
EASWARI ENGINEERING COLLEGE
Bharathi salai, Ramapuram

Chennai - 89

DEPARTMENT OF ECE

EI 2355 – DIGITAL SIGNAL PROCESSING LAB

NAME :___

ROLL NO :___

YEAR/SEM :___

BRANCH :___

EASWARI ENGINEERING COLLEGE
RAMAPURAM CHENNAI-89

DEPARTMENT OF E.C.E

III- YEAR V SEM- ECE

EC1306 –DSP LAB MANUAL

1.
2.

3.
4.
5.
6.
7.

8.
9.
10.
11.

EC-DSP Lab Manual Dept of ECE

Exp. No.: STUDY OF TMS320C5416 DSP PROCESSOR

Date:

AIM:
 To Study the architecture, memory configuration and instruction set of the

TMS320VC5416 DSP processor and also the components of the TMS320VC5416 DSP

Starter kit development board.

APPARATUS REQUIRED:

S.NO ITEM Q.TY
1 TMS320VC3416 DSK

Development Board
1

2. PC with Code Composer Studio
IDE

1

3
USB Cable

1

4 +5V Universal Power Supply 1

5 AC Power cord 1

THEORY:

OVERVIEW OF TMS320VC5416 DSK DEVELOPMENT BOARD

The 5416 DSP Starter Kit (DSK) is a low-cost platform, which lets enables customers to

evaluate and develop applications for the TI C54X DSP family.

The primary features of the DSK are:

• 160 MHz TMS320VC5416 DSP
• PCM3002 Stereo Codec
• Four Position User DIP Switch and Four User LEDs
• On-board Flash and SRA

The TMS320VC5416 DSP is the heart of the system. It is a core member of Texas

Instruments’ C54X line of fixed point DSP’s whose distinguishing features are 128Kwords of

fast internal memory, 3 multi-channel buffered serial ports (McBSPs), an on-board timer and

a 6 channel direct memory access (DMA) controller. Since members of the C54X family

share common features, it is easy to use the 5416 DSK a development platform for other

members of the C54X family, which have a subset of the 5416’s resources (e.g. the 5402).

The 5416 have a significant amount of internal memory so typical applications will have

all code and data on-chip. But when external accesses are necessary, the 5416 use a 16-bit

wide external memory interface (EMIF) optimized for asynchronous memories. The DSK

includes an external non-volatile Flash chip to store boot code and an external SRAM to serve
EC-DSP Lab Manual Dept of ECE

as an example of how to include external memories in your own system. The EMIF and other

signals are brought out to standard TI expansion bus connectors so more features can be

added by plugging in daughter-card modules.

The 5416 DSK implements the logic necessary to tie the board components together in a

programmable logic device called a CPLD. In addition to random glue logic, the CPLD

implements a set of 8 software programmable registers that can be used to configure various

board parameters. These registers are key in using the 5416 DSK to its full potential. DSP’s

are frequently used in audio processing applications so the DSK includes an on-board codec

called the PCM3002. Codec stands for coder/decoder, the job of the PCM3002 is to code

analog input samples into a digital format for the DSP to process, then decode data coming

out of the DSP to generate the processed analog output. On the DSK McBSP2 is used to send

and receive the digital data to and from the codec.

Finally, the 5416 has 4 light emitting diodes (LEDs) and 4 DIP switches that allow users

to interact with programs through simple LED displays and user input on the switches

DSK BOARD FEATURES
Feature Details

TMS320VC5416 DSP 160MHz, fixed point, 128Kwords internal RAM
CPLD Programmable "glue" logic
External SRAM 64Kwords, 16-bit interface
External Flash 256Kwords, 16-bit interface
PCM3002 Codec Stereo, 6KHz –48KHz sample rate, 16 or 20 bit

samples, mic, line-in, line-out and speaker jacks
4 User LEDs Writable through CPLD
4 User DIP Switches Readable through CPLD
4 Jumpers Selects power-on configuration and boot modes
Daughter card Expansion Interface Allows user to enhance functionality with add-on

daughter cards
HPI Expansion Interface Allows high speed communication with another

DSP
Embedded JTAG Emulator Provides high speed JTAG debug through widely

accepted USB host interface

EC-DSP Lab Manual Dept of ECE

DSK HARDWARE INSTALLATION

• Shut down and power off the PC

• Connect the supplied USB port cable to the board

• Connect the other end of the cable to the USB port of PC

 Note: If you plan to install a Microphone, speaker, or

 Signal generator/CRO these must be plugged in properly

 before you connect power to the DSK

• Plug the power cable into the board

• Plug the other end of the power cable into a power outlet

• The user LEDs should flash several times to indicate board is operational

• When you connect your DSK through USB for the first time on a Windows loaded PC

the new hardware found wizard will come up. So, Install the drivers (The CCS CD

contains the require drivers for C5416 DSK).

OVERVIEW OF TMS320VC5416 PROCESSOR

KEY FEATURES:

• 16 bit fixed point, high performance lower power Digital signal processor.

EC-DSP Lab Manual Dept of ECE

• Advanced multi-bus architecture with three separate 16-bit data memory buses and

one program memory bus

• 40-bit arithmetic logic unit (ALU), including a 40-bit barrel shifter and two

independent 40-bit accumulators

• 17- × 17-bit parallel multiplier coupled to a 40-bit dedicated adder for non-pipelined

single-cycle multiply/accumulate (MAC) operation

• Compare, select, and store unit (CSSU) for the add/compare selection of the Viterbi

operator

• Exponent encoder to compute an exponent value of a 40-bit accumulator value in a

single cycle

• Two address generators with eight auxiliary registers and two auxiliary register

arithmetic units (ARAUs)

• Data buses with a bus holder feature

• Extended addressing mode for up to 8M × 16-bit maximum addressable external

program space

• 128Kwords memory – high-speed internal memory for maximum performance.

• On-chip peripherals

o Software-programmable wait-state generator and programmable

bank-switching

o On-chip PLL – generates processor clock rate from slower external clock

reference.

o Timer – generates periodic timer events as a function of the processor clock.

Used by DSP/BIOS to create time slices for multitasking.

o DMA Controller – 6 channel direct memory access controller for high speed

data transfers without intervention from the DSP.

o 3 McBSPs – Multi-channel buffered serial ports. Each McBSP can be used for

high-speed serial data transmission with external devices or reprogrammed as

general purpose I/Os.

o Time-division multiplexed (TDM) serial port

o 16-bit timer with 4-bit pre-scalar

• On-chip scan-based emulation capability

• IEEE 1149.1 † (JTAG) boundary scan test capability

• 5.0-V power supply devices with speeds up to 40 million instructions per second

(MIPS) (25-ns instruction cycle time)

EC-DSP Lab Manual Dept of ECE

ARCHITECTURE

The ’54x DSP’s use an advanced, modified Harvard architecture that maximizes

processing power by maintaining one program memory bus and three data memory buses.

These processors also provide an arithmetic logic unit (ALU) that has a high degree of

parallelism, application-specific hardware logic, on-chip memory, and additional on-chip

peripherals. These DSP families also provide a highly specialized instruction set, which is the

basis of the operational flexibility and speed of these DSPs.

Separate program and data spaces allow simultaneous access to program instructions

and data, providing the high degree of parallelism. Two reads and one write operation can be

performed in a single cycle.

CENTRAL PROCESSING UNIT (CPU)

The CPU of the ’54x devices contains:

• A 40-bit arithmetic logic unit (ALU)

• Two 40-bit accumulators

• A barrel shifter

• A 17 X 17-bit multiplier/adder

• A compare, select, and store unit (CSSU)

Arithmetic Logic Unit (ALU)

The ’54x devices perform 2s-complement arithmetic using a 40-bit ALU and two 40-

bit accumulators (ACCA and ACCB). The ALU also can perform Boolean operations.The

ALU can function as two 16-bit ALUs and perform two 16-bit operations simultaneously

when the C16 bit in status register 1 (ST1) is set.

Accumulators

The accumulators, ACCA and ACCB, store the output from the ALU or the

multiplier / adder block; the accumulators can also provide a second input to the ALU or the

multiplier / adder. The bits in each accumulator is grouped as follows:

Guard bits (bits 32–39)

A high-order word (bits 16–31)

A low-order word (bits 0–15)

Multiplier/ Adder

The multiplier / adder performs 17 X 17-bit 2s-complement multiplication with a 40-

bit accumulation in a single instruction cycle. The multiplier has two inputs: one input is

selected from the TREG, a data-memory operand, or an accumulator; the other is selected

from the program memory, the data memory, an accumulator, or an immediate value.

EC-DSP Lab Manual Dept of ECE

FUNCTIONAL BLOCK DIAGRAM

Barrel Shifter

The ’54x’s barrel shifter has a 40-bit input connected to the accumulator or data

memory (CB, DB) and a 40-bit output connected to the ALU or data memory (EB). The

EC-DSP Lab Manual Dept of ECE

barrel shifter produces a left shift of 0 to 31 bits and a right shift of 0 to 16 bits on the input

data. The shift requirements are defined in the shift-count field (ASM) of ST1 or defined in

the temporary register (TREG), which is designated as a shift-count register. This shifter and

the exponent detector normalize the values in an accumulator in a single cycle.

Compare, Select, and Store Unit (CSSU)

The compare, select, and store unit (CSSU) performs maximum comparisons between

the accumulator’s high and low words, allows the test/ control (TC) flag bit of status register

0 (ST0) and the transition (TRN) register to keep their M transition histories, and selects the

larger word in the accumulator to be stored in data memory. The CSSU also accelerates

Viterbi-type butterfly computation with optimized on-chip hardware.

Auxiliary Registers (AR0–AR7)

The eight 16-bit auxiliary registers (AR0–AR7) can be accessed by the central

airthmetic logic unit (CALU) and modified by the auxiliary register arithmetic units

(ARAUs). The primary function of the auxiliary registers is generating 16-bit addresses for

data space. However, these registers also can act as general-purpose registers or counters.

Temporary Register (TREG)

The TREG is used to hold one of the multiplicands for multiply and multiply/

accumulate instructions. It can hold a dynamic (execution-time programmable) shift count for

instructions with a shift operation such as ADD, LD, and SUB. It also can hold a dynamic bit

address for the BITT instruction.

The EXP instruction stores the exponent value computed into the TREG, while

the NORM instruction uses the TREG value to normalize the number. For ACS operation of

Viterbi decoding, TREG holds branch metrics used by the DADST and DSADT instructions.

Circular-Buffer-Size Register (BK)

The 16-bit BK is used by the ARAUs in circular addressing to specify the data

block size. Block-Repeat Registers (BRC, RSA, REA) The block-repeat counter (BRC) is a

16-bit register used to specify the number of times a block of code is to be repeated when

performing a block repeat. The block-repeat start address (RSA) is a 16-bit register containing

the starting address of the block of program memory to be repeated when operating in the

repeat mode. The 16-bit block-repeat end address (REA) contains the ending address if the

block of program memory is to be repeated when operating in the repeat mode.

Bus Structure

The ’54x device architecture is built around eight major 16-bit buses:

• One program-read bus (PB) which carries the instruction code and immediate

operands from program memory

EC-DSP Lab Manual Dept of ECE

• Two data-read buses (CB, DB) and one data-write bus (EB), which

interconnect to various elements, such as the CPU, data-address generation

logic (DAGEN), program-address generation logic (PAGEN), on-chip

peripherals, and data memory

• The CB and DB carry the operands read from data memory.

• The EB carries the data to be written to memory.

• Four address buses (PAB, CAB, DAB, and EAB), which carry the

• addresses needed for instruction execution

MEMORY

The minimum memory address range for the ’54x devices is 192K words composed of

64K words in program space, 64K words in data space, and 64K words in I/O space. Selected

devices also provide extended program memory space of up to 8M words.

