

Copyright © 2012 Texas Instruments Incorporated. All rights reserved.

Information in this document is subject to change without notice. Texas Instruments may have pending
patent applications, trademarks, copyrights, or other intellectual property rights covering matter in this
document. The furnishing of this documents is given for usage with Texas Instruments products only and
does not give you any license to the intellectual property that might be contained within this document.
Texas Instruments makes no implied or expressed warranties in this document and is not responsible for
the products based from this document.

Page 1 of 26

Software OSD

User Guide

Document Version 1.00

31
st
 January 2012

Page 2 of 26

Software OSD User Guide

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except
where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are
used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties
may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of
their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection
with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI
products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use
any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Clocks and Timers www.ti.com/clocks Digital Control www.ti.com/digitalcontrol
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
RFID www.ti-rfid.com Telephony www.ti.com/telephony
RF/IF and ZigBee® Solutions www.ti.com/lprf Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

Copyright 2012, Texas Instruments Incorporated

http://amplifier.ti.com/
http://www.ti.com/audio
http://dataconverter.ti.com/
http://www.ti.com/automotive
http://dsp.ti.com/
http://www.ti.com/broadband
http://www.ti.com/clocks
http://www.ti.com/digitalcontrol
http://interface.ti.com/
http://www.ti.com/medical
http://logic.ti.com/
http://www.ti.com/military
http://power.ti.com/
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com/
http://www.ti.com/security
http://www.ti-rfid.com/
http://www.ti.com/telephony
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless

Page 3 of 26

Software OSD User Guide

Revision History

Version Date Revision History

1.0 31 Jan 2012 Updated document for GA release 2.0

Page 4 of 26

Software OSD User Guide

TABLE OF CONTENTS

1 Introduction ... 5

2 Product Requirements .. 5

2.1 Input Image Requirement ... 6

2.2 Memory Requirement for the System .. 6

3 IPNC Flow Diagram .. 7

4 API Definition ... 7

5 Software OSD Usage Details... 13

5.1 Creation of bmp image of string pattern: .. 13

5.2 Conversion of bmp format to jpeg format: ... 13

5.3 Conversion of JPEG format to YUV422 format: ... 13

5.4 Conversion of YUV422 format to YUV420 planar (UV interleaved) format: 13

5.5 Extract the y data and uv data: ... 13

5.6 Conversion of YUV files to TEXT file: ... 14

5.7 Steps to convert Y and UV file to TEXT file: ... 14

5.8 Steps to display user defined image file stored in SD card: 15

5.9 Adding New OSD String Pattern: .. 15

5.10 User Defined Transparency versus Fixed Transparency 15

5.11 Steps to Enable/Disable Transparency .. 16

Page 5 of 26

Software OSD User Guide

1 Introduction

This module represents the implementation of software OSD functionality. The

software OSD runs in a separate link called as SWOSD link which gets the video

frames from its previous link as input and does the OSD imprinting and outputs the

SWOSD applied video frames to its next link in the chain. The data flow is explained

in the figure 3.

The OSD API takes the YUV or predefined string as input from the application and

imprints the OSD along with live video data. Presently OSD library supports drawing

upto 15 windows per stream. It can be increased to more than 15 windows but the

library needs to be re-built.

OSD window can be enabled/disabled for each stream specified by application. If

Application gives YUV data then it can be drawn directly, if application wants to

display the string pattern say ”IPNetCam” then it has to converted to YUV data first

then it can be drawn on live data.

2 Product Requirements

High level functional requirements are as follows:

 There should be a Handle Object for each video data resolution

 Handle Object contains information of the live video window along with all the

bitmap windows that need to be drawn on the video window

 Multiple Handle Objects for each resolution have to be initialized in the

beginning during application start-up

 SW OSD is implemented as a separate link which receives messages from the

application.

 SW OSD can allow the parameters for different windows to be changed at any

time, but the effect will be seen only in next frame

 Bitmap data to be created by the application for different resolutions

 Memory management for Bitmap window done at application level

 Blending would not be supported. Only transparency is available

 If no transparency is required, EDMA should be used

 Support YUV422, YUV420 planar (UV interleaved)

 Does not support RGB or AlphaRGB format.

 When multiple bitmap windows are overlapped, bitmap window 1 gets priority

over bitmap window 2 and so on.

Page 6 of 26

Software OSD User Guide

Data required to initialize Input Output

 Input image width, Height

 YUV data or predefined

string.

 Font width, font height,

character width, character

height and offset.

 Window width, Window

height, line offset, format

 Coordinates like startX and

startY

 YUV data or predefined

string

 Input image width, Height

 Font width, font height,

character width, character

height and offset.

 Window width, Window

height, line offset, format

 Coordinates like startX

and startY

 OSD draw for

multiple windows

2.1 Input Image Requirement

The following input parameters are required to be programmed by the application.

