

H.264 Base/Main/High Profile
Encoder on DM365/DM368

User’s Guide

Literature Number: SPRUEU9B
April 2014

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work
right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used.
Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or
services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other
intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions

Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DLP® Products www.dlp.com Communications and www.ti.com/communications
 Telecom
DSP dsp.ti.com Computers and www.ti.com/computers
 Peripherals
Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps
Interface interface.ti.com Energy www.ti.com/energy
Logic logic.ti.com Industrial www.ti.com/industrial
Power Mgmt power.ti.com Medical www.ti.com/medical
Microcontrollers microcontroller.ti.com Security www.ti.com/security
RFID www.ti-rfid.com Space, Avionics & www.ti.com/space-avionics-defense
 Defense
RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video
Wireless www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated

../../../../../user/veeranna/temp/amplifier.ti.com
../../../../../user/veeranna/temp/www.ti.com/audio
../../../../../user/veeranna/temp/dataconverter.ti.com
../../../../../user/veeranna/temp/www.ti.com/automotive
http://www.dlp.com/
../../../../../user/veeranna/temp/www.ti.com/communications
../../../../../user/veeranna/temp/dsp.ti.com
../../../../../user/veeranna/temp/www.ti.com/computers
http://www.ti.com/clocks
../../../../../user/veeranna/temp/www.ti.com/consumer-apps
../../../../../user/veeranna/temp/interface.ti.com
../../../../../user/veeranna/temp/www.ti.com/energy
../../../../../user/veeranna/temp/logic.ti.com
../../../../../user/veeranna/temp/www.ti.com/industrial
../../../../../user/veeranna/temp/power.ti.com
../../../../../user/veeranna/temp/www.ti.com/medical
../../../../../user/veeranna/temp/microcontroller.ti.com
../../../../../user/veeranna/temp/www.ti.com/security
http://www.ti-rfid.com/
../../../../../user/veeranna/temp/www.ti.com/space-avionics-defense
http://www.ti.com/lprf
../../../../../user/veeranna/temp/www.ti.com/video
../../../../../user/veeranna/temp/www.ti.com/wireless-apps

iii

Preface

Read This First

About This Manual

This document describes how to install and work with Texas Instruments’
(TI) H.264 Base/Main/High Profile Encoder implementation on the
DM365/DM368 platform. It also provides a detailed Application
Programming Interface (API) reference and information on the sample
application that accompanies this component.

TI’s codec implementations are based on the eXpressDSP Digital Media
(XDM) and IRES standards. XDM and IRES are extensions of
eXpressDSP Algorithm Interface Standard (XDAIS).

Intended Audience

This document is intended for system engineers who want to integrate
TI’s codecs with other software to build a multimedia system based on
the DM365/DM368 platform.

This document assumes that you are fluent in the C language, have a
good working knowledge of Digital Signal Processing (DSP), digital
signal processors, and DSP applications. Good knowledge of
eXpressDSP Algorithm Interface Standard (XDAIS) and eXpressDSP
Digital Media (XDM) standard will be helpful.

How to Use This Manual

This document includes the following chapters:

 Chapter 1 – Introduction, provides a brief introduction to the XDAIS
and XDM standards, Frame work Components, and software
architecture. It also provides an overview of the codec and lists its
supported features.

 Chapter 2 – Installation Overview, describes how to install, build,
and run the codec.

 Chapter 3 – Sample Usage, describes the sample usage of the
codec.

 Chapter 4 – API Reference, describes the data structures and
interface functions used in the codec.

 Appendix A – Time-Stamp Insertion, describes insertion of frame
time-stamp through the Supplemental Enhancement Information
(SEI) Picture Timing message.

Read This First

iv

 Appendix B – Error Description, provides a list of error
descriptions.

 Appendix C – VICP buffer usage by codec, provides details of
how VICP buffers are used by codec.

 Appendix D – ARM926 TCM buffer usage by codec, provides
details of using ARM926 TCM buffer by codec.

 Appendix E - Simple Two-pass Encoding Sample Usage,
explains how multi-pass encoding can be used to improve the quality
of the H264 encoded video

 Appendix F - Rate Control Modes, This section provides a brief
description of various rate control mode using rcAlgo dynamic API
parameter.

Related Documentation From Texas Instruments

The following documents describe TI’s DSP algorithm standards such
as, XDAIS and XDM. To obtain a copy of any of these TI documents,
visit the Texas Instruments website at www.ti.com.

 TMS320 DSP Algorithm Standard Rules and Guidelines (SPRU352)
defines a set of requirements for DSP algorithms that, if followed,
allow system integrators to quickly assemble production-quality
systems from one or more such algorithms.

 TMS320 DSP Algorithm Standard API Reference (SPRU360)
describes all the APIs that are defined by the TMS320 DSP
Algorithm Interoperability Standard (also known as XDAIS)
specification.

 Using IRES and RMAN Framework Components for C64x+
(literature number SPRAAI5) provides an overview of the IRES
interface, along with some concrete resource types and resource
managers that illustrate the definition, management and use of new
types of resources.