On-Chip ROM

The ’54x devices include on-chip maskable ROM that can be mapped into program

memory or data memory depending on the device. On-chip ROM is mapped into program

space by the microprocessor/microcontroller (MP/MC) mode control pin. On-chip ROM that

can be mapped into data space is controlled by the DROM bit in the processor mode status

register (PMST). This allows an instruction to use data stored in the ROM as an operand.

On-Chip Dual-Access RAM (DARAM)

Dual-access RAM blocks can be accessed twice per machine cycle. This memory is

intended primarily to store data values; however, it can be used to store program as well. At

reset, the DARAM is mapped into data memory space. DARAM can be mapped into

program/data memory space by setting the OVLY bit in the PMST register.

On-Chip Single-Access RAM (SARAM)

Each of the SARAM blocks is a single-access memory. This memory is intended

primarily to store data values; however, it can be used to store program as well. SARAM can

be mapped into program/data memory space by setting the OVLY bit in the PMST register.

Program Memory

• The standard external program memory space on the ’54x devices addresses up to 64K

16-bit words. Software can configure their memory cells to reside inside or outside of

the program address map.

Data Memory

The data memory space on the ’54x device addresses 64K of 16-bit words. The device

automatically accesses the on-chip RAM when addressing within its bounds. When an address

is generated outside the RAM bounds, the device automatically generates an external access.

EC-DSP Lab Manual Dept of ECE

INSTRUCTION SET:

EC-DSP Lab Manual Dept of ECE

EC-DSP Lab Manual Dept of ECE

EC-DSP Lab Manual Dept of ECE

EC-DSP Lab Manual Dept of ECE

EC-DSP Lab Manual Dept of ECE

EC-DSP Lab Manual Dept of ECE

EC-DSP Lab Manual Dept of ECE

EC-DSP Lab Manual Dept of ECE

EC-DSP Lab Manual Dept of ECE

RESULT:
Thus the architecture, instruction set and memory configuration of the

TMS320VC5416 DSP processor and also the components of the TMS320VC5416 DSP

Starter kit development board were studied.

EC-DSP Lab Manual Dept of ECE

Exp. No.:
CODE COMPOSER STUDIO TUTORIAL

Date:

AIM:

To Study the usage of Code Composer Studio development environment, to build and

to debug embedded real-time software applications using TMS320C5416 DSP processor.

APPARATUS REQUIRED:

S.NO ITEM Q.TY

1 TMS320VC5416 DSK
Development Board

1

2. PC with Code Composer Studio
IDE

1

3
USB Cable

1

4 +5V Universal Power Supply 1

5 AC Power cord 1

THEORY
Texas Instruments’ Code Composer Studio development tools are bundled with the

5416DSK providing the user with an industrial-strength integrated development environment

for C and assembly programming. Code Composer Studio communicates with the DSP using

an on-board JTAG emulator through a USB interface.

DEVELOPMENT ENVIRONMENT
Code Composer Studio is TI’s flagship development tool. It consists of an assembler,

a C compiler, an integrated development environment (IDE, the graphical interface to the

tools) and numerous support utilities like a hex format conversion tool.

The Code Composer IDE is the piece you see when you run Code Composer. It consists of

• Editor for creating source code in assembly and C language.

• Project manager to identify the source files.

• Integrated source level debugger that lets you examine the behavior of your program

while it is running.

EC-DSP Lab Manual Dept of ECE

 The IDE is responsible for calling other components such as the compiler and

assembler so developers don’t have to deal with the hassle of running each tool manually.

The 5416 DSK includes a special device called a JTAG emulator on-board that can

directly access the register and memory state of the 5416 chip through a standardized JTAG

interface port. When a user wants to monitor the progress of his program, Code Composer

sends commands to the emulator through its USB host interface to check on any data the user

is interested in.

When you recompile a program in Code Composer on your PC you must specifically

load it onto the 5416 onto the DSK. Other things to be aware of are:

When you tell Code Composer to run, it simply starts executing at the current program

counter. If you want to restart the program, you must reset the program counter by using

Debug à Restart or re-loading the program, which sets the program counter implicitly.

After you start a program running it continues running on the DSP indefinitely. To

stop it you need to halt it with Debug à Halt.

GETTING STARTED WITH CODE COMPOSER STUDIO

To access the Code Composer Studio Tutorial, perform the following steps:

1) Start Code Composer Studio by double-clicking on the “CCStudio” icon

located on the desktop.

2) From the Code Composer Studio Help menu, select Tutorial->Code

Composer Studio Tutorial.

USING CODE COMPOSER STUDIO WINDOWS AND TOOLBARS

All windows (except Edit windows) and all toolbars are dockable within the Code

Composer Studio environment. This means you can move and align a window or toolbar to

any portion of the Code Composer Studio main window. You can also move dockable

windows and toolbars out of the Code Composer Studio main window and place them

anywhere on the desktop. To move a toolbar, simply click-and-drag the toolbar to its new

location.

To Move a Window Out of the Main Window

1) Right-click in the window and select Allow Docking from the context menu.

2) Left-click in the window’s title bar and drag the window to any location on your

desktop.

All dockable windows contain a context menu that provides three options for

controlling window alignment. Allow Docking Toggles window docking on and off. Hide,

EC-DSP Lab Manual Dept of ECE

Hides the active window beneath all other windows. Float in the Main Window Turns off

docking and allows the active window to float in the main window.

Code Composer Studio includes the following components:

• TMS320C54x code generation tools.

• Code Composer Studio Integrated Development Environment (IDE).

• DSP/BIOS plug-ins and API.

• RTDX plug-in, host interface, and API.

These components work together as shown here:

CODE COMPOSER FEATURES INCLUDE:

• IDE
• Debug IDE
• Advanced watch windows
• Integrated editor
• File I/O, Probe Points, and graphical algorithm scope probes
• Advanced graphical signal analysis

EC-DSP Lab Manual Dept of ECE

• Interactive profiling
• Automated testing and customization via scripting
• Visual project management system
• Compile in the background while editing and debugging
• Multi-processor debugging
• Help on the target DSP

PROCEDURE TO WORK ON CODE COMPOSER STUDIO

To create the New Project

Project  New (File Name. pjt , Eg: Vectors.pjt)

To Create a Source file

File  New  Type the code (Save & enter file name, Eg: sum.c or sum.asm if you

have written the code in assembly).

To Add Source files to Project

Project  Add files to Project  sum.c or sum.asm(for assembly code).

To Add rts.lib file & hello.cmd:

Project  Add files to Project rts_ext.lib

 Library files: rts_ext.lib(Path: c:\ ti\c5400\cgtools\lib\rts_ext.lib)

Note: Select Object & Library in(*.o,*.l) in Type of files

Project  Add files to Project hello.cmd

CMD file – Which is common for all non real time programs.

(Path: c:\ti\tutorial\dsk5416\hello1\hello.cmd)

Note: Select Linker Command file(*.cmd) in Type of files

To Enable –mf option:

Project Build Options  Advanced (in Category) 

 –Use Far Calls (- mf) (C548 and higher).

Compile:

To Compile: Project  Compile

To Rebuild: Project  rebuild,
 Which will create the final .out executable file.(Eg. Vectors.out).

EC-DSP Lab Manual Dept of ECE

Procedure to Load and Run program:

Load the program to DSK: File  Load program  Vectors. out

To Execute project: Debug  Run.

FILE EXTENSIONS

While using Code Composer Studio, you work with files that have the following

file-naming conventions:

• project.mak. Project file used by Code Composer Studio to define a

• project and build a program

• program.c. C program source file(s)

• program.asm. Assembly program source file(s)

• filename.h. Header files for C programs, including header files for

• DSP/BIOS API modules

• filename.lib. Library files

• project.cmd. Linker command files

• program.obj. Object files compiled or assembled from your source files

• program.out. An executable program for the target (fully compiled,

• assembled, and linked). You can load and run this program with Code

• Composer Studio.

• project.wks. Workspace file used by Code Composer Studio to store

• information about your environment settings

• program.cdb. Configuration database file created within Code Composer

• Studio. This file is required for applications that use the DSP/BIOS API,

• and is optional for other applications. The following files are also

generated when you save a configuration file:

 programcfg.cmd. Linker command file

 programcfg.h54. Header file

 programcfg.s54. Assembly source file

SAMPLE PROGRAMS TO WORK ON CODE COMPOSER STUDIO.

sum.c

EC-DSP Lab Manual Dept of ECE

include<stdio.h>
main()
{
int i=0;
i++;
printf("%d",i);
}

Create a new project and type the above program in the editor , save the file as sum.c

and add the source file to the project, compile and build the project . Load the .out file to

the target processor and click run to see the result in the output window.

ASSEMBLY LANGUAGE PROGRAMMING IN C54X

The Assembly language programming is done using the following assembler directives
.text section

It consists of the assembly program, which has to be translated in object code by the
assembler, and it is loaded into the program memory for execution.

.data section.
It consists of the constants and variables which are intialized and are loaded into the data
memory area. The origin of the data memory is given in the .cmd file.

.bss section.
It is used to reserve a block of memory which is uninitalized.

.mmregs
It permits to use the memory mapped registers to be referred using the names such as
AR0, SP etc.

.include “XX”
It informs the assembler to insert a list of instructions in the file “XX” while assembling.

.end
To end the assembly language program.

.equ
To equate a symbol with a constant value.

.word x,y, ….z
It reserves 16 bit locations and initialises them with values x,y,….z

sum.asm
.include "5416_IV.asm"
.word 0003h,0004h
.data
.text

begin STM #1000h,AR1 {memory location of P}
STM #1001h,AR2 {memory location of Q}
STM #1500h,AR1{Result is stored in the memory}
LD *AR1,A {This accumulator loads that accumulator A

with the data in the memory 1000h}
LD *AR2,B {{This accumulator loads that accumulator A

with the data in the memory 1001h}
ADD A,0,B {accumulator A is added eith accumulator B

 and output will be in accumulator B}
STL B,*AR3 (output will be stored in the memory location

EC-DSP Lab Manual Dept of ECE

 1500h}
.end

ADDING A PROBE POINT FOR FILE I/O

In this section, you add a Probe Point, which reads data from a file on your PC. Probe

Points are a useful tool for algorithm development. You can use them in the following ways:

 To transfer input data from a file on the host PC to a buffer on the target for use by the

algorithm

 To transfer output data from a buffer on the target to a file on the host PC for analysis

 To update a window, such as a graph, with data

 Probe Points are similar to breakpoints in that they both halt the target to perform their

action. However, Probe Points differ from breakpoints in the following ways:

 Probe Points halt the target momentarily, perform a single action, and resume target

execution.

 Breakpoints halt the CPU until execution is manually resumed and cause all open

windows to be updated.

 Probe Points permit automatic file input or output to be performed; breakpoints do not.

This chapter shows how to use a Probe Point to transfer the contents of a PC file to the target

for use as test data. It also uses a breakpoint to update all the open windows when the Probe

Point is reached. These windows include graphs of the input and output data.

1) Put your cursor in the line of the main function, say: dataIO(); The dataIO function

acts as a placeholder.

2) Click the (Toggle Probe Point) toolbar button. The line is highlighted in blue.

3) Choose FileFile I/O. The File I/O dialog appears so that you can select input and

output files.

4) In the File Input tab, click Add File.

5) Choose the “xx”.dat file. Notice that you can select the format of the data in the Files of

Type box. The “xx”.dat file contains hex values for a sine waveform.

6) Click Open to add this file to the list in the File I/O dialog. A control window for the

sine.dat file appears. (It may be covered by the Code Composer Studio window.) Later,

when you run the program, you can use this window to start, stop, rewind, or fast forward

within the data file.