The OSD API’s updates the new value from the user such as main width/ height, font

width/height, character width/height, predefined string/YUV Data, startX, startY.

2.2 Memory Requirement for the System

The application need to allocate memory for different OSD handle and predefined

input string.

Page 7 of 26

Software OSD User Guide

3 IPNC Flow Diagram

The software OSD flow diagrams will give details about the implementation in IPNC

4 API Definition

SWOSD_init

Input arguments: NILL

Return value – int – Return 0 on success or -1 on failure.

Definition- This function sets the OSD parameters to null and allocate the memory,

create message queue.

SWOSD_exit

Input arguments: NILL

Return value – int – Return 0 on success or -1 on failure.

Definition- This function deletes the message queue which was created during

SWOSD_init.

SWOSD_setMainWinPrm

SW OSD LINK

(Imprints SWOSD
windows)

PREVIOUS
LINK

NEXT LINK

In Queue Out Queue

Page 8 of 26

Software OSD User Guide

Arg1 - SWOSD_Hndl - Input – pointer to the SWOSD_Hndl structure which contains

the details about OSD Bitmap Window, Main Video Window and Font Information.

 Arg2 - SWOSD_MainWinPrm * - Input – Structure which contains the format, main

window width, height and line offset.

Return value – int – Return 0 on success or -1 on failure.

Definition – This API sets the main window width, height, lineoffset and format based

on input stream.

SWOSD_setBmpWinPrm

Arg1 - SWOSD_Hndl - Input – pointer to the SWOSD_Hndl structure which contains

the details about OSD Bitmap Window, Main Video Window and Font Information

details.

Arg2 - bmpWinId - Input – window ID.

Arg3 - SWOSD_BmpWinPrm - Input – pointer to the SWOSD_BmpWinPrm which

contains the details about OSD window parameters.

Return value – int – Return 0 on success or -1 on failure.

Definition – This API sets the OSD window width, height, format, x, y, transparency

range and transparency value.

SWOSD_setBmpWinEnable

Arg1 - SWOSD_Hndl - Input – pointer to the SWOSD_Hndl structure which contains

the details about OSD Bitmap Window, Main Video Window and Font Information

details.

Arg2 - bmpWinId - Input – window ID.

Arg3 – enable - Input – flag which enables/disables the OSD window.

Return value – int – Return 0 on success or -1 on failure.

Definition – This API enables/disables the OSD Window and sends the message. This

API will be called from application.

SWOSD_setBmpchangeWinXYPrm

Arg1 - SWOSD_Hndl - Input – pointer to the SWOSD_Hndl structure which contains

the details about OSD Bitmap Window, Main Video Window and Font Information

details.

Arg2 - bmpWinId - Input – window ID.

Arg3 – startX - Input – X coordinate of starting point for the bitmap window.

Arg4 – startY - Input – Y coordinate of starting point for the bitmap window.

Return value – int – Return 0 on success or -1 on failure.

Definition – This API sets the OSD x, y values and sends the message. This API will

be called from application.

Page 9 of 26

Software OSD User Guide

SWOSD_winChangeTransperency

Arg1 - SWOSD_Hndl - Input – pointer to the SWOSD_Hndl structure which contains

the details about OSD Bitmap Window, Main Video Window and Font Information

details.

Arg2 - bmpWinId - Input – window ID.

Arg3 – bmpTransValue- Input –transparency value

Arg4 – bmpTransRange- Input –range of transparency. Library will allow +/-

bmpTransRange from bmpTransValue to be used as transparency value.

Return value – int Return 0 on success or -1 on failure.

Definition – This API sets the OSD transparency range and value and sends the

message.This API will be called from application.

SWOSD_setBmpWinAddr

Arg1 - SWOSD_Hndl - Input – pointer to the SWOSD_Hndl structure which contains

the details about OSD Bitmap Window, Main Video Window and Font Information

details.

Arg2 - bmpWinAddr- Input – BMP Window address (Used as Y address in

YUV420planar mode)

Arg3 - bmpWinAddrUV- Input – BMP Window UV address (NULL in YUV422

interleaved mode)

Arg4 - bmpWinId - Input – window ID.

Return value – int – Return 0 on success or -1 on failure.

Definition – This API sets the OSD Window buffer address and sends the

message.This API will be called from application.

SWOSD_winDrawHandle

Arg1 - SWOSD_Hndl - Input – pointer to the SWOSD_Hndl structure which contains

the details about OSD Bitmap Window, Main Video Window and Font Information

details.

Arg2 – mainWinAddr- Input – Main window Address.

Return value – int – Return SWOSD_0 on success.

Definition – This API will draw the OSD bitmap windows on the main video window

for the input handle, based on number of bitmap windows.

