/*
 * Copyright 2008 by Spectrum Digital Incorporated.
 * All rights reserved. Property of Spectrum Digital Incorporated.
 */

/*
 * AIC3106 Loop Linein
 *
 */

#include "evmomapl137.h"
#include "evmomapl137_mcasp.h"
#include "aic3106.h"

static MCASP_Handle mcasp;

int main(void)
{
aic3106_loop_linein();
while(1);
}

/* -- *
 * *
 * AIC3106 Tone *
 * Output a 1 kHz tone through the HEADPHONE/LINEOUT jacks *
 * *
 * -- */
Int16 aic3106_loop_linein()
{
 Int16 msec, sec;
 Int16 sample;
 Int32 sample_data = 0;

 /* Configure AIC3106 */
 EVMOMAPL137_AIC3106_rset(AIC3106_PAGESELECT, 0); // Select page 0
 EVMOMAPL137_AIC3106_rset(AIC3106_RESET, 0x80); // Reset AIC3106
 /* -- *
 * *
 * AIC3106 Setup *
 * *
 * AIC3106.MCLK = PLL1705.SCK02 *
 * FS = (AIC3106.MCLK * K) / (2048 * P) *
 * *
 * For a FS=[48 kHz] & MCLK=[22.5792 MHz] *
 * : 48kHz = (22.5792 MHz * K) / (2048 * P) *
 * : P = 2, K[J.D] = 8.7075 *
 * *
 * -- */
 /* Configure AIC3106 registers */

 EVMOMAPL137_AIC3106_rset(3, 0x22); // 5 PLL A <- [PLL=OFF][Q=4][P=2]
 EVMOMAPL137_AIC3106_rset(4, 0x20); // 4 PLL B <- [J=8]
 EVMOMAPL137_AIC3106_rset(5, 0x6E); // 5 PLL C <- [D=7075]
 EVMOMAPL137_AIC3106_rset(6, 0x23); // 6 PLL D <- [D=7075]
 EVMOMAPL137_AIC3106_rset(7, 0x0A); // 7 Codec Datapath Setup <- [FS=48 kHz][LeftDAC=LEFT][RightDAC=RIGHT]
 EVMOMAPL137_AIC3106_rset(8, 0x00); // 8 Audio Interface Control A <- [BCLK=Slave][MCLK=Slave]
 EVMOMAPL137_AIC3106_rset(9, 0x00); // 9 Audio Interface Control B <- [I2S mode][16 bit]
 EVMOMAPL137_AIC3106_rset(10, 0x00); // 10 Audio Interface Control C <- [Data offset=0]
 EVMOMAPL137_AIC3106_rset(15, 0); // 15 Left ADC PGA Gain <- [Mute=OFF]
 EVMOMAPL137_AIC3106_rset(16, 0); // 16 Right ADC PGA Gain <- [Mute=OFF]
 EVMOMAPL137_AIC3106_rset(19, 0x04); // 19 LINE1L to Left ADC <- [SingleEnd][Gain=0dB][Power=ON][SoftStep=OncePerFS]
 EVMOMAPL137_AIC3106_rset(22, 0x04); // 22 LINE1R to Right ADC <- [SingleEnd][Gain=0dB][Power=ON][SoftStep=OncePerFS]
 EVMOMAPL137_AIC3106_rset(27, 0); // 27 Left AGC B <- [OFF]
 EVMOMAPL137_AIC3106_rset(30, 0); // 30 Right AGC B <- [OFF]
 EVMOMAPL137_AIC3106_rset(37, 0xE0); // 37 DAC Power & Output Dvr <- [LeftDAC=ON][RightDAC=ON][HPLCOM=SingleEnd]
 EVMOMAPL137_AIC3106_rset(38, 0x10); // 38 High Power Output Dvr <- [HPRCOM=SingleEnd][ShortCircuit=OFF]
 EVMOMAPL137_AIC3106_rset(43, 0); // 43 Left DAC Digital Volume <- [Mute=OFF][Gain=0dB]
 EVMOMAPL137_AIC3106_rset(44, 0); // 44 Right DAC Digital Volume <- [Mute=OFF][Gain=0dB]
 EVMOMAPL137_AIC3106_rset(47, 0x80); // 47 DAC_L1 to HPLOUT Volume <- [Routed]
 EVMOMAPL137_AIC3106_rset(51, 0x09); // 51 HPLOUT Output <- [Mute=OFF][Power=ON]
 EVMOMAPL137_AIC3106_rset(58, 0); // 58 HPLCOM Output <- []
 EVMOMAPL137_AIC3106_rset(64, 0x80); // 64 DAC_R1 to HPROUT Volume <- [Routed]
 EVMOMAPL137_AIC3106_rset(65, 0x09); // 65 HPROUT Output <- [Mute=OFF][Power=ON]
 EVMOMAPL137_AIC3106_rset(72, 0); // 72 HPRCOM Output <- []
 EVMOMAPL137_AIC3106_rset(82, 0x80); // 82 DAC_L1 to LEFT_LOP/M Volume <- [Routed]
 EVMOMAPL137_AIC3106_rset(86, 0x09); // 83 LINE2R to LEFT_LOP/M Volume <- []
 EVMOMAPL137_AIC3106_rset(92, 0x80); // 92 DAC_R1 to RIGHT_LOP/M Volume <- [Routed]
 EVMOMAPL137_AIC3106_rset(93, 0x09); // 93 RIGHT_LOP/M Output <- [Mute=OFF][Power=ON]
 EVMOMAPL137_AIC3106_rset(101, 0x01); // 101 GPIO Control Register B <- [CODEC_CLKIN = CLKDIV_OUT]
 EVMOMAPL137_AIC3106_rset(102, 0); // 102 Clock Generation Control <- [PLLCLK_IN and CLKDIV_IN use MCLK]