EC-DSP Lab Manual Dept of ECE

7) In the File I/O dialog, change the Address to inp_buffer and the Length to 100.

Also, put a check mark in the Wrap Around box.

The Address field specifies where the data from the file is to be placed.

The Length field specifies how many samples from the data file are read each time the

Probe Point is reached. You use 100 because that is the value set for the BUFSIZE

constant in volume.h (0x64).

The Wrap Around option causes Code Composer Studio to start reading from the

beginning of the file when it reaches the end of the file. This allows the data file to be treated

as a continuous stream of data even though it contains only 1000 values and 100 values are

read each time the Probe Point is reached.

 DISPLAYING GRAPHS

Code Composer Studio provides a variety of ways to graph data processed by your

program. In this example, you view a signal plotted against time. You open the graphs in this

section and run the program in the next section.

1) Choose ViewGraphTime/Frequency.

2) In the Graph Property Dialog, change the Graph Title, Start Address, Acquisition Buffer

Size, Display Data Size, DSP Data Type, Autoscale, and Maximum Y-value properties

to the values shown here. Scroll down or resize the dialog box to see all the properties.

EC-DSP Lab Manual Dept of ECE

3) Click OK. A graph window for the Input Buffer appears.

4) Right-click on the Input Buffer window and choose Clear Display from the pop-up menu.

5) Choose ViewGraphTime/Frequency again.

6) This time, change the Graph Title to Output Buffer and the Start Address to out_buffer. All

the other settings are correct.

7) Click OK to display the graph window for the Output Buffer. Right-click on the graph

window and choose Clear Display from the pop-up menu.

ANIMATING THE PROGRAM AND GRAPHS

So far, you have placed a Probe Point, which temporarily halts the target, transfers

data from the host PC to the target, and resumes execution of the target application. However,

the Probe Point does not cause the graphs to be updated. In this section, you create a

breakpoint that causes the graphs to be updated and use the Animate command to resume

execution automatically after the breakpoint is reached.

1) In the Volume.c window, put your cursor in the line that calls dataIO.

2) Click the (Toggle Breakpoint) toolbar button or press F9. The line is highlighted in both

magenta and blue (unless you changed either color using OptionColor) to indicate that

both a breakpoint and a Probe Point are set on this line. You put the breakpoint on the

same line as the Probe Point so that the target is halted only once to perform both

operations—transferring the data and updating the graphs.

3) Arrange the windows so that you can see both graphs.

3) Click the (Animate) toolbar button or press F12 to run the program. The Animate

command is similar to the Run command. It causes the target application to run until it

reaches a breakpoint. The target is then halted and the windows are updated. However,

unlike the Run command, the Animate command then resumes execution until it reaches

EC-DSP Lab Manual Dept of ECE

another breakpoint. This process continues until the target is manually halted. Think of

the Animate command as a run-break-continue process.

4) Notice that each graph contains 2.5 sine waves and the signs are reversed in these graphs.

Each time the Probe Point is reached, Code Composer Studio gets 100 values from the

sine.dat file and writes them to the inp_buffer address. The signs are reversed because the

input buffer contains the values just read from sine.dat, while the output buffer contains

the last set of values processed by the processing function.

Note: Target Halts at Probe Points

Code Composer Studio briefly halts the target whenever it reaches a Probe Point. Therefore,

the target application may not meet real-time deadlines if you are using Probe Points. At this

stage of development, you are testing the algorithm. Later, you analyze real-time behavior

using RTDX and DSP/BIOS.

PROCEDURE FOR REAL TIME PROGRAMS:

1. Connect CRO to the Socket Provided for LINE OUT.

2. Connect a Signal Generator to the LINE IN Socket.

3. Switch on the Signal Generator with a sine wave of frequency 500 Hz. and Vp-p=1.5v

4. Now Switch on the DSK and Bring Up Code Composer Studio on the PC.

5. Create a new project with name codec.pjt.(c:\ccstudio_v3.1\myprojects\codec)

6. From the File Menu  new  DSP/BIOS Configuration select “dsk6713.cdb” and
open.

7. Save it as “xyz.cdb”

EC-DSP Lab Manual Dept of ECE

7. Add “xyz.cdb” to the current project.

8. Add the given “codec.c” and “FIR.c (or IIR.c)” file to the current project

(copy the source files to the codec.pjt folder)

9. Add the library file “dsk6713bsl.lib” to the current project

Path  “C:\CCStudio\C6000\dsk6713\lib\dsk6713bsl.lib”

10. Build, Load and Run the program.

11. You can notice the input signal of 500 Hz. appearing on the CRO verifying the codec

configuration.

12. You can also pass an audio input and hear the output signal through the speakers.

13. You can also vary the sampling frequency using the DSK6713_AIC23_setFreq Function

in the “codec.c” file and repeat the above steps.

RESULT:

Thus the usage of Code Composer studio was studied and the sample programs were

run and the results were seen.

EC-DSP Lab Manual Dept of ECE

Exp. No.:

ADDITION, SUBTRACTION, MULTIPLICATION AND DIVISION
USING VARIOUS ADDRESSING MODES ON TMS320C5416Date:

AIM
To write assembly language programs in TMS320C54XX DSP processor to add,

subtract, multiply and divide two numbers using the processor instruction and using various
addressing modes to get the data from memory.

APPARATUS REQUIRED

S.NO ITEM Q.TY
1 TMS320VC5416 DSK

Development Board
1

2. PC with Code Composer Studio
IDE

1

3
USB Cable

1

4 +5V Universal Power Supply 1

5 AC Power cord 1

(i) ADDITION USING INDIRECT ADDRESSING
In Indirect addressing any location in the 64 K word data space can be accessed via a

16-bit address. Indirect addressing uses the auxiliary registers (AR’s) to point out a location in
data or program memory. Using the pointer location the data can be read or write using LD or
ST instructions.

ALGORITHM:

Step 1: Store any auxiliary register say AR1 with any address location for example 1000h
Step 2: Store another auxiliary register say AR2 with another address location for example `

1001h.
Step 3: Store another auxiliary register say AR3 with address location for example 1500h
Step 4: Load the first data from the first address location to accumulator A using indirect

addressing.
Step 5: Load the second data from the second address location to accumulator B using

indirect addressing.
Step 6:Add the two data in the accumulators A and B.
Step 7: Store the output in the accumulator to the memory location addressed by the auxillary

register.
Step 8: End the program.

EC-DSP Lab Manual Dept of ECE

PROGRAM FOR ADDITION USING INDIRECT ADDRESSING:

LABEL MNEMONICS COMMENTS

Begin:

.include
"5416_IV.asm"

.word
0003h, 0004h
.data
.text

STM #1000h,AR1
STM #1001h,AR2
STM #1500h,AR3

LD *AR1, A

LD *AR2, B

ADDC A, 0, B

STL B, *AR3

. end

Begin the program
Memory location of P
Memory location of Q
Memory location of the result.

The accumulator A is loaded with the data in the
memory location pointed by AR1.

The accumulator B is loaded with the data in the
memory location pointed byAR2.

Accumulator A is added with accumulator B and
the output will be in accumulator B

The result in accumulator B is stored to the memory
location pointed by AR3.

End the program

(ii) SUBTRACTION USING IMMEDIATE ADDRESSING:
Immediate addressing uses the instruction to encode a fixed value. The operand

required for the instruction is specified by the instruction word itself. The number of bits of
the operand may be 3,4,8 or 9 in short addressing mode or 16-bit number in case of long
addressing mode. LD instructions can be used in immediate addressing

ALGORITHM:
Step 1: Load the first operand in the A register using immediate addressing.
Step 2: Load the second operand in the B register.
Step 3: Subtract the values in A and B register.
Step 4: Store the memory address in Auxiliary register using immediate addressing.
Step 5: Move the result stored in B register to the location pointed by the Auxiliary register.
Step 6: End the program.

PROGRAM FOR SUBTRACTION USING IMMEDIATE ADDRESSING:

LABEL MNEMONICS COMMENTS
.include
"5416_IV.asm"

.data

.text

EC-DSP Lab Manual Dept of ECE

Begin: STM #1500h,AR3

LD A, #0010h

LD B, #0004h

SUB A,0,B

STL B, *AR3

. end

Begin the program
Memory location of the result.

Loads the accumulator A with the immediate value
0010h.

Loads the accumulator A with the immediate value
0004h.

Accumulator A is subtracted with accumulator B
and the output will be in accumulator B

The result in accumulator B is stored to the memory
location pointed by AR3.

End the program

(iii) MULTIPLICATION USING DIRECT ADDRESSING:
In direct addressing the instruction carries the 7-bit data memory address offset in the

instruction itself. The offset address is added with the DP (Data pointer) or SP (Stack Pointer)
to get the 16-bit data memory address. The offset address can be added with either DP or SP
depending on the CPL (Compiler mode bit) in the Status register ST1.When CPL=0, the
offset is concatenated with 9 bit DP to generate 16 bit Data memory address. When CPL=1
the offset is concatenated with SP to generate the 16 bit Data memory address.

ALGORITHM:

Step 1: Reset the Compiler mode bit to zero to use the DP register to generate data memory
address.
Step 2: Initialise the DP register with page number.
Step 3: Load the value from the location pointed by DP and offset in the Accumulator A.
Step 4: Load the second value from the location pointed by DP and offset in the Accumulator
B.
Step 5: Multiply both the values in A & B.
Step 6: Store the value in the accumulator to the memory location pointed by the offset.
Step 7: End the program.

PROGRAM FOR MULTIPLICATION USING DIRECT ADDRESSING:

LABEL MNEMONICS COMMENTS

Begin:

.include
"5416_IV.asm"

.word
0003h, 0004h
.data
.text

Begin the program

EC-DSP Lab Manual Dept of ECE

RSBX CPL

LD #20h, DP

LD 01h,A

LD 02h, 2, B

MPY A, 0, B

STL B, 15h

. end

Compiler mode bit CPL is reset to zero.

Loads the DP register with the value 20h that
corresponds to the page address 1000h

Loads the value from address location 1001h to the
accumulator A

Loads the second value from address location
1002h to the accumulator B left shifted by 2 bits.

Multiplies accumulator A & B.

The result in accumulator B is stored to the memory
location pointed by AR3.

End the program.

(iv) DIVISTION USING MEMORY MAPPED REGISTER ADDRESSING:
In memory mapped register addressing the current value of data page pointer (DP) or

Stack pointer (SP) are not modified. It works for both direct as well as indirect addressing.
The memory mapped registers are used for addressing.

ALGORITHM:
Step 1: Load the memory mapped register with the data address of the first operand.
Step 2: Load the value pointed by the memory mapped register to the accumulator.
Step 3: Increment the memory mapped register and point to the second operand.
Step 4: Subtract the second operand from the first operand until it becomes negative.
Step 5: Increment the

PROGRAM FOR DIVISION USING MEMORY MAPPED REGISTER
ADDRESSING:

LABEL MNEMONICS COMMENTS

Begin:

.include
"5416_IV.asm"

.word
0003h, 0004h
.data
.text

STM #1000h,AR1

STM #1001h,AR2

LD *AR1, A

RPT #15

Begin the program
Memory location of first operand.

Memory location of second operand.

The accumulator A is loaded with the data in the
memory location pointed by AR1.

The next instruction is repeated for 16 times .

EC-DSP Lab Manual Dept of ECE

SUBC *AR2,A

STL A, *AR1+
STL A, *AR1

. end

Subtract conditionally and the instruction is
repeated for 16 times.

The result in accumulator A is stored to the
memory location pointed by AR1.