SWOSD_winDraw

Arg1 - SWOSD_Hndl - Input – pointer to the SWOSD_Hndl structure which contains

the details about OSD Bitmap Window, Main Video Window and Font Information

details.

Arg2 - mainWinAddr- Input – main window address.

Page 10 of 26

Software OSD User Guide

Arg3 - bmpWinAddr- Input – OSD window address.

Arg4 - bmpWinAddrUV- Input – OSD window UV address.

Arg5 - bmpWinId - Input – window ID.

Return value – int – Return 0 on success or -1 on failure.

Definition – This API imprints the OSD window along with main window address

based on window ID.This API also checks the boundary condition like whether OSD

window width has exceeded main window width and height of the OSD is exceeded

the main widow height.

SWOSD_MakeOsdwinstring

Arg1 - SWOSD_Fontdata - Input – pointer to the SWOSD_Fontdata structure which

contains the details about OSD font such as character width, character height, string

width, string height, string line offset, format, font address.

Arg2 - pInputstr- Input – predefined input string given by application.

Arg3 - pBuff- Input/Output – buffer pointer which contains the YUV data of input

string.

Arg4 - SWOSD_BmpWinPrm - Input – pointer to the SWOSD_BmpWinPrm which has

OSD window parameters such as window enable, format, x, y, width, height,

Transparency value ,range, Transparency Enable/Disable and BMP window address.

Arg5 – stringLength – length of the string to be imprinted for particular OSD bitmap

window.

Return value – int – Return 0 on success or -1 on failure.

Definition – This API converts input string to YUV data. It also updates the OSD

bitmap window width, height and line offset.

SWOSD_setPrivBmpWinEnable

Arg1 - SWOSD_Hndl - Input – pointer to the SWOSD_Hndl structure which contains

the details about OSD Bitmap Window, Main Video Window and Font Information

details.

Arg2 - bmpWinId - Input – window ID.

Arg3 – enable – Input – Window Enable/Disable.

Return value – int –Return 0 on success or -1 on failure.

Definition –This API updates the OSD window enable/disable to the OSD bitmap

window structure.

SWOSD_setPrivBmpchangeWinXYPrm

Arg1 - SWOSD_Hndl - Input – pointer to the SWOSD_Hndl structure which contains

the details about OSD Bitmap Window, Main Video Window and Font Information

details.

Page 11 of 26

Software OSD User Guide

Arg2 - bmpWinId - Input – window ID.

Arg3 – startX – Input – X coordinate.

Arg4 – startY – Input – Y coordinate.

Return value – int – Return 0 on success or -1 on failure.

Definition –This is the private API which updates the OSD x and y coordinates to the

OSD bitmap window structure.

SWOSD_setPrivwinChangeTransperency

Arg1 - SWOSD_Hndl - Input – pointer to the SWOSD_Hndl structure which contains

the details about OSD Bitmap Window, Main Video Window and Font Information

details.

Arg2 - bmpWinId - Input – window ID.

Arg3 – bmpTransValue – Input – bitmap transparency value.

Arg4 – bmpTransRange– Input – bitmap transparency range.

Return value – int – Return 0 on success or -1 on failure.

Definition –This is the private API which updates the OSD Transparency value and

range to the OSD bitmap window structure.

SWOSD_setPrivBmpWinAddr

Arg1 - SWOSD_Hndl - Input – pointer to the SWOSD_Hndl structure which contains

the details about OSD Bitmap Window, Main Video Window and Font Information

details.

Arg2 - bmpWinAddr- Input – bitmap window address.

Arg3 - bmpWinAddrUV- Input – bitmap window UV address.

Arg4 – bmpWinId– Input – bitmap window ID.

Return value – int - Return 0 on success or -1 on failure.

Definition –This is the private API which updates the OSD window address to the

OSD bitmap window structure.

SWOSD_getOSDHndls

Arg1 – numHndls – Input – pointer to the number of handles.

Return value – int – Return pointer to an array of OSD handles.

Definition –This API gets the number of active handles created by application for

different resolutions/streams.

SWOSD_createHandle

Arg1 – SWOSD_Hndl – Input – pointer to the address of OSD handle.

Page 12 of 26

Software OSD User Guide

Arg2 – indexHndl– Input – pointer to the index.

Return value – int – Return 0 on success or -1 on failure.

Definition –This API creates the handle for different resolutions/streams and returns

the handle.

SWOSD_deleteHandle

Arg1 – indexHndl– Input –index of the handle.

Return value – int – Return 0 on success or -1 on failure.

Definition –This API deletes the handle based on input index.

SWOSD_createFontDatabase

Arg1 – fontDatabaseY – Input/Output – buffer pointer contains Y font address for

each character of OSD string pattern.

Arg2 – fontDatabaseUV – Input/Output – buffer pointer contains UV font address for

each character of OSD string pattern.