 /* Initialize MCASP1 */
 mcasp = &MCASP_MODULE_1;
 /* -- *
 * *
 * McASP1 is in MASTER mode. *
 * BCLK & WCLK come from McASP1 *
 * DIN is used by write16/write32 *
 * DOUT is usec by read16/read32 *
 * *
 * -- */
 mcasp->regs->GBLCTL = 0; // Reset
 mcasp->regs->RGBLCTL = 0; // Reset RX
 mcasp->regs->XGBLCTL = 0; // Reset TX
 mcasp->regs->PWRDEMU = 1; // Free-running

 /* RX */
 mcasp->regs->RMASK = 0xffffffff; // No padding used
 mcasp->regs->RFMT = 0x00008078; // MSB 16bit, 1-delay, no pad, CFGBus
 mcasp->regs->AFSRCTL = 0x00000112; // 2TDM, 1bit Rising, INTERNAL FS, word
 mcasp->regs->ACLKRCTL = 0x000000AF; // Rising INTERNAL CLK,(from tx side)
 mcasp->regs->AHCLKRCTL = 0x00000000; // INT CLK (from tx side)
 mcasp->regs->RTDM = 0x00000003; // Slots 0,1
 mcasp->regs->RINTCTL = 0x00000000; // Not used
 mcasp->regs->RCLKCHK = 0x00FF0008; // 255-MAX 0-MIN, div-by-256

 /* TX */
 mcasp->regs->XMASK = 0xffffffff; // No padding used
 mcasp->regs->XFMT = 0x00008078; // MSB 16bit, 1-delay, no pad, CFGBus
 mcasp->regs->AFSXCTL = 0x00000112; // 2TDM, 1bit Rising edge INTERNAL FS, word
 mcasp->regs->ACLKXCTL = 0x000000AF; // ASYNC, Rising INTERNAL CLK, div-by-16
 mcasp->regs->AHCLKXCTL = 0x00000000; // EXT CLK
 mcasp->regs->XTDM = 0x00000003; // Slots 0,1
 mcasp->regs->XINTCTL = 0x00000000; // Not used
 mcasp->regs->XCLKCHK = 0x00FF0008; // 255-MAX 0-MIN, div-by-256

 mcasp->regs->SRCTL5 = 0x000D; // MCASP1.AXR1[5] --> DIN
 mcasp->regs->SRCTL0 = 0x000E; // MCASP1.AXR1[0] <-- DOUT
 mcasp->regs->PFUNC = 0; // All MCASPs
 mcasp->regs->PDIR = 0x14000020; // All inputs except AXR0[5], ACLKX1, AFSX1

 mcasp->regs->DITCTL = 0x00000000; // Not used
 mcasp->regs->DLBCTL = 0x00000000; // Not used
 mcasp->regs->AMUTE = 0x00000000; // Not used