Related Documentation

You can use the following documents to supplement this user guide:

 ISO/IEC 14496-10:2005 (E) Rec. H.264 (E) ITU-T Recommendation

Abbreviations

The following abbreviations are used in this document.

Table 1-1. List of Abbreviations

Abbreviation Description

ASO Arbitrary Slice Ordering

AVC Advanced Video Coding

http://www.ti.com/

Read This First

v

Abbreviation Description

BIOS TI’s simple RTOS for DSPs

CAVLC Context Adaptive Variable Length Coding

CABAC Context Adaptive Binary Arithmetic Coding

D1 720x480 or 720x576 resolutions in
progressive scan

DCT Discrete Cosine Transform

DDR Double Data Rate

DMA Direct Memory Access

FC Framework components

FMO Flexible Macro-block Ordering

HD 720 or 720p 1280x720 resolution in progressive scan

HDTV High Definition Television

HDVICP High Definition Video and Imaging Co-
processor sub-system

IDR Instantaneous Decoding Refresh

ITU-T International Telecommunication Union

JM Joint Menu

JVT Joint Video Team

MB Macro Block

MBAFF Macro Block Adaptive Field Frame

MJCP MPEG JPEG Co-Processor

MPEG Motion Pictures Expert Group

MV Motion Vector

NAL Network Adaptation Layer

NTSC National Television Standards Committee

PDM Parallel Debug Manager

PicAFF Picture Adaptive Field Frame

PMP Portable Media Player

PPS Picture Parameter Set

Read This First

vi

Abbreviation Description

PRC Perceptual Rate Control

RTOS Real Time Operating System

RMAN Resource Manager

SEI Supplemental Enhancement Information

SPS Sequence Parameter Set

VGA Video Graphics Array

VICP Video and Imaging Co-Processor

XDAIS eXpressDSP Algorithm Interface Standard

XDM eXpressDSP Digital Media

YUV Color space in luminance and
chrominance form

ROI Region Of Interest

STP Simple Two Pass

SVC-T Scalable Video Coding – Temporal

GDR Gradual Decoder Refresh

Note:

MJCP and VICP refer to the same hardware co-processor blocks.

Text Conventions

The following conventions are used in this document:

 Text inside back-quotes (‘‘) represents pseudo-code.

 Program source code, function and macro names, parameters, and

command line commands are shown in a mono-spaced font.

Product Support

When contacting TI for support on this codec, quote the product name
(H.264 Base/Main/High Profile Encoder on DM365/DM368) and version
number. The version number of the codec is included in the Title of the
Release Notes that accompanies this codec.

Read This First

vii

Trademarks

Code Composer Studio, DSP/BIOS, eXpressDSP, TMS320,
TMS320C64x, TMS320C6000, TMS320DM644x, and TMS320C64x+ are
trademarks of Texas Instruments.

All trademarks are the property of their respective owners.

viii

Contents

Read This First ... 0-iii
About This Manual .. 0-iii
Intended Audience .. 0-iii
How to Use This Manual ... 0-iii
Related Documentation From Texas Instruments ... 0-iv
Related Documentation .. 0-iv
Abbreviations .. 0-iv
Text Conventions .. 0-vi
Product Support.. 0-vi
Trademarks ... 0-vii

Contents ... 0-viii
Figures ... 0-x
Tables... 0-1
Introduction ... 1-3

1.1 Software Architecture ... 1-4
1.2 Overview of XDAIS, XDM, and Framework Component Tools 1-4

1.2.1 XDAIS Overview .. 1-4
1.2.2 XDM Overview ... 1-5
1.2.3 Framework Component .. 1-6

1.3 Overview of H.264 Base/Main/High Profile Encoder .. 1-9
1.4 Supported Services and Features .. 1-12
1.5 Comparison between version 01.10.00.xx with new version 02.00.00.xx

(Platinum Encoder) .. 1-13
1.6 Comparison between version 02.00.00.xx with new version 02.10.00.xx

(Platinum Encoder) .. 1-14
1.7 Comparison between version 02.10.00.xx with new version 02.20.00.xx

(Platinum Encoder) .. 1-14
1.8 Comparison between version 02.20.00.xx with new version 02.30.00.xx

(Platinum Encoder) .. 1-15
1.9 Comparison between version 02.0.00.xx with new version 02.40.00.xx (Platinum

Encoder) .. 1-15
Installation Overview .. 2-1

2.1 System Requirements for Linux ... 2-2
2.1.1 Hardware .. 2-2
2.1.2 Software ... 2-2

2.2 Installing the Component for Linux ... 2-2
2.3 Building and Running the Sample Test Application on Linux 2-4
2.4 Configuration Files ... 2-4

2.4.1 Generic Configuration File ... 2-5
2.4.2 Encoder Configuration File ... 2-6
2.4.3 Encoder Sample Base Param Setting ... 2-8

2.5 Standards Conformance and User-Defined Inputs ... 2-9
2.6 Uninstalling the Component ... 2-9

Sample Usage .. 3-1

ix

3.1 Overview of the Test Application .. 3-2
3.1.1 Parameter Setup .. 3-3
3.1.2 Algorithm Instance Creation and Initialization .. 3-3
3.1.3 Process Call ... 3-4
3.1.4 Algorithm Instance Deletion ... 3-5