Arg3 - swosd_stringPattern – this is a macro contains string pattern of all characters

Arg4 - SWOSD_Fontdata - Input – pointer to the OSD_Fontdata structure which

contains the details about OSD font such as character width, character height, string

width, string height, string line offset, format, font address.

Return value – int – Return 0 on success or -1 on failure.

Definition – This API creates a database of Y and UV address of each character in

string pattern.

Page 13 of 26

Software OSD User Guide

5 Software OSD Usage Details

5.1 Creation of bmp image of string pattern:

We have used Microsoft Paint to create bmp image of string pattern with different

 font size and different font/background color. While creating bmp image of string

 pattern make sure that character length must be an integer value.

5.2 Conversion of bmp format to jpeg format:

Use any tools to convert bmp image into jpeg format. We have used “ReaJpeg Pro”

tool to convert bmp image into jpeg format.

5.3 Conversion of JPEG format to YUV422 format:

 Steps to convert JPG format to YUV422 format:

1. Install any tool which converts JPG to YUV format. We have installed a freeware

tool called ImageMagick-6.4.3-Q16.

2. After Installing ImageMagick-6.4.3-Q16, convert JPG format to YUV format as

below.

a. Open the command prompt and go to the path where ImageMagick-6.4.3-

Q16 tool is installed.

Ex: C:\Program Files\ImageMagick-6.4.3-Q16>

b. Then from the path give convert <JPEG input file > <output

file.uyvy>

Ex: C:\Program Files\ImageMagick-6.4.3-Q16>convert A1.jpg B1.uyvy

Where A1.jpg is input file and B1.uyvy is the output file.

Note: ImageMagick uses the extension in the filenames as the format of the

file. In this case .UYVY means YUV422 interleaved format.

5.4 Conversion of YUV422 format to YUV420 planar (UV interleaved) format:

Steps to convert YUV422 format to YUV420 planar format:

1. Use any tools which convert YUV422 format to yuv420 format. We have used

“image_convert” tool which is provided in the package.

2. Copy the image_convert folder in some location.

Ex: Copy inside D:\

3. Put the YUV422 file in to bin folder inside “image_convert”

Ex: D:\image_convert\bin

4. Open the command prompt and go to the path where image_convert tool is

copied

Ex: D:\image_convert\bin>

5. Use image_convet command to convert YUV422 format to yuv420 format.

5.5 Extract the y data and uv data:

Extract y data and uv data from YUV420 planar image and put in to different binary

files.

Page 14 of 26

Software OSD User Guide

5.6 Conversion of YUV files to TEXT file:

These steps are needed to convert the binary data to a text form, so that it can be

included in the software code as an array. This way we can directly link the Y and UV

data to the executable binary that uses SWOSD library.

Steps to convert Y and UV file to TEXT file:

1. Install bin2c tool, provided in the package.

2. Open the command prompt and go to the path where bin2c tool is installed

Ex: C:\Program Files\bin2c>

3. Then from the path give bin2c <YUV Input file> >output file>

Ex: bin2c B1.yuv >C_YUV.c, convert the contents of C_YUV.c into an array of

characters as shown below.

char <Array Name> [] = {

………………….

………………….

};

4. Place C_YUV.c file in the folder along with the application code. For example, in

IPNC Reference Design, place the files in

mcfw\src_bios6\links_m3vpss\alg\sw_osd\fonts

Add array name (<Array Name>) of C_YUV.c in SwosdThr.c and use these array

to create font.

5. Change the character width and height, string width and height for different set

of fonts in application code.

Ex: Change SWOSD_CHARWIDTHxxxx, SWOSD_CHARHEIGHTxxxx,

SWOSD_STRINGWIDTHxxxx, and SWOSD_STRINGHEIGHTxxxx for different fonts

in Swosd.h of IPNC application.

5.7 Steps to convert Y and UV file to TEXT file:

Steps to convert Y and UV file to TEXT file:

1. Install bin2c tool, provided in the package.

2. Open the command prompt and go to the path where bin2c tool is installed

Ex: C:\Program Files\bin2c>

3. Then from the path give bin2c <Y Input file> >output file>

Ex: bin2c B1.y >C_Y.c, convert the contents of C_Y.c into an array of characters

as shown below.

char <Array Name> [] = {

………………….

………………….

};

4. Also repeat above step to convert UV file to text. Let’s say the output file is

C_UV.c.

5. Place C_Y.c and C_UV.c files in the folder along with the application code. For

example, in IPNC Reference Design, place the files in

mcfw\src_bios6\links_m3vpss\alg\sw_osd\fonts

Add array name (<Array Name>) of C_Y.c and C_UV.c in videoSwosdThr.c and

use these array to create font.

6. Change the character width and height, string width and height for different set

of fonts in application code.