 /* Starting sections of the McASP*/
 mcasp->regs->XGBLCTL |= GBLCTL_XHCLKRST_ON; // HS Clk
 while ((mcasp->regs->XGBLCTL & GBLCTL_XHCLKRST_ON) != GBLCTL_XHCLKRST_ON);
 mcasp->regs->RGBLCTL |= GBLCTL_RHCLKRST_ON; // HS Clk
 while ((mcasp->regs->RGBLCTL & GBLCTL_RHCLKRST_ON) != GBLCTL_RHCLKRST_ON);

 mcasp->regs->XGBLCTL |= GBLCTL_XCLKRST_ON; // Clk
 while ((mcasp->regs->XGBLCTL & GBLCTL_XCLKRST_ON) != GBLCTL_XCLKRST_ON);
 mcasp->regs->RGBLCTL |= GBLCTL_RCLKRST_ON; // Clk
 while ((mcasp->regs->RGBLCTL & GBLCTL_RCLKRST_ON) != GBLCTL_RCLKRST_ON);

 mcasp->regs->XSTAT = 0x0000ffff; // Clear all
 mcasp->regs->RSTAT = 0x0000ffff; // Clear all

 mcasp->regs->XGBLCTL |= GBLCTL_XSRCLR_ON; // Serialize
 while ((mcasp->regs->XGBLCTL & GBLCTL_XSRCLR_ON) != GBLCTL_XSRCLR_ON);
 mcasp->regs->RGBLCTL |= GBLCTL_RSRCLR_ON; // Serialize
 while ((mcasp->regs->RGBLCTL & GBLCTL_RSRCLR_ON) != GBLCTL_RSRCLR_ON);

 /* Write a 0, so that no underrun occurs after releasing the state machine */
 mcasp->regs->XBUF5 = 0;
 mcasp->regs->RBUF0 = 0;

 mcasp->regs->XGBLCTL |= GBLCTL_XSMRST_ON; // State Machine
 while ((mcasp->regs->XGBLCTL & GBLCTL_XSMRST_ON) != GBLCTL_XSMRST_ON);
 mcasp->regs->RGBLCTL |= GBLCTL_RSMRST_ON; // State Machine
 while ((mcasp->regs->RGBLCTL & GBLCTL_RSMRST_ON) != GBLCTL_RSMRST_ON);

 mcasp->regs->XGBLCTL |= GBLCTL_XFRST_ON; // Frame Sync
 while ((mcasp->regs->XGBLCTL & GBLCTL_XFRST_ON) != GBLCTL_XFRST_ON);
 mcasp->regs->RGBLCTL |= GBLCTL_RFRST_ON; // Frame Sync
 while ((mcasp->regs->RGBLCTL & GBLCTL_RFRST_ON) != GBLCTL_RFRST_ON);

 /* Start by sending a dummy write */
 while(! (mcasp->regs->SRCTL5 & 0x10)); // Check for Tx ready
 mcasp->regs->XBUF5 = 0;

 /* Play Tone */
 for (sec = 0 ; sec < 5 ; sec++)
 {
 for (msec = 0 ; msec < 1000 ; msec++)
 {
 for (sample = 0 ; sample < 48 ; sample++)
 {
 /* Read then write the left sample */
 while (! (MCASP1_SRCTL0 & 0x20));
 sample_data = MCASP1_RBUF0_32BIT;
 while (! (MCASP1_SRCTL5 & 0x10));
 MCASP1_XBUF5_32BIT = sample_data;

 /* Read then write the left sample */
 while (! (MCASP1_SRCTL0 & 0x20));
 sample_data = MCASP1_RBUF0_32BIT;
 while (! (MCASP1_SRCTL5 & 0x10));
 MCASP1_XBUF5_32BIT = sample_data;
 }
 }
 }

 /* Close Codec */
 EVMOMAPL137_AIC3106_rset(AIC3106_PAGESELECT, 0); // Select Page 0
 EVMOMAPL137_AIC3106_rset(AIC3106_RESET, 0x80); // Reset the AIC3106

 /* Close McASP */
 mcasp->regs->SRCTL0 = 0; // Serializers
 mcasp->regs->SRCTL1 = 0;
 mcasp->regs->SRCTL2 = 0;
 mcasp->regs->SRCTL3 = 0;
 mcasp->regs->GBLCTL = 0; // Global Reset
 return 0;
}