End the program

(v) FINDING MAXIMUM OF A SET OF NUMBERS USING CIRCULAR
ADDRESSING:

ALGORITHM:
Step 1: Initialise a group of values in the data memory.
Step 2: Load the first value in the accumulator.
Step 3: Set the buffer size register to the maximum number of values.
Step 4: Compare the value in the accumulator with the second value in memory using circular
addressing.
Step 5: If the value is lesser than the first value move the value to the previous location.
Step 6: Repeat the steps 4 and 5 until all the data get sorted.
Step 7: Store the maximum value to the memory.
Step 8: End the program.

PROGRAM FOR FINDING MAXIMUM:

LABEL MNEMONICS COMMENTS

Begin:

.include
"5416_IV.asm"

.word
0003h, 0004h, 0006h,
0001h, 0005h.
.data
.text

STM #1000h,AR1
STM #1500h,AR3
STM #5h,BK

LD *AR1+%, A

LD *AR2, B

ADDC A, 0, B

STL B, *AR3

. end

Begin the program
Memory location of first value.
Memory location of the result.
Set the circular buffer size register to the number of
values in the memory.
The accumulator A is loaded with the data in the
memory location pointed by AR1.AR1 is
incremented by 1.

The accumulator B is loaded with the data in the
memory location pointed byAR2.

Accumulator A is added with accumulator B and
the output will be in accumulator B

The result in accumulator B is stored to the memory
location pointed by AR3.

EC-DSP Lab Manual Dept of ECE

End the program

MULTIPLICTION

.include "5416_IV.asm"

.word 0003h,0004h

.data

.text
begin STM #1000h,AR1 {memory location of P}

STM #1001h,AR2 {memory location of Q}
STM #1500h,AR1{Result is stored in the memory}
MPY *AR1,*AR2,B {accumulator A is multiplied with

 accumulator B and output will be in
 accumulator B}

STL B,*AR3 (output will be stored in the memory location
 1500h}
.end

DIVISION
.include "5416_IV.asm"
.word 0003h,0004h
.data
.text

begin STM #1000h,AR1 {memory location of P}
STM #1001h,AR2 {memory location of Q}
LD *AR1+,A {This accumulator loads that accumulator A

with the data in the memory 1000h}
RPT#15
SUBC *AR0,A
STL A,*AR1+(output will be stored in the memory location

 1500h}
STL A,*AR1 {Store remainder}

.end

EC-DSP Lab Manual Dept of ECE

RESULT:
Thus the addition, multiplication and division operation is performed using

TMS320C5416

EXP NO:

FIR FILER USING TMS320C5416
AIM

To design a FIR Low Pass filter (using Kaiser Window) with cutoff frequency
1 K Hz

APPARATUS REQUIRED

TMS320C5416 Processor with a PC

Algorithm:

Step 1 declare an array called input buffer
Step 2 declare the coefficients in data memory
Step 3 declare an array called delay buffer
Step 4 declare an array called output buffer
Step 5 point the auxiliary register to corresponding arrays.
Step 6 get the value from the input buffer and transfer it to the first location
 Of the delay buffer and increment the input buffer by 1
Step 7 make the delay register to point it to the last location by using MAR
Step 8 multiply the delay buffer with coefficient and accumulate it with previous
 Output.
Step 9 make the pointer point to the starting location of delay buffer
Step 10 store the output in the buffer
Step 11 repeat Step6 to Step10 128 times.

PROGRAM:
Starting address :1000h

;Input address : 1600h
;Output address : 1700h

;FIR application Program
;Filter order 9
;Cutoff Frequency 1KHz

;--
.include "5416_IV.asm"
.data

COEFF .word 086eh,0b9eh,0e5fh,1064h,1176h,1064h,0e5fh,0b9eh,086eh
;Filter Co-efficients in data

EC-DSP Lab Manual Dept of ECE

;memory
 .text

start LD #COEFF,DP ;Variable Declaration
RSBX INTM
LD #022Bh,0,A
STLM A, PMST
SSBX SXM
RSBX FRCT
RSBX OVM

STM #150,BK ;Circular Buffer for Input and Output
STM #1600h,AR5 ;Input Buffer Starts at 1600h
STM #1700h,AR6 ;Output Buffer Starts at 1700h

LD #0h,A
STM #1900h,AR3 ;Temporary Buffer Initialization
RPT #10
STL A,*AR3+
STM #1900h,AR3

MACD *AR3-,COEFF,A

SFTA A,-15 ;Shifting the output to Lower order
STLM A,McBSP0_DXR1 ;o/p for R Channel
STLM A,McBSP0_DXR2 ;o/p for L Channel

STL A,0,*AR6+% ;Output is stored at 1700h
MAR *AR5+% ;Modify the Input Buffer
RETE

EC-DSP Lab Manual Dept of ECE

RESULT:
Thus the FIR LPF filter with cut off frequency 1 kHz is generated using

TMS320C5416
EXP NO: 13

FAST FOURIER TRANSFORM USING TMS320C5416

Aim
To find the FFT for the signal this contains 128 samples

Algorithm:

Step 1 Declare four buffers for real input, real exponent, imaginary exponent
 And imaginary input
Step 2 Scale the input to ovoid the over flow during manipulation.
Step 3 Declare three Counters for stages, Groups and butterflies.
Step 4 implement the Fast fourier transform formula on the input signal
Step 5 store the output in the output buffer
Step 6 decrement the butterfly counter
Step 7 if it is not zero repeat the step 4

Step 8 If the counter is zero modify the exponent value and decrement the group
 Counter
Steps 9 if the group counter is zero repeat the step 4
Step 10 if it zero then multiply the butterfly counter by 2 and divide the group
 Counter by 2
Step 11 Decrement the stage counter. if it is not zero repeat step 4
Step 12 if counter is zero stop the execution.

PROGRAM:
Starting address : 0700h
;Input address :1600h
;Output address :1700h

.include "5416_IV.asm"

.def start

.data
bpole .word 97e3h,154fh ;IIR Filter Co-efficients
azero .word 0b4ch,1698h,0b4ch
xin .word 0,0
xout .word 0
yin .word 0
S1 .word 00
E .word 45h

EC-DSP Lab Manual Dept of ECE

 .text

start LD #bpole,DP ;Variable Declaration
RSBX INTM
LD #022Bh,0,A
STLM A,PMST

RSBX INTM

LD #02Fh,0,A
STLM A,IMR

STM #0h,McBSP0_DXR1
STM #0h,McBSP0_DXR2

STM #0007h,GPIOCR
STM #0003h,GPIOSR

STM #SPCR2,McBSP2_SPSA
STM #00E1h,McBSP2_SPSD ;Mclk

NOP
STM #0007h,GPIOSR

STM #SPCR2,McBSP0_SPSA
STM #00E1h,McBSP0_SPSD ;Sclk & Fs
SSBX SXM
RSBX FRCT
RSBX OVM

STM #128,BK ;Circular Buffer for Input and Output
STM #1600h,AR4 ;Input Buffer Starts at 1600h
STM #1700h,AR1 ;Output Buffer Starts at 1700h

 STM #1400h,AR5 ;IIR Filter Output
 STM #1500h,AR6 ;Zero Output Buffer

WAIT NOP
NOP
NOP
NOP
NOP
B WAIT

_XINT0_ISR

 LDM McBSP0_DRR1,A ;R Channel (Input Sample From CODEC)

 LDM McBSP0_DRR2,A ;R Channel (Input Sample From CODEC)
 STM #1800h,AR3 ;Pole Temporary Buffer
 STM #1300h,AR7 ;Pole Output Buffer
 STL A,0,xin
 NOP
 NOP
 LD xin,A
 STL A,0,*AR4+%

EC-DSP Lab Manual Dept of ECE

 NOP
 NOP
 STM xout,AR2
 RPT #02h ;Multiplication of Input with zeros
 MACD *AR2-,azero,A
 SFTA A,-15
 STL A,0,*AR6 ;Zero Output

 MVDD *AR5,*AR3+ ;Transfer IIR Output to Temp Buffer
 LD #bpole,DP
 RPT #01h
 MACD *AR3-,bpole,A ;Multiplication of Output with Poles

 SFTA A,-15
 STL A,0,*AR7 ;Pole Output
 NOP

 NOP
 LD *AR6,A
 LD *AR7,B
 SUB B,0,A ;Zero Output - Pole Output
 STL A,0,*AR5

 STL A,0,*AR1+%
 STLM A,McBSP0_DXR1 ;o/p for R Channel
 STLM A,McBSP0_DXR2 ;o/p for L Channel

RETE

EC-DSP Lab Manual Dept of ECE

RESULT:
Thus the FFT for the signal of 128 samples is obtained using TMS320C5416

EXP NO: 14
SAMPLING USING TMS320C5416

AIM:

To sample the signal at different time intervals

PROGRAM

Sampling program
;Starting address : 1000h
;DSPIK output : 1600h

.include "5416_IV.asm"

.data
 .text

.start RSBX INTM
LD #022Bh,0,A

 STLM A,PMST
RSBX INTM
LD #02Fh,0,A
STLM A,IMR

 STM #0h,McBSP0_DXR1
STM #0h,McBSP0_DXR2

 STM #0007h,GPIOCR
 STM #0003h,GPIOSR

STM #SPCR2,McBSP2_SPSA
STM #00E1h,McBSP2_SPSD ;Mclk
NOP
STM #0007h,GPIOSR

STM #SPCR2,McBSP0_SPSA
STM #00E1h,McBSP0_SPSD ;Sclk & Fs

;--
STM #128,BK

EC-DSP Lab Manual Dept of ECE

STM #1600h,AR1
SSBX SXM

WAIT NOP
NOP
NOP
B WAIT

_XINT0_ISR

LDM McBSP0_DRR1,A ;R Channel
; LDM McBSP0_DRR2,A ;L Channel

STL A,0,*AR1+%

STLM A,McBSP0_DXR1 ;o/p for R Channel ;current(Y)
STLM A,McBSP0_DXR2 ;o/p for L Channel ;voltage(R)

RETE

RESULT:

Thus the signal is sampled at various time intervals using TMS320C5416

EC-DSP Lab Manual Dept of ECE

II-CYCLE EXPERIMENTS

Exp. No.:

GENERATION OF SEQUENCES
Date:

AIM:
To generate the Unit Impulse signal, Unit Step signal, Exponential signal, Sinusoidal

and cosine sequence using Mat lab.

APPARATUS REQUIRED:

A PC with Mat lab version 6.5.