Ex: Change SWOSD_CHARWIDTHxxxx, SWOSD_CHARHEIGHTxxxx,

SWOSD_STRINGWIDTHxxxx, and SWOSD_STRINGHEIGHTxxxx for different fonts

in Swosd.h of IPNC application.

Page 15 of 26

Software OSD User Guide

5.8 Steps to display user defined image file stored in SD card:

Suppose if we want to display some icon/image (say TI Logo) in IPNC Reference

Design, first we have to convert it to YUV.

1. Convert the icon/image as explained above.

2. Create folder called BITMAP in Memory card and place the converted YUV data as

ICON.bin

3. Change width and height of the icon/image in application code.

Ex: SWOSD_CHARWIDTHTILOGOxxxx, SWOSD_CHARHEIGHTTILOGOxxxx in

videoSwosd.h according to the size of the newly created YUV or Y and UV data.

4. If ICON.bin is found during OSD (On screen display) operation then this file

would be read and copy into a buffer. This image/icon will then be displayed

during OSD operation.

5. If ICON.bin is not found during OSD operation then a static array which is already

present in application will be displayed,

Ex. In application Static array is already present in swosdThr.c, will be displayed.

5.9 Adding New OSD String Pattern:

If application wants to create its own string pattern say “aAbBcCdD…..” then it

needs to provide the same string pattern in the YUV format. It can be done using

a JPEG to YUV tool converter. Then string pattern has to be updated in sw_osd.h.

Example string pattern is provided in the release package

#define SWOSD_STRINGPATTERN “aAbBcCdD….”

5.10 User Defined Transparency versus Fixed Transparency

5.10.1 User Defined Transparency

In user defined transparency mode there is no restriction on the color of the OSD

bitmap image that means user can make OSD bitmap image with any colors. In this

mode, if pixel value of OSD bitmap window is within the range of transparency value

plus/minus transparency range, the pixel becomes transparent. The pixel value of

live video data remains same.

Otherwise the pixel value of OSD bitmap image is assigned to corresponding pixel

value of live video data. This mode needs checking of each pixel of OSD bitmap

images and hence takes long time with increase in the CPU load.

5.10.2 Fixed Transparency

In fixed transparency mode or “optimized transparency”, there is the restriction on

pixel value of OSD bitmap image - Each pixel value can be either black(0x00) or

white(0xFF). Unlike user transparency, it simply does the “Logical Or” operation of

each 4 bytes of y or uv data of osd image with actual live video data. Applying only

“Logical Or” operation for 4 bytes considerably reduce the CPU load compared to

user transparency. In this mode, only the OSD bitmap image pixel with black (0x00)

color becomes transparent.

For fixed transparency, the OSD bitmap window width must be multiple of 4. It is

recommended that before calling function SWOSD_MakeOsdwinstring make sure

that OSD bitmap window width is multiple of 4. If it is not multiple of 4, then API

Page 16 of 26

Software OSD User Guide

SWOSD_MakeOsdwinstring takes care of it by extending the OSD bitmap window

width to be a multiple of 4 and filling the extra area with 0x00.

Software OSD library support fixed transparency only for YUV420 planar (UV

interleaved) format.

5.11 Steps to Enable/Disable Transparency

5.11.1 Transparency Disable

Steps to disable transparency:

1. Set SWOSD_BmpWinPrmuserTransparency = SWOSD_RBOOLTRUE for each

OSD window.

2. Set SWOSD_BmpWinPrmtransperencyEnable = SWOSD_BMPWINDISABLE for

each OSD window parameter.

5.11.2 User defined Transparency Enable

Steps to enable user defined transparency:

1. Set SWOSD_BmpWinPrmuserTransparency = SWOSD_RBOOLTRUE for each

OSD window.

2. Set SWOSD_BmpWinPrmtransperencyEnable = SWOSD_BMPWINENABLE for

each OSD window.

3. Set SWOSD_BmpWinPrmtransperencyVal for each OSD window.

4. Set SWOSD_BmpWinPrmtransperencyRange for each OSD window.

5.11.3 Fixed Transparency Enable

Steps to enable fixed transparency:

1. Set SWOSD_BmpWinPrmuserTransparency = SWOSD_RBOOLFALSE for each

OSD window.

2. Set SWOSD_BmpWinPrmtransperencyEnable = SWOSD_BMPWINENABLE for

each OSD window.

6 Introduction to OSD done utilizing SIMCOP

This part of the library module represents the implementation of software OSD

functionality on DM8148/DM8107 based DVRs utilising SIMCOP HW accelerators. The

software OSD runs in a separate link called as SWOSD link which gets the video frames

from its previous link as input and does the OSD imprinting and outputs the SWOSD

applied video frames to its next link in the chain.

The OSD API takes the YUV or predefined string as input from the application and

imprints the OSD along with live video data.

