message can land at arbitrary later point in time.
 - CPU write throughput is limited by:
 - Throughput of #1 while buffer is empty
 - Throughput of #2 while buffer is full
 - For SRAM writes #1 Throughput == #2 Throughput

Reads/Loads/Cache Fill[edit]

- "Pended" or "Blocking"
- New Read command cannot be issued until previous read is complete.
- Latency impacts Throughput

- 1 and 2 represent latency for read command through system interconnnect (SCR+bridges)
- 3 represents read response data back to the initiator
- CPU read throughput is limited by:
 - Latency of #1, plus
 - Latency of #2, plus
 - Latency of #3, plus
 - Number of dataphases
 - LDW = 4 Bytes = 1 phase/cycle
 - LDDW = 8 Bytes = 1 phase/cycle
 - Cache Fill = 128 Bytes = 16 phases/cycles

Shared RAM Access Considerations on OMAPL1x/C674x/AM1x [edit]

OMAPL1x/C674x/AM1x family of devices have upto 128KB of on chip memory outside the c674x DSP megamodule and ARM9 internal memory.

The following table provides the latency/throughput details for Shared RAM for accesses made by the DSP or ARM on these devices

Shared RAM Access Considerations								
	Access Size	C674x DSP		ARM9				
	Bytes	Latency (cycles)	Throughput (Bytes/Cycle)	Latency (cycles)	Throughput (Bytes/Cycle)			

Writes	4	16	0.25	6	0.67
	8	16	0.5	6	1.33
Reads	4	32	0.13	27	0.15
	8	32	0.25	27	0.3
	32			31	1.03
	128	48	2.67		

C6747 Shared memory performance

Edmund Pirali Intellectual_495 points

🏅 Community Member

One last question and I may be missing it, but I am not finding what the performance of L3 memory is as used by DSP.

over 13 years ago

Mariana over 13 years ago

TI_Mastermind_24340 points

Some rough numbers with cache disabled:

- ~15 CPU cycles for read
- ~19 CPU cycles for write

 $\frac{https://e2e.ti.com/support/processors-group/processors/f/processors-forum/12401/c6747-shared-memory-performance}{memory-performance}$