ALGORITHM:

Unit Impulse signal:
1) Enter the program in the Mat lab editor or debugger window
2) Write a program with Mat lab functions for generating a wave of

δ(n) = 1, n=0
 = 0, n≠0

3) Enter the value of n
4) Display the output using plot or stem function
5) Give the title for the program
6) Save & run the program
7) Give the input details in command window

Unit Step signal:
1) Enter the program in the Mat lab editor or debugger window
2) Write a program with Mat lab functions for generating a wave of

U(n) = 1, n≥0
 = 0, n<0

3) Enter the value of n
4) Display the output using plot or stem function
5) Give the title for the program
6) Save & run the program
7) Give the input details in command window

Exponential signal:
1) Enter the program in the Mat lab editor or debugger window
2) Write a program with Mat lab functions for generating a wave of

y = 2exp(a*t)
3) Enter the value of n
4) Enter the value of a
5) Display the output using plot or stem function
6) Give the title for the program
7) Save & run the program

EC-DSP Lab Manual Dept of ECE

Sinusoidal sequence:
1) Enter the program in the Mat lab editor or debugger window
2) Write a program with Mat lab functions for generating a wave of

y(n) = a *sin(2*pi*f*n)
3) Enter the value of a
4) Enter the value of f
5) Display the output using plot or stem function
6) Give the title for the program
7) Save & run the program

Cosine sequence:
1) Enter the program in the Mat lab editor or debugger window
2) Write a program with Mat lab functions for generating a wave of

y(n) = a *sin(2*pi*f*n)
3) Enter the value of a
4) Enter the value of f
5) Display the output using plot or stem function
6) Give the title for the program
7) Save & run the program

PROGRAM:

clear all;
%----------------Impulse Response------------------------------%
N=input('Enter the length of the sequence');
n=-N:N;
x=[zeros(1,N),1,zeros(1,N)];
subplot(3,2,3);
stem(n,x);
title('Unit Impulse');
xlabel('Title');
ylabel('Amplitude');
%--------------Unit Step Function-------------------------------%
e=input('Enter the length of the sequence');
f=ones(1,e);
m=0:e-1;
subplot(3,2,4);
stem(m,f);
xlabel('e');
ylabel('u(e)');
title('Unit Step FUnction');
%----------------Exponential Wave----------------------------%
b=input('Enter the length of sequence');
c=0:1:b;
g=input('Enter the value');
h=0.8*exp(g*c);
subplot(3,2,5);
stem(c,h);
ylabel('Amplitude');
xlabel('b');
title('Exponential Sequence');

EC-DSP Lab Manual Dept of ECE

%------------------Sine wave------------------------------%

a=input('enter the value of amplitude');
f=input('enter the value of frequency');
t=0:0.001:0.01;
z=a*sin(2*pi*f*t);
subplot(3,2,1);
plot(t,z);
xlabel('Timeperiod');
ylabel('Amplitude');
title('Sine wave');
%------------------cos wave-----------------------------%
d=a*cos(2*pi*f*t);
subplot(3,2,2);
plot(t,d);
xlabel('Time perios');
ylabel('Amplitude');
title('cos wave');

COMMANDS:

1) INPUT Prompt for user input.
 R = INPUT('How many apples') gives the user the prompt in the
 text string and then waits for input from the keyboard.
 The input can be any MATLAB expression, which is evaluated,
 using the variables in the current workspace, and the result
 returned in R. If the user presses the return key without
 entering anything, INPUT returns an empty matrix.
 R = INPUT('What is your name','s') gives the prompt in the text
 string and waits for character string input. The typed input
 is not evaluated; the characters are simply returned as a
 MATLAB string.

2) PLOT Linear plot.
 PLOT(X,Y) plots vector Y versus vector X. If X or Y is a matrix,
 then the vector is plotted versus the rows or columns of the matrix,
 whichever line up. If X is a scalar and Y is a vector, length(Y)
 disconnected points are plotted.
 PLOT(Y) plots the columns of Y versus their index.
 If Y is complex, PLOT(Y) is equivalent to PLOT(real(Y),imag(Y)).
 In all other uses of PLOT, the imaginary part is ignored.

3) STEM Discrete sequence or "stem" plot.
 STEM(Y) plots the data sequence Y as stems from the x axis
 terminated with circles for the data value.
 STEM(X,Y) plots the data sequence Y at the values specified
 in X.

4) SUBPLOT Create axes in tiled positions.

EC-DSP Lab Manual Dept of ECE

 H = SUBPLOT(m,n,p), or SUBPLOT(mnp), breaks the Figure window
 into an m-by-n matrix of small axes, selects the p-th axes for
 for the current plot, and returns the axis handle. The axes
 are counted along the top row of the Figure window, then the
 second row, etc.

5) TITLE Graph title.
 TITLE('text') adds text at the top of the current axis.

6) XLABEL X-axis label.
 XLABEL('text') adds text beside the X-axis on the current axis.

7) YLABEL Y-axis label.
 YLABEL('text') adds text beside the Y-axis on the current axis.

8) ZEROS Zeros array.
 ZEROS(N) is an N-by-N matrix of zeros.
 ZEROS(M,N) or ZEROS([M,N]) is an M-by-N matrix of zeros.

9) EXP Exponential.
 EXP(X) is the exponential of the elements of X, e to the X.
 For complex Z=X+i*Y, EXP(Z) = EXP(X)*(COS(Y)+i*SIN(Y)).

10) SIN Sine.
 SIN(X) is the sine of the elements of X.

11) COS Cosine.
 COS(X) is the cosine of the elements of X.

OUTPUT:

Enter the length of the sequence10
Enter the length of the sequence10
Enter the length of sequence10
Enter the value2
enter the value of amplitude10
enter the value of frequency100

EC-DSP Lab Manual Dept of ECE

RESULT:
 The Unit Impulse signal, Unit Step signal, Exponential signal, Sinusoidal and

cosine sequence were generated (above the input values) using Mat lab.

EXP NO: 2
 LINEAR AND CIRCULAR CONVOLUTION

EC-DSP Lab Manual Dept of ECE

AIM:
 To write a program to compute the circular and linear convolution of the following
sequence.

 x1(n) = [2,1,2,1]
 x2(n) = [1,1,-1,1]

APPARATUS REQUIRED:
 A PC with Mat lab version 6.5.

ALGORITHM:

 LINEAR CONVOLUTION:

1) Enter the 1st and 2nd sequence of convolution.
2) Find the linear convolution using MATLAB function.
3) Enter the length of sequence.
4) Get the intervals of ‘n’.
5) Display the o/p using stem function.

CIRCULAR CONVOLUTION:

1) Enter the 1st and 2nd sequence of convolution.
2) Find the circular convolution using MATLAB function.
3) Enter the length of sequence.
4) Get intervals of ‘n’.
5) Display o/p using stem function.

PROGRAM:

%---------------Linear Convolution-------------------------------------%
clear all;
a=input('Enter the first sequence');
b=input('Enter the second sequence');
c=conv(a,b);
m=length(c)-1;
n=0:1:m;
disp(c);
stem(n,c);
xlabel('Convolution ');
ylabel('Sequence');
title('Linear Convolution');

%-----------------Circular Convolution---------------------------------%
title('Circular convolution');
x1=[2,1,2,1];
x2=[1,1,-1,1];
a=fft(x1);
b=fft(x2);

EC-DSP Lab Manual Dept of ECE

z=ifft(a.*b);
disp(z);
figure(1);
subplot(2,2,1);
stem(x1);
title('FFT OF x1');
xlabel('sequence');
ylabel('Convolution');
subplot(2,2,2);
stem(x2);
title('FFT OF x2');
xlabel('sequence');
ylabel('Convolution');
subplot(2,2,3);
stem(z);
title('FFT OF Sequence 1 and 2');
xlabel('Sequence');
ylabel('Convolution');

COMMANDS:

1) FFT Discrete Fourier transform.
 FFT(X) is the discrete Fourier transform (DFT) of vector X. For
 matrices, the FFT operation is applied to each column. For N-D
 arrays, the FFT operation operates on the first non-singleton
 dimension.FFT(X,N) is the N-point FFT, padded with zeros if X has less

than N points and truncated if it has more.

2) CONV Convolution and polynomial multiplication.
 C = CONV(A, B) convolves vectors A and B. The resulting
 vector is length LENGTH(A)+LENGTH(B)-1.
 If A and B are vectors of polynomial coefficients, convolving
 them is equivalent to multiplying the two polynomials.

3) DISP Display array.
 DISP(X) displays the array, without printing the array name. In
 all other ways it's the same as leaving the semicolon off an
 expression except that empty arrays don't display.
 If X is a string, the text is displayed.

4) IFFT Inverse discrete Fourier transform.
 IFFT(X) is the inverse discrete Fourier transform of X.
 IFFT(X,N) is the N-point inverse transform.
 IFFT(X,[],DIM) or IFFT(X,N,DIM) is the inverse discrete Fourier
 transform of X across the dimension DIM.

OUTPUT:

 Enter the first sequence : [2, 1, 2, 1]

EC-DSP Lab Manual Dept of ECE

 Enter the second sequence: [1, 1,-1, 1]

 Linear convolution:
 Output = [2 3 1 4 0 1 1]
Circular convolution:
 Output= [2 4 2 4]

MODEL GRAPH:

 LINEAR CONVOLUTION:

CIRCULAR CONVOLUTION:

RESULT:
 Thus the linear & circular convolution are calculated using MAT LAB function.
EXP NO:3

IMPLIMENTATION OF FFT

EC-DSP Lab Manual Dept of ECE

AIM:
 To perform the FFT of signal x(n) using Mat lab.

APPARATUS REQUIRED:
 A PC with Mat lab version 6.5.

ALGORITHM:
1) Get the input sequence
2) Number of DFT point(m) is 8
3) Find out the FFT function using MATLAB function.
4) Display the input & outputs sequence using stem function

PROGRAM:

clear all;
N=8;
m=8;
a=input('Enter the input sequence');
n=0:1:N-1;
subplot(2,2,1);
stem(n,a);
xlabel('Time Index n');
ylabel('Amplitude');
title('Sequence');
x=fft(a,m);
k=0:1:N-1;
subplot(2,2,2);
stem(k,abs(x));
ylabel('magnitude');
xlabel('Frequency Index K');
title('Magnitude of the DFT sample');
subplot(2,2,3);
stem(k,angle(x));
xlabel('Frequency Index K');
ylabel('Phase');
title('Phase of DFT sample');ylabel('Convolution');

COMMANDS:

1) FFT Discrete Fourier transform.
 FFT(X) is the discrete Fourier transform (DFT) of vector X. For
 matrices, the FFT operation is applied to each column. For N-D
 arrays, the FFT operation operates on the first non-singleton
 dimension.
 FFT(X,N) is the N-point FFT, padded with zeros if X has less

than N points and truncated if it has more.

2) ABS Absolute value.
 ABS(X) is the absolute value of the elements of X. When
 X is complex, ABS(X) is the complex modulus (magnitude) of
 the elements of X.

EC-DSP Lab Manual Dept of ECE

3) ANGLE Phase angle.
 ANGLE(H) returns the phase angles, in radians, of a matrix with
 complex elements.

OUTPUT:
Enter the sequence [1,1,1,1,0,0,0,0]

 RESULT:
 Thus the linear & circular convolution are calculated using MAT LAB function.

EXP NO: 4
DESIGN OF IIR FILTER (HPF & LPF)

EC-DSP Lab Manual Dept of ECE

AIM:
 To design an analog Butterworth low pass filter and high pass filter using Mat lab for
the given specification
 Pass band ripple αp = 0.4dB
 Stop band ripple αs = 30dB
 Pass band edge frequency fp = 400Hz
 Stop band edge frequency fs = 800Hz
 Sampling frequency f = 2000Hz

APPARATUS REQUIRED:
 A PC with Mat lab version 6.5.