OSD window can be enabled/disabled for each stream specified by application. If

Application gives YUV data then it can be drawn directly, if application wants to display

Page 17 of 26

Software OSD User Guide

the string pattern then it has to converted to YUV data first then it can be drawn on live

data.

7 Product requirement

High level functional requirements are as follows:

 16CIF @ 30fps + 16QCIF @ 30fps channels with each channel having 7 windows of

different sizes.

o Max size of window is original video size.

o Should operate when input is tiled/non-tiled.

o The window resolution and number of windows can be changed

dynamically

o The overlay bitmap can be changed dynamically

 The scatter-gather is implemented using EDMA3. Basically a list of param entries

representing each window transfer is prepared in advance. During the scatter-gather

execution, M3 fires and waits for each of the transfer without needing to reprogram

any param entry

o All EDMA resources should be allocated using EDMA_LLD and no hard

coding of channel numbers/params usage should be made.

o No Ducati-L2 /OCMC memory usage should be assumed by algorithm.

o Should support 4:2:0 and 422ILE YUV video frame format.

o Should work on field and frame input.
 Projected loading for M3 is as follow: 25 MHz of M3 (under full system load) to gather

the blocks into one frame and then scatter them back after alpha blending.

8 Source and Library location

The SWOSD is integrated to the ISS package (version 2.0) and is available in the path

iss_02_xx_xx_xx\packages\ti\psp\iss\alg\swosd\ folder. The folder contains a sample

application to exercise SWOSD library APIs. Following figure depicts the folder structure

within the SWOSD package.

The top level Makefile which is available at iss_02_xx_xx_xx\ folder is used to generate

the library from source as well as sample executable.

9 API Definition

9.1 Symbolic constants and enumerated data types

Group or Symbolic constant name Description

Page 18 of 26

Software OSD User Guide

enumeration class
SWOSD_DataFormat SWOSD_FORMAT_YUV422I_YUYV Color format is YUV422ILE with

YUYV as spacing
SWOSD_FORMAT_YUV422I_UYVY Color format is YUV422ILE with

UYVY as spacing
SWOSD_FORMAT_YUV420SP_UV Color format is YUV420 Semi

planar where is Y is planar and
UV are interleaved

SWOSD_FORMAT_DEFAULT Default is YUV420SP

9.2 Constants

Constant Name Value
SWOSD_MAX_FRAMES_PER_BLEND_FRAME 16
SWOSD_MAX_CHANNELS 48
SWOSD_MAX_PLANES 2
SWOSD_MAX_MEM_BLOCKS 16
SWOSD_MAX_WINDOWS 8

9.3 Data structures

9.3.1 SWOSD_WindowPrm

This structure describes the properties of the window parameters.

Fields Data

Type

Description

startX UInt16 Relative to start of video window in pixels.
Must be multiple of 2.

startY UInt16 Relative to start of video window in lines.
width UInt16 Width of the window in pixels. Must be multiple

of 2.
height UInt16 Height of the window in lines.
alpha UInt8 8 bit global alpha value.
lineOffset[SWOSD_MAX_PLA

NES]

UInt32 Line offset in pixels for graphics window buffer.
Must be multiple of 4, recommended to be 32
for efficiency

graphicsWindowAddr[SWOSD

_MAX_PLANES]

Ptr Points to graphic window for Y and UV incase
of YUV420SP. In case of YUV422ILE, single
pointer will be provided.

Note: Graphic window is assumed to be in
non-tiled memory, so library expects non-tiled
buffer addresses.

9.3.2 SWOSD_DynamicPrm

This structure encapsulates properties for each of the window parameters in which

user can use it for changing these properties dynamically.

Page 19 of 26

Software OSD User Guide

Fields Data

Type

Description

numWindows UInt16 Number of windows to be blended per channel.
winPrm[SWOSD_MAX_WINDOWS] SWOSD_W

indowPr

m

Parameters for each of the window.

9.3.3 SWOSD_StaticPrm

This structure is used to define the static parameters of window which are constant

throughout the instance of OSD.

Fields Data Type Description
maxWidth UInt16 Maximum width of the window.
maxHeight UInt16 Maximum height of the window.
dataFormat SWOSD_DataFor

mat
Supported color format specified by enum

SWOSD_DataFormat.
Note: User must configure the colour format for
each channel. This is to make sure that the OSD
library will prepare the memory layout such
that maximum of two will be considered. The
library expects all the input frames to be of
same data format in one process call for blend
frames.
Only YUV420SP format is validated on DVR RDK,
YUV422ILE format is validate only in stand-
alone environment.

isTiledMem Bool If this flag is true, then the video data will be
expected to be in Tiler buffer.

Note:For YUV420SP case, it is assumed that Y
data will be in Tiler 8 bit and UV will be in Tiler
16 bit container.
For YUV422ILE, it is assumed to be in Tiler
page mode/Tiled 8 bit.

isInterlaced Bool Specifies whether input video is progressive or
interlaced.