3.2 Handshaking Between Application and Algorithm .. 3-6
3.2.1 Resource Level Interaction .. 3-6
3.2.2 Handshaking Between Application and Algorithms ... 3-7

3.3 Cache Management by Application .. 3-9
3.3.1 Cache Usage By Codec Algorithm .. 3-9
3.3.2 Cache and Memory Related Call Back Functions for Linux 3-9

3.4 Sample Test Application .. 3-11
API Reference .. 4-1

4.1 Symbolic Constants and Enumerated Data Types ... 4-2
4.1.1 Common XDM Symbolic Constants and Enumerated Data Types 4-2
4.1.2 H264 Encoder Symbolic Constants and Enumerated Data Types 4-7
4.1.3 H264 Encoder Error code Enumerated Data Types .. 4-7

4.2 Data Structures .. 4-26
4.2.1 Common XDM Data Structures .. 4-26
4.2.2 H.264 Encoder Data Structures ... 4-41

4.3 H.264 Encoder ROI specific Data Structures and Enumerations 4-62
4.3.1 XDM_Point ... 4-62
4.3.2 XDM_Rect .. 4-62
4.3.3 ROI_type .. 4-63
4.3.4 ROI_Interface ... 4-63

4.4 H264 Encoder Two Pass Encoder data structure ... 4-65
4.4.1 MBinfo .. 4-65
4.4.2 MBRowinfo ... 4-65
4.4.3 Frameinfo_Interface ... 4-66

4.5 H.264 Encoder Low latency specific Data Structures and Enumerations 4-67
4.5.1 Structures ... 4-67
4.5.2 Constant ... 4-68
4.5.3 Typdef .. 4-68
4.5.4 Enum .. 4-69

4.6 Interface Functions .. 4-71
4.6.1 Creation APIs ... 4-72
4.6.2 Initialization API .. 4-74
4.6.3 Control API ... 4-75
4.6.4 Data Processing API .. 4-77
4.6.5 Termination API.. 4-81

Time-Stamp Insertion ... A-1
Error Description .. B-1
VICP Buffer Usage By Codec .. C-1
ARM926 TCM Buffer Usage By Codec .. D-1
Simple Two-pass Encoding Sample Usage .. E-1

E.1 Example Usage: ... E-4
Rate Control Modes ... F-1

x

Figures

Figure 1-1. Software Architecture. ... 1-2
Figure 1-2. Framework Component Interfacing Structure. ... 1-5
Figure 1-3. IRES Interface Definition and Function-calling Sequence. 1-6
Figure 1-4. Block Diagram of H.264 Encoder. ... 1-9
Figure 2-5. Component Directory Structure for Linux. ... 2-3
Figure 3-1. Test Application Sample Implementation ... 3-2
Figure 3-2. Process Call with Host Release... 3-4
Figure 3-3. Resource Level Interaction. ... 3-6
Figure 3-4. Interaction Between Application and Codec. ... 3-7
Figure 3-5. Interrupt Between Codec and Application. ... 3-8
Figure C-1. VICP Buffers Managed By FC. ... C-2

xi

This page is intentionally left blank

0-1

Tables

Table 1-1. List of Abbreviations ... iv
Table 2-2. Component Directories for Linux. .. 2-3
Table 3-1. process () Implementation .. 3-11
Table 4-1. List of Enumerated Data Types ... 4-2

Tables

0-2

This page is intentionally left blank

Introduction

1-3

Chapter 1

Introduction

This chapter provides a brief introduction to XDAIS, XDM, and DM365
software architecture. It also provides an overview of TI’s implementation
of the H.264 Base/Main/High Profile Encoder on the DM365/DM368
platform and its supported features.

Topic Page

1.1 Software Architecture 1-4

1.2 Overview of XDAIS, XDM, and Framework Component Tools 1-4

1.3 Overview of H.264 Base/Main/High Profile Encoder 1-9

1.4 Supported Services and Features 1-11

1.5 Comparison between version 01.10.00.xx with new version
02.00.00.xx (Platinum Encoder)

1-11

1.6 Comparison between version 02.00.00.xx with new version
02.10.00.xx (Platinum Encoder)

1-12

1.7 Comparison between version 02.10.00.xx with new version
02.20.00.xx(Platinum Encoder)

1-12

1.8 Comparison between version 02.20.00.xx with new version
02.30.00.xx(Platinum Encoder)

1.9 Comparison between version 02.30.00.xx with new version
02.40.00.xx(Platinum Encoder)

1-13

1-13

Introduction

1-4

1.1 Software Architecture

DM365/DM368 codec provides XDM compliant API to the application for
easy integration and management. The details of the interface are provided
in the subsequent sections.

DM365/DM368 is a digital multi-media system on-chip primarily used for
video security, video conferencing, PMP and other related application.

DM365/DM368 codec are OS agonistic and interacts with the kernel
through the Framework Component (FC) APIs. FC acts as a software
interface between the OS and the codec. FC manages resources and
memory by interacting with kernel through predefined APIs