ALGORITHM:
1) Get the Pass band ripple & Stop band ripples
2) Get the Pass band edge frequency & Stop band edge frequency
3) Get the Sampling frequency
4) Calculate the order of filter
5) Draw the magnitude and phase representation

PROGRAM:
%LPF%
clear all;
alphap=input('Enter the Pass band ripple ');
alphas=input('Enter the stop band ripple ');
fp=input('Enter the Pass edge frequency ');
fs=input('Enter the stop edge frequency ');
f=input('Enter the Sampling freq');
omp=2*(fp/f);
oms=2*(fs/f);
[n,wn]=buttord(omp,oms,alphap,alphas);
[b,a]=butter(n,wn);
w=0:0.01:pi;
[n,om]=freqz(b,a,w,'whole');
m=20*log10(abs(n));
an=angle(n);
subplot(2,1,1);
plot(om/pi,m);
grid;
ylabel('gain in db');
xlabel('Normalized freq');
subplot(2,1,2);
plot(om/pi,an);
grid;
xlabel('Normalized freq');
ylabel('Phase in radius');
title('Butterworth LPF');

%HIGH PASS FILTER
clear all;
alphap=input('Enter the Pass band ripple ');

EC-DSP Lab Manual Dept of ECE

alphas=input('Enter the stop band ripple ');
fp=input('Enter the Pass edge frequency ');
fs=input('Enter the stop edge frequency ');
f=input('Enter the Sampling freq');
omp=2*(fp/f);
oms=2*(fs/f);
[n,wn]=buttord (omp,oms,alphap,alphas);
[b,a]=butter(n,wn,'HIgh');
w=0:0.01:pi;
[n,om]=freqz(b,a,w);
m=20*log10(abs(n));
an=angle(n);
subplot(2,1,1);
plot(om/pi,m);
grid;
ylabel('gain in db');
xlabel('Normalized freq');
subplot(2,1,2);
plot(om/pi,an);
grid;
xlabel('Normalized freq');
ylabel('Phase in radius');
title('Butterworth LPF');

COMMANDS:

1) [N, Wn] = BUTTORD(Wp, Ws, Rp, Rs) returns the order N of the lowest
 order digital Butterworth filter that loses no more than Rp dB in
 the passband and has at least Rs dB of attenuation in the stopband.
 Wp and Ws are the passband and stopband edge frequencies, normalized
 from 0 to 1 (where 1 corresponds to pi radians/sample). For example,
 Lowpass: Wp = .1, Ws = .2
 Highpass: Wp = .2, Ws = .1
 Bandpass: Wp = [.2 .7], Ws = [.1 .8]
 Bandstop: Wp = [.1 .8], Ws = [.2 .7]
 BUTTORD also returns Wn, the Butterworth natural frequency (or,
 the "3 dB frequency") to use with BUTTER to achieve the specifications.

MODEL GRAPH:

EC-DSP Lab Manual Dept of ECE

 RESULT:

An analog Butterworth low pass filter and high pass filter are design for the given
specification using Mat lab.

EXP NO: 5

EC-DSP Lab Manual Dept of ECE

DESIGN OF IIR FILTER (BPF & BSF)

AIM:
To design an Chebyshev Band Pass filter and Band Stop filter using Mat lab for the

given specification
 Pass band ripple αp = 23B
 Stop band ripple αs = 46dB
 Pass band edge frequency wp = 1300Hz
 Stop band lower edge frequency ws = 1550Hz
 Sampling frequency fs = 7800Hz

APPARATUS REQUIRED:
 A PC with Mat lab version 6.5.

ALGORITHM:
1) Get the Pass band ripple & Stop band ripples
2) Get the Pass band edge frequency & Stop band edge frequency
3) Calculate the order of filter
4) Find the magnitude and phase of the BPF & BSF
5) Draw the magnitude and phase representation

PROGRAM:
%---------------BPF---------------------------------------%
clear all;
format long
alphap=input('Enter the Pass band ripple ');
alphas=input('Enter the stop band ripple ');
wp=input('Enter the Pass edge frequency ');
ws=input('Enter the stop edge frequency ');
fs=input('Enter the Sampling frequency ');
w1=2*wp/fs;
w2=2*ws/fs;
[n]=cheb1ord(w1,w2,alphap,alphas,'s');
wn=[w1 w2];
[b,a]=cheby1(n,alphap,wn,'bandpass','s');
w=0:0.01:pi;
[h,om]=freqs(b,a,w);
m=20*log10(abs(h));
an=angle(h);
subplot(2,1,1);
plot(om/pi,m);
ylabel('gain in db');
xlabel('Normalized freq');
subplot(2,1,2);
subplot(2,1,2);
plot(om/pi,an);
ylabel('Phase in radians');
xlabel('Normalized freq');

%------------------------------BSF--------------------------%

EC-DSP Lab Manual Dept of ECE

clear all;
format long
alphap=input('Enter the Pass band ripple ');
alphas=input('Enter the stop band ripple ');
wp=input('Enter the Pass edge frequency ');
ws=input('Enter the stop edge frequency ');
fs=input('Enter the Sampling frequency ');
w1=2*wp/fs;
w2=2*ws/fs;
[n]=cheb1ord(w1,w2,alphap,alphas,'s');
wn=[w1 w2];
[b,a]=cheby1(n,alphap,wn,'stop','s');
w=0:0.01:pi;
[h,om]=freqs(b,a,w);
m=20*log10(abs(h));
an=angle(h);
subplot(2,1,1);
plot(om/pi,m);
ylabel('gain in db');
xlabel('Normalized freq');
subplot(2,1,2);
subplot(2,1,2);
plot(om/pi,an);
ylabel('Phase in radians');
xlabel('Normalized freq');

COMMANDS:
1) CHEB2ORD Chebyshev Type II filter order selection.

 [N, Wn] = CHEB2ORD(Wp, Ws, Rp, Rs) returns the order N of the lowest
 order digital Chebyshev Type II filter that loses no more than Rp dB
 in the passband and has at least Rs dB of attenuation in the stopband.
 Wp and Ws are the passband and stopband edge frequencies, normalized
 from 0 to 1 (where 1 corresponds to pi radians/sample). For example,
 Lowpass: Wp = .1, Ws = .2
 Highpass: Wp = .2, Ws = .1
 Bandpass: Wp = [.2 .7], Ws = [.1 .8]
 Bandstop: Wp = [.1 .8], Ws = [.2 .7]
 CHEB2ORD also returns Wn, the Chebyshev natural frequency to use with
 CHEBY2 to achieve the specifications.
 [N, Wn] = CHEB2ORD(Wp, Ws, Rp, Rs, 's') does the computation for an
 analog filter, in which case Wp and Ws are in radians/second.

OUTPUT:
Enter the Pass band ripple 23
Enter the stop band ripple 46
Enter the Pass edge frequency 1300
Enter the stop edge frequency 1550
Enter the Sampling frequency 7800

MODEL GRAPH:
EC-DSP Lab Manual Dept of ECE

Band pass filter

 Band Stop filter

 RESULT:
A Chebyshev Band Pass filter and Band Stop filter were designed an for the given

specification using Mat lab.

EXP NO: 6

EC-DSP Lab Manual Dept of ECE

DESIGN OF FIR FILTER

AIM:
To design a FIR LPF,HPF,BPF &BSF filter using following windowing techniques

i. Rectangular window
ii. Kaiser window

iii. Hamming window

APPARATUS REQUIRED:
 A PC with Mat lab version 6.5.

ALGORITHM:
1) Get the order of the filter
2) Find the magnitude and phase of the filter
3) Draw the magnitude and phase representation

PROGRAM:

Rectangular window:
clear all;
%----------------------LPF---------------------%
n=input('Enter the order of filter ');
wn=1/3;
b=fir1(n,wn,boxcar(n+1));
[h,o]=freqz(b,1);
m=20*log10(abs(h));
an=angle(h);
subplot(4,1,1);
plot(o/pi,m);
title('LPF Rectangular window');
ylabel('gain in db');
xlabel('Normalized freq');
subplot(4,1,2);
plot(o/pi,an);
ylabel('Phase in radians');
xlabel('Normalized freq');
%---------------HPF--------------------------------%
b1=fir1(n,wn,'high');
[h1,o1]=freqz(b1,1);
m1=20*log10(abs(h1));
an1=angle(h1);
subplot(4,1,3);
plot(o1/pi,m1);
title('HPF Rectangular window');
ylabel('gain in db');
xlabel('Normalized freq');
subplot(4,1,4);
plot(o1/pi,an1);
ylabel('Phase in radians');
xlabel('Normalized freq');
% %---------------------BPF-------------------------%
wn1=[1/6 1/3];

EC-DSP Lab Manual Dept of ECE

b2=fir1(n,wn1,'bandpass');
[h2,o2]=freqz(b2,1);
m2=20*log10(abs(h2));
an2=angle(h2);
subplot(4,1,1);
plot(o2/pi,m2);
title('BPF Rectangular window');
ylabel('gain in db');
xlabel('Normalized freq');
subplot(4,1,2);
plot(o2/pi,an2);
ylabel('Phase in radians');
xlabel('Normalized freq');
%---------------------BSF-----------------------%
b3=fir1(n,wn1,'stop');
[h3,o3]=freqz(b3,1);
m3=20*log10(abs(h3));
an3=angle(h3);
subplot(4,1,3);
plot(o3/pi,m3);
title('BSF Rectangular window');
ylabel('gain in db');
xlabel('Normalized freq');
subplot(4,1,4);
plot(o3/pi,an3);
ylabel('Phase in radians');
xlabel('Normalized freq');

Kaiser Window:
clear all;
%----------------------LPF---------------------%
n=input('Enter the order of filter ');
wn=1/3;
b=fir1(n,wn,kaiser(n+1,4));
[h,o]=freqz(b,1);
m=20*log10(abs(h));
an=angle(h);
subplot(4,1,1);
plot(o/pi,m);
title('LPF kaiser window');
ylabel('gain in db');
xlabel('Normalized freq');
subplot(4,1,2);
plot(o/pi,an);
ylabel('Phase in radians');
xlabel('Normalized freq');
%---------------HPF--------------------------------%
b1=fir1(n,wn,'high',kaiser(n+1,4));
[h1,o1]=freqz(b1,1);
m1=20*log10(abs(h1));
an1=angle(h1);
subplot(4,1,3);
plot(o1/pi,m1);

EC-DSP Lab Manual Dept of ECE

title('HPF kaiser window');
ylabel('gain in db');
xlabel('Normalized freq');
subplot(4,1,4);
plot(o1/pi,an1);
ylabel('Phase in radians');
xlabel('Normalized freq');
%---------------------BPF-------------------------%
wn1=[1/6 1/3];
b2=fir1(n,wn1,kaiser(n+1,4));
[h2,o2]=freqz(b2,1);
m2=20*log10(abs(h2));
an2=angle(h2);
subplot(4,1,1);
plot(o2/pi,m2);
title('BPF kaiser window');
ylabel('gain in db');
xlabel('Normalized freq');
subplot(4,1,2);
plot(o2/pi,an2);
ylabel('Phase in radians');
xlabel('Normalized freq');
%---------------------BSF-----------------------%
b3=fir1(n,wn1,'stop',kaiser(n+1,4));
[h3,o3]=freqz(b3,1);
m3=20*log10(abs(h3));
an3=angle(h3);
subplot(4,1,3);
plot(o3/pi,m3);
title('BSF kaiser window');
ylabel('gain in db');
xlabel('Normalized freq');
subplot(4,1,4);
plot(o3/pi,an3);
ylabel('Phase in radians');
xlabel('Normalized freq');

Hamming window:
clear all;
%----------------------LPF---------------------%
n=input('Enter the order of filter ');
wn=1/3;
b=fir1(n,wn,hamming(n+1));
[h,o]=freqz(b,1);
m=20*log10(abs(h));
an=angle(h);
subplot(4,1,1);
plot(o/pi,m);
title('LPF Hamming window');
ylabel('gain in db');
xlabel('Normalized freq');
subplot(4,1,2);
plot(o/pi,an);

EC-DSP Lab Manual Dept of ECE

ylabel('Phase in radians');
xlabel('Normalized freq');
%---------------HPF--------------------------------%
b1=fir1(n,wn,'high',hamming(n+1));
[h1,o1]=freqz(b1,1);
m1=20*log10(abs(h1));
an1=angle(h1);
subplot(4,1,3);
plot(o1/pi,m1);
title('HPF Hamming window');
ylabel('gain in db');
xlabel('Normalized freq');
subplot(4,1,4);
plot(o1/pi,an1);
ylabel('Phase in radians');
xlabel('Normalized freq');
%---------------------BPF-------------------------%
wn1=[1/6 1/3];
b2=fir1(n,wn1,hamming(n+1));
[h2,o2]=freqz(b2,1);
m2=20*log10(abs(h2));
an2=angle(h2);
subplot(4,1,1);
plot(o2/pi,m2);
title('BPF Hamming window');
ylabel('gain in db');
xlabel('Normalized freq');
subplot(4,1,2);
plot(o2/pi,an2);
ylabel('Phase in radians');
xlabel('Normalized freq');
%---------------------BSF-----------------------%
b3=fir1(n,wn1,'stop',hamming(n+1));
[h3,o3]=freqz(b3,1);
m3=20*log10(abs(h3));
an3=angle(h3);
subplot(4,1,3);
plot(o3/pi,m3);
title('BSF Hamming window');
ylabel('gain in db');
xlabel('Normalized freq');
subplot(4,1,4);
plot(o3/pi,an3);
ylabel('Phase in radians');
xlabel('Normalized freq');