This feature is validated only at standalone
level not at DVR level.

videoLineOffset[SWO

SD_MAX_PLANES]

Uint32 Specifies strides for both Y and UV components
in video buffer. OSD library expects this

parameter in no. of pixels. If isTiledMem is

enabled, OSD library takes care of offsets
accordingly.

9.3.4 SWOSD_Obj

This structure specifies the algorithm pointers required for OSD library

Fields Data Type Description

Page 20 of 26

Software OSD User Guide

algHndl void * Pointer holds address of OSD

algorithm handle.
acquire void (*)(void *) Acquire function pointer to acquire

SIMCOP resource before blending.
release void (*)(void *) Release function pointer to release

SIMCOP resource after blending.

9.3.5 SWOSD_CreatePrm

This structure specifies the create time parameters that used to create the OSD

library instance.

Fields Data

Type

Description

numChannels UInt16 Specifies the maximum number of
channels(video channels) supported for the
current instance. Current algorithm supports

colorKey[SWOSD_MAX_PLANE

S]

SWOSD_Wi

ndowPrm
8 bit color key for both Luma and Chroma.
If Graphics window pixel value == colorkey
then blending is not done for that pixel and
video pixel is copied to output window.
If Graphics window pixel value != colorkey
then graphics window pixel is blended with
video window pixel as usual

transparencyEnable Bool When transparency is enabled,
 - if Graphics window pixel value == ColorKey
 then blending is not done for that pixel and

video pixel is copied to output window
 - if Graphics window pixel value != ColorKey
 then graphics window pixel is blended with
video window pixel as usual

When transparency is disabled,
 - graphics window pixel is blended with video
window pixel as usual. Colorkey has no
existence.
TRUE – Enable transparency
FALSE – Disable transparency

useGlobalAlpha Uint8 Global Alpha flag.
- 0 : disable global alpha
- 1 : global alpha used for all channels and
corresponding windows

globalAlphaValue Uint8 Global alpha value in the range 0 – 255. Valid

only if useGlobalAlpha flag is enabled.

- 255 : Allows to see foreground
 - 0 : Allows to see background

chStaticPrm[SWOSD_MAX_CH

ANNELS]

SWOSD_St

aticPrm
Static parameter structure for each video
channel

chDynamicPrm[SWOSD_MAX_C

HANNELS]

SWOSD_Dy

namicPrm
Dynamic parameter structure for each video
channel

9.3.6 SWOSD_Frame

This structure specifies the video frame properties that is fed to OSD library

Page 21 of 26

Software OSD User Guide

Fields Data

Type

Description

channelNum UInt32 Specifies channel number associated with

corresponding video frame
Fid UInt32 Field id in case of interlaced video frames.

Currently not supported.
Addr[SWOSD_MAX_PLANES] Ptr Pointers pointing to video buffers for both Y

and C. These buffers can be either in Tiled or
non-tiled. OSD library expects the address to

be physical not virtual.

9.3.7 SWOSD_BlendFramePrm

This structure is used to pass to frame processing by OSD library which specifies

actual no. of channels to be processed along with frame properties.

Fields Data

Type

Description

numFrames UInt32 Specifies actual number of channels to be
processed by OSD process function which
blends video and graphics windows. Here the
assumption is that only 1 frame per channel is
allowed i.e. multiple frames of same channel
will not be provided in SWOSD_BlendFramePrm

frames[SWOSD_MAX_FRAMES_

PER_BLEND_FRAME]

SWOSD_Fr

ame
Video frame properties for each of the video

channel

9.3.8 SWOSD_MemAllocPrm

This structure is used to get and pass the persistent memories required by the OSD

library. Application will call an API with this structure to get actual memory

requirement and then calls an API that will be used by library to initialize memory

pointers.

Fields Data

Type

Description

numMemBlocks UInt32 No. of memory blocks requested by the library.

Maximum supported value is
SWOSD_MAX_MEM_BLOCKS

memBlockAddr[SWOSD_MAX_M

EM_BLOCKS]

Ptr Memory block addresses provided by the
application

memBlockSize[SWOSD_MAX_M

EM_BLOCKS]

UInt32 Sizes in bytes for each of the memory block

memBlockAlign[SWOSD_MAX_

MEM_BLOCKS]

UInt32 Alignment requirement for each of the memory
block

Page 22 of 26

Software OSD User Guide

9.4 Interface functions

This section describes the Application Programming Interfaces (APIs) used in the

SWOSD library.

9.4.1 SWOSD_open()

 Prototype
Int32 SWOSD_open(SWOSD_Obj *pObj, SWOSD_CreatePrm *pPrm)

 Description

Open API to initialize SWOSD object parameters

Operations:

 - Initializes algorithm handle

 - Assigning resources to the algorithm (eg. CPIS_Init() call)

 Parameters

Parameter Description
pObj Pointer to SWOSD object
pPrm Pointer to create time parameter

SWOSD_CreatePrm

 Return Value

SWOSD_OK – If creation is successful

SWOSD_ERROR – Failed to create instance of the OSD library

9.4.2 SWOSD_getMemAllocInfo ()

 Prototype
Int32 SWOSD_getMemAllocInfo(SWOSD_Obj *pObj, SWOSD_MemAllocPrm *pPrm)

 Description

Application will call this API to get memory allocation required info from algorithm.

Algorithm fills the memory requirements through the structure SWOSD_MemAllocPrm.

 Parameters

Parameter Description
pObj Pointer to SWOSD object
pPrm Pointer to Memory alloc parameter structure

SWOSD_MemAllocPrm

 Return Value

None

Page 23 of 26

Software OSD User Guide

9.4.3 SWOSD_setMemAllocInfo ()

 Prototype
Int32 SWOSD_setMemAllocInfo(SWOSD_Obj *pObj, SWOSD_MemAllocPrm *pPrm)

 Description

API for user to provide allocated pointers to the algorithm.

 Parameters

Parameter Description
pObj Pointer to SWOSD object
pPrm Pointer to Memory alloc parameter structure

SWOSD_MemAllocPrm

 Return Value

None.

9.4.4 SWOSD_setDynamicPrm ()

 Prototype
Int32 SWOSD_setDynamicPrm(SWOSD_Obj *pObj, UInt32 chNum,

SWOSD_DynamicPrm *pPrm)

 Description

This API is called by the user to change the properties of particular channel

parameters.

 Parameters

Parameter Description
pObj Pointer to SWOSD object
chNum Channel number for which the properties need to

be dynamically changed
pPrm Pointer to the dynamic parameter structure

SWOSD_DynamicPrm

 Return Value

SWOSD_OK – Dynamic parameters set successfully

SWOSD_ERROR – Failed to apply dynamic parameter, probably due to incorrect value

of new parameter

Page 24 of 26

Software OSD User Guide

9.4.5 SWOSD_updateTransparencyEnableFlag ()

 Prototype
Int32 SWOSD_updateTransparencyEnableFlag (SWOSD_Obj *pObj, Bool

transparencyEnable, Uint8 colorKey[SWOSD_MAX_PLANES])

 Description

This API is called by the user to set the transparency flag and color keys for all the

channels at create time.

 Parameters

Parameter Description
pObj Pointer to SWOSD object
transparencyEnable Transparency flag set by user

colorKey[SWOSD_MAX_PLANES] Color keys for all the channels

 Return Value

SWOSD_OK – Dynamic parameters set successfully

SWOSD_ERROR – Failed to set create parameter, probably due to incorrect value of

new parameter

9.4.6 SWOSD_updateGlobalAlpha ()

 Prototype
Int32 SWOSD_updateGlobalAlpha(SWOSD_Obj *pObj, Bool useGlobalAlpha,

Uint8 globalAlphaValue)

 Description

This API is called by the user to set the global alpha value at create time.

 Parameters

Parameter Description
pObj Pointer to SWOSD object
useGlobalAlpha Global alpha enable/disable flag

globalAlphaValue Global alpha value

 Return Value

SWOSD_OK – Dynamic parameters set successfully

SWOSD_ERROR – Failed to apply dynamic parameter, probably due to incorrect value

of new parameter

Page 25 of 26

Software OSD User Guide

9.4.7 SWOSD_blendFrames ()

 Prototype
Int32 SWOSD_blendFrames(SWOSD_Obj *pObj, SWOSD_BlendFramePrm *pPrm)

 Description

API to all frames blending. This API performs actual OSD functinality. Here the Video

buffer pointer along with DDR pointers should be populated in pPrm by the

user/application before calling this API.

Note: The API assumes all the channels/video frames to have same data format.

i.e. Call SWOSD_blendFrames()to process X number of channels – all of YUV422I.

Similarly call SWOSD_blendFrames() to process Y number of channels – all of

YUV420SP

 Parameters

Parameter Description
pObj Pointer to SWOSD object
pPrm Pointer to the structure SWOSD_BlendFramePrm

 Return Value

SWOSD_OK – Successfully blended video with graphics windows

SWOSD_ERROR – Failed to perform blend frames

9.4.8 SWOSD_close ()

 Prototype
Int32 SWOSD_close(SWOSD_Obj *pObj)

 Description

SWOSD close API which release the resource and deletes the handle.

 Parameters

Parameter Description
pObj Pointer to SWOSD object

 Return Value

SWOSD_OK – Successfully deleted the handle

SWOSD_ERROR – Failed to delete the handle

Page 26 of 26

Software OSD User Guide