COMMANDS:

1) FIR1 FIR filter design using the window method.
 B = FIR1(N,Wn) designs an N'th order lowpass FIR digital filter
 and returns the filter coefficients in length N+1 vector B.
 The cut-off frequency Wn must be between 0 < Wn < 1.0, with 1.0
 corresponding to half the sample rate. The filter B is real and

EC-DSP Lab Manual Dept of ECE

 has linear phase. The normalized gain of the filter at Wn is
 -6 dB.
 B = FIR1(N,Wn,'high') designs an N'th order highpass filter.
 You can also use B = FIR1(N,Wn,'low') to design a lowpass filter.
 If Wn is a two-element vector, Wn = [W1 W2], FIR1 returns an
 order N bandpass filter with passband W1 < W < W2. You can
 also specify B = FIR1(N,Wn,'bandpass'). If Wn = [W1 W2],
 B = FIR1(N,Wn,'stop') will design a bandstop filter.
 If Wn is a multi-element vector,
 Wn = [W1 W2 W3 W4 W5 ... WN],
 FIR1 returns an order N multiband filter with bands
 0 < W < W1, W1 < W < W2, ..., WN < W < 1.
 B = FIR1(N,Wn,'DC-1') makes the first band a passband.
 B = FIR1(N,Wn,'DC-0') makes the first band a stopband.
 B = FIR1(N,Wn,WIN) designs an N-th order FIR filter using
 the N+1 length vector WIN to window the impulse response.
 If empty or omitted, FIR1 uses a Hamming window of length N+1.
 For a complete list of available windows, see the help for the
 WINDOW function. KAISER and CHEBWIN can be specified with an
 optional trailing argument. For example, B = FIR1(N,Wn,kaiser(N+1,4))
 uses a Kaiser window with beta=4. B = FIR1(N,Wn,'high',chebwin(N+1,R))
 uses a Chebyshev window with R decibels of relative sidelobe
 attenuation.
 For filters with a gain other than zero at Fs/2, e.g., highpass
 and bandstop filters, N must be even. Otherwise, N will be
 incremented by one. In this case the window length should be
 specified as N+2.
 By default, the filter is scaled so the center of the first pass band
 has magnitude exactly one after windowing. Use a trailing 'noscale'
 argument to prevent this scaling, e.g. B = FIR1(N,Wn,'noscale'),
 B = FIR1(N,Wn,'high','noscale'), B = FIR1(N,Wn,wind,'noscale'). You
 can also specify the scaling explicitly, e.g. FIR1(N,Wn,'scale'), etc.

2) FREQZ Digital filter frequency response.
 [H,W] = FREQZ(B,A,N) returns the N-point complex frequency response
 vector H and the N-point frequency vector W in radians/sample of
 the filter:

MODEL GRAPH:

EC-DSP Lab Manual Dept of ECE

Rectangular window

Kaiser Window

EC-DSP Lab Manual Dept of ECE

Hamming Window

EC-DSP Lab Manual Dept of ECE

RESULT:

The FIR filter has been designed by using different windowing techniques.

EXP NO: 7

EC-DSP Lab Manual Dept of ECE

DECIMATION AND INTERPOLATION
AIM:

To generate the two sinusoidal sequences with frequencies f1 and f2 and decimate and
interpolate by the factor M and L respectively using Mat lab.
APPARATUS REQUIRED:

A PC with Mat lab version 6.5.
ALGORITHM:

1) Enter the program in the Mat lab editor or debugger window
2) Get the frequencies f1 & f2
3) Get the decimation factor(M) & interpolation factor(L)
4) Add the two sinesiodal wave
5) Find decimated and interpolated waves
6) Display the output using stem function
7) Give the title for the program
8) Save & run the program
9) Give the input details in command window

PROGRAM:
clear all;
%----------------------up sampling & down sampling---------------------%
N=input('Enter the length of input sequence =');
L=input('Enter the upsampling factor =');
M=input('Enter the downsampling factor =');
f1=input('Enter the frequency of the Ist sinesiod=');
f2=input('Enter the frequency of the IInd sinesiod=');
n=0:N-1
x=sin(2*pi*f1*n)+sin(2*pi*f2*n);
y=decimate(x,M,'fir');
subplot(3,1,1);
stem(n,x(1:N));
title('input sequence');
ylabel('time index n');
xlabel('Amplidute');
subplot(3,1,2);
m=0:N/M-1
stem(m,y(1:N/M));
title('output sequence');
ylabel('time index n');
xlabel('Amplidute');
y1=interp(x,L);
subplot(3,1,3);
m=0:N*L-1
stem(m,y1(1:N*L));
title('output sequence');
ylabel('time index n');
xlabel('Amplidute');

1) SIN Sine.
 SIN(X) is the sine of the elements of X.

2) DECIMATE Resample data at a lower rate after lowpass filtering.
 Y = DECIMATE(X,R) resamples the sequence in vector X at 1/R times the
 original sample rate. The resulting resampled vector Y is R times shorter,
 LENGTH(Y) = LENGTH(X)/R.
 DECIMATE filters the data with an eighth order Chebyshev Type I lowpass
 filter with cutoff frequency .8*(Fs/2)/R, before resampling.

EC-DSP Lab Manual Dept of ECE

 Y = DECIMATE(X,R,N) uses an N'th order Chebyshev filter.
 Y = DECIMATE(X,R,'FIR') uses the 30 point FIR filter generated by
 FIR1(30,1/R) to filter the data.
 Y = DECIMATE(X,R,N,'FIR') uses the N-point FIR filter.

3) INTERP Resample data at a higher rate using lowpass interpolation.
 Y = INTERP(X,R) resamples the sequence in vector X at R times
 the original sample rate. The resulting resampled vector Y is
 R times longer, LENGTH(Y) = R*LENGTH(X).
OUTPUT

Enter the length of input sequence =100
Enter the upsampling factor =2
Enter the downsampling factor =2
Enter the frequency of the Ist sinesiod=0.043
Enter the frequency of the IInd sinesiod=0.03

GRAPH:

 RESULT:
Thus the decimated and interpolated waves are plotted for the given specification using Mat
lab.

Enter the length of input sequence =100
Enter the upsampling factor =2
Enter the downsampling factor =2
Enter the frequency of the Ist sinesiod=0.043
Enter the frequency of the IInd sinesiod=0.031

EXP NO: 8

EC-DSP Lab Manual Dept of ECE

ANALOG TO DIGITAL CONVERSION
AIM:

To convert Analog to Digital filter using Bilinear transformation & Impulse Invariant
transformation using Mat lab.

H(s) = 2/(s2+3s+2)

APPARATUS REQUIRED:

A PC with Mat lab version 6.5.

ALGORITHM:

1) Enter the program in the Mat lab editor or debugger window
2) Enter the co-efficient of transfer function H(s)=2/(s2+3s+2)
3) Analog to digital filter conversion of Bilinear transformation is done by using Mat lab

function
4) Analog to digital filter conversion of impulse invariant transformation is done by

using Mat lab function
5) Display the Bilinear transformation output & impulse invariant transformation output

PROGRAM:
clear all;
%--------ANALOG TO DIGITAL CONVERSION-----------%
b=[2];
a=[1,3,2];
f=1;
%-----------Bilinear transformation ------------%
[bz,az]=bilinear(b,a,f)
disp(bz);
disp(az);
%---------Impulse Invariant transformation ----%
[bz1,az1]= impinvar(b,a,f)
disp(bz);
disp(az);

COMMANDS:

1) BILINEAR Bilinear transformation with optional frequency prewarping.
 [Zd,Pd,Kd] = BILINEAR(Z,P,K,Fs) converts the s-domain transfer
 function specified by Z, P, and K to a z-transform discrete
 equivalent obtained from the bilinear transformation:
 H(z) = H(s) |
 | s = 2*Fs*(z-1)/(z+1)
 where column vectors Z and P specify the zeros and poles, scalar
 K specifies the gain, and Fs is the sample frequency in Hz.

2) IMPINVAR Impulse invariance method for analog to digital filter conversion.
 [BZ,AZ] = IMPINVAR(B,A,Fs) creates a digital filter with numerator
 and denominator coefficients BZ and AZ respectively whose impulse
 response is equal to the impulse response of the analog filter with
 coefficients B and A sampled at a frequency of Fs Hertz. The B and A
 coefficients will be scaled by 1/Fs.

OUTPUT:
Bilinear transformation

EC-DSP Lab Manual Dept of ECE

bz = 0.1667 0.3333 0.1667

az = 1.0000 -0.3333 0.0000
 0.1667 0.3333 0.1667
 1.0000 -0.3333 0.0000

Impulse Invariant transformation
bz1 = 0 0.4651

az1 = 1.0000 -0.5032 0.0498
 0.1667 0.3333 0.1667
 1.0000 -0.3333 0.0000

RESULT:

H(s)=2/(s2+3s+2)
Thus the analog transfer function was converted by using Bilinear transformation & Impulse
Invariant transformation in Mat lab function.

EXP NO: 9
IMPULSE AND STEP RESPONSE

AIM:
To determine the impulse and step response for the following causal system and to

plot the pole-zero pattern and to sketch the stability by using Mat lab.
i. y(n) = 0.7y(n-1)-0.1y(n-2)+2x(n)-x(n-2)

ii. y(n) =(3/4)y(n-1)-(1/8)y(n-2)+x(n)

APPARATUS REQUIRED:

EC-DSP Lab Manual Dept of ECE

A PC with Mat lab version 6.5.

ALGORITHM:

1) Enter the program in the Mat lab editor or debugger window
2) Enter the co-efficient of numerator and denominator as ‘a’ & ‘b’
3) Find the impulse response using Z-transform
4) Find the step response using the convolution function
5) Check whether the system is stable or not
6) Plot the response

PROGRAM:
clear all;
%--------Impulse response & Step response-----------%
a=input('Enter the Co-efficient values of a');
b=input('Enter the Co-efficient values of b');
h=impz(a,b);
% disp(h);
subplot(3,2,1);
stem(h);
title('Impulse response');
ylabel('Amplitude');
xlabel('Time');
u=[ones(1,length(h))];
s=conv(u,h);
disp(s);
subplot(3,2,2);
stem(s);
title('Step response');
ylabel('Amplitude');
xlabel('Time');
[z,p,k]=tf2zp(a,b)
subplot(3,2,3);
zplane(z,p);
title('Pole-Zero plot');
if i<i
 disp('The system is stable');
else
 disp('The system is not stable');
end

COMMANDS:
1) IMPZ Impulse response of digital filter

[H,T] = IMPZ(B,A) computes the impulse response of the filter B/A
 choosing the number of samples for you, and returns the response in
 column vector H and a vector of times (or sample intervals) in T
 (T = [0 1 2 ...]').
 [H,T] = IMPZ(B,A,N) computes N samples of the impulse response.
 If N is a vector of integers, the impulse response is computed
 only at those integer values (0 is the origin).
 [H,T] = IMPZ(B,A,N,Fs) computes N samples and scales T so that
 samples are spaced 1/Fs units apart. Fs is 1 by default.
 [H,T] = IMPZ(B,A,[],Fs) chooses the number of samples for you and scales

EC-DSP Lab Manual Dept of ECE

 T so that samples are spaced 1/Fs units apart.
2) TF2ZP Transfer function to zero-pole conversion.

 [Z,P,K] = TF2ZP(NUM,DEN) finds the zeros, poles, and gains:

 (s-z1)(s-z2)...(s-zn)
 H(s) = K ---------------------
 (s-p1)(s-p2)...(s-pn)

 from a SIMO transfer function in polynomial form:

 NUM(s)
 H(s) = --------
 DEN(s)

 Vector DEN specifies the coefficients of the denominator in
 descending powers of s. Matrix NUM indicates the numerator
 coefficients with as many rows as there are outputs. The zero
 locations are returned in the columns of matrix Z, with as many
 columns as there are rows in NUM. The pole locations are returned
 in column vector P, and the gains for each numerator transfer
 function in vector K.
 For discrete-time transfer functions, it is highly recommended to
 make the length of the numerator and denominator equal to ensure
 correct results. You can do this using the function EQTFLENGTH in
 the Signal Processing Toolbox. However, this function only handles
 single-input single-output systems.

OUTPUT:

y(n) = 0.7y(n-1)-0.1y(n-2)+2x(n)-x(n-2)

z = 0.7071
 -0.7071

p = 0.5000
 0.2000

k = 2

The system is not stable

i. y(n) =(3/4)y(n-1)-(1/8)y(n-2)+x(n)

EC-DSP Lab Manual Dept of ECE

z = Empty matrix: 0-by-1

p = 0.5000
 0.2500

k = 1

MODEL GRAPH:
i. y(n) = 0.7y(n-1)-0.1y(n-2)+2x(n)-x(n-2)

ii. y(n) =(3/4)y(n-1)-(1/8)y(n-2)+x(n)

EC-DSP Lab Manual Dept of ECE

RESULT:
The impulse and step response is obtained for the given causal system and also pole-

zero pattern was plotted.

EC-DSP Lab Manual Dept of ECE

EXP NO: 10
SAMPLING AND ALIASING EFFECT

AIM:
To write a Mat lab code for a continuous time signal sample that various frequency

illustrating the problem of aliasing caused by sampling at low of a frequency.

APPARATUS REQUIRED:

A PC with Mat lab version 6.5.

ALGORITHM:
1) Enter the program in the Mat lab editor or debugger window
2) The figure-size,TS1,TS2,TS3 and ws1,ws2,ws3 values are initialized
3) To calculate the original continuous time signal using the sum of two cosines
4) Sampling the continuous time signal is done at various TS= 0.05s,
 TS =0.1s, TS = 0.25 respectively
5) The Nyquist sampling theorem is violated and x(t) could not be recovered from the

samples using LPF. Aliasing is then occurred
6) Few frequencies of sampled signals are computed

PROGRAM:
clear all;
%--------Sampling and Aliasing effect-----------%
% ws1=125.6637, ws2=62.8319, ws3= 31.4159
fig_size=[232 84 774 624];
Ts1=0.05;Ts2=0.1;Ts3=0.2;
ws1=2*pi/Ts1;ws2=2*pi/Ts2;ws3=2*pi/Ts3;
%---------frequencies for the CT signal and time vector-%
w1=7;w2=23;
t=[0:0.005:2];
x=cos(w1*t)+cos(w2*t);
figure(1),clf,plot(t,x),grid,xlabel('Time (s)'),ylabel('Amplitude'),...
title('continuous time signal ');%x(t)=cos(7t)+cos(23t),...
set(gcf,'Position',fig_size)
%---Sampling the continuous time signal with a sampling period Ts=0.05s---%
t1=[0:Ts1:2];
xs1=cos(w1*t1)+cos(w2*t1);
figure(2),clf,stem(t1,xs1);grid,hold on,plot(t,x,'r:'),hold off,...
xlabel('Time (s)'),ylabel('Amplitude'),...
title('Sampled s version of x(t) with Ts=0.05s'),...
set(gcf,'Position',fig_size)
%---Sampling the continuous time signal with a sampling period Ts=0.1s---%
t2=[0:Ts2:2];
xs2=cos(w1*t2)+cos(w2*t2);
figure(3),clf,stem(t2,xs2);grid,hold on,plot(t,x,'r:'),hold off,...
xlabel('Time (s)'),ylabel('Amplitude'),...
title('Sampled s version of x(t) with Ts=0.1s'),...
set(gcf,'Position',fig_size)
%---Sampling the continuous time signal with a sampling period Ts=0.2s---%
t3=[0:Ts3:2];
xs3=cos(w1*t3)+cos(w2*t3);
figure(4),clf,stem(t3,xs3);grid,hold on,plot(t,x,'r:'),hold off,...
xlabel('Time (s)'),ylabel('Amplitude'),...
title('Sampled s version of x(t) with Ts=0.2s'),...

EC-DSP Lab Manual Dept of ECE

set(gcf,'Position',fig_size)
%--Since ws3<2*w2, the Nyquist sampling theorem is violated, and x(t)could
%not be recovered from the samples obtained with Ts3 using an ideal low
%pass filter. Aliasing has occurred
w2s3=w2-ws3;
x1=cos(w1*t1)+cos(w2s3*t1);
figure(5),clf,stem(t3,xs3);grid,hold on,plot(t,x,'b:'),...
hold off,xlabel('Time (s)'),ylabel('Amplitude'),...
title('Sampling x(t)and x_1(t) with Ts=0.2s'),...
set(gcf,'Position',fig_size),...
text(1.13,1.2,'x(t)'),text(0.1,1.6,'x_1(t)')
%----Computing the first few frequencies in the sampled signals---------%
n=[-1 0 1];wx=[-w2 -w1 w1 w2];
wx1=[]; wx2=[];wx3=[];
for i=1:length(n);
 wx1=[wx1 (wx+n(i)*ws1)];
 wx2=[wx2 (wx+n(i)*ws2)];
 wx1=[wx3 (wx+n(i)*ws3)];
end
wx1=sort(wx1); wx2=sort(wx2); wx3=sort(wx3);
clear i

COMMANDS:
1) GRID Grid lines.

 GRID ON adds major grid lines to the current axes.
 GRID OFF removes major and minor grid lines from the current axes.
 GRID MINOR toggles the minor grid lines of the current axes.
 GRID, by itself, toggles the major grid lines of the current axes.
 GRID(AX,...) uses axes AX instead of the current axes.
 GRID sets the XGrid, YGrid, and ZGrid properties of
 the current axes.
 set(AX,'XMinorGrid','on') turns on the minor grid.

2) PLOT Linear plot.
 PLOT(X,Y) plots vector Y versus vector X. If X or Y is a matrix,
 then the vector is plotted versus the rows or columns of the matrix,
 whichever line up. If X is a scalar and Y is a vector, length(Y)
 disconnected points are plotted.
 PLOT(Y) plots the columns of Y versus their index.
 If Y is complex, PLOT(Y) is equivalent to PLOT(real(Y),imag(Y)).
 In all other uses of PLOT, the imaginary part is ignored.
 Various line types, plot symbols and colors may be obtained with
 PLOT(X,Y,S) where S is a character string made from one element
 from any or all the following 3 columns:

 b blue . point - solid
 g green o circle : dotted
 r red x x-mark -. dashdot
 c cyan + plus -- dashed
 m magenta * star
 y yellow s square
 k black d diamond

 v triangle (down)
 ^ triangle (up)
 < triangle (left)

EC-DSP Lab Manual Dept of ECE

 > triangle (right)
 p pentagram
 h hexagram

 For example, PLOT(X,Y,'c+:') plots a cyan dotted line with a plus
 at each data point; PLOT(X,Y,'bd') plots blue diamond at each data
 point but does not draw any line.
 PLOT(X1,Y1,S1,X2,Y2,S2,X3,Y3,S3,...) combines the plots defined by
 the (X,Y,S) triples, where the X's and Y's are vectors or matrices
 and the S's are strings.
 For example, PLOT(X,Y,'y-',X,Y,'go') plots the data twice, with a
 solid yellow line interpolating green circles at the data points.
 The PLOT command, if no color is specified, makes automatic use of
 the colors specified by the axes ColorOrder property. The default
 ColorOrder is listed in the table above for color systems where the
 default is blue for one line, and for multiple lines, to cycle
 through the first six colors in the table. For monochrome systems,
 PLOT cycles over the axes LineStyleOrder property.
 PLOT returns a column vector of handles to LINE objects, one
 handle per line.
 The X,Y pairs, or X,Y,S triples, can be followed by
 parameter/value pairs to specify additional properties
 of the lines.

3) HOLD Hold current graph.
 HOLD ON holds the current plot and all axis properties so that
 subsequent graphing commands add to the existing graph.
 HOLD OFF returns to the default mode whereby PLOT commands erase
 the previous plots and reset all axis properties before drawing
 new plots.
 HOLD, by itself, toggles the hold state.
 HOLD does not affect axis autoranging properties.
 Algorithm note:
 HOLD ON sets the NextPlot property of the current figure and
 axes to "add".
 HOLD OFF sets the NextPlot property of the current axes to
 "replace".CLF Clear current figure.
 CLF deletes all children of the current figure with visible handles.

CLF RESET deletes all children (including ones with hidden
 handles) and also resets all figure properties, except Position
 and Units, to their default values.

4) SET Set object properties.
 SET(H,'PropertyName',PropertyValue) sets the value of the
 specified property for the graphics object with handle H.
 H can be a vector of handles, in which case SET sets the
 properties' values for all the objects.

MODEL GRAPH:

EC-DSP Lab Manual Dept of ECE

EC-DSP Lab Manual Dept of ECE

EC-DSP Lab Manual Dept of ECE

RESULT:
Thus continuous time signal is sampled at various frequency and aliasing effect is

analysed

EC-DSP Lab Manual Dept of ECE

LIST OF EXPERIMENTS

S.NO NAME OF THE EXPERIMENTS PAGE NO

1 Generation of Sequences using MATLAB 1

2 Linear and Circular Convolution using MATLAB 7

3 Implementation Of FFT using MATLAB 11

4 Design of IIR Filter (HPF& LPF) using MATLAB 13

5 Design of IIR Filter (BPF & BSF) using MATLAB 16

6 Design of FIR Filter using MATLAB 19

7 Decimation and Interpolation using MATLAB 27

8 Analog to Digital Conversion using MATLAB 30

9 Impulse and Step Response using MATLAB 32

10 Sampling and Aliasing Effect using MATLAB 36

11 Addition, Multiplication And Division using
TMS320C5416

42

12 FIR Filter Using TMS320C5416 44

13 FFT using TMS320C5416 46

14 Sampling using TMS320C5416 49

EC-DSP Lab Manual Dept of ECE

Exp. No.:

Date:

AIM:

APPARATUS REQUIRED:

THEORY:

 RESULT:

EC-DSP Lab Manual Dept of ECE

	DEPARTMENT OF ECE
	EI 2355 – DIGITAL SIGNAL PROCESSING LAB
	BRANCH		:___
	EC1306 –DSP LAB MANUAL
	PC with Code Composer Studio IDE
	USB Cable
	+5V Universal Power Supply
	AC Power cord
	OVERVIEW OF TMS320VC5416 DSK DEVELOPMENT BOARD
	DSK BOARD FEATURES

	DSK HARDWARE INSTALLATION
	OVERVIEW OF TMS320VC5416 PROCESSOR

	ARCHITECTURE
	Data Memory
	PC with Code Composer Studio IDE
	USB Cable
	+5V Universal Power Supply
	AC Power cord
	PC with Code Composer Studio IDE
	USB Cable
	+5V Universal Power Supply
	AC Power cord

	Begin the program
	Begin the program
	Begin the program
	Begin the program
	Begin the program
	THEORY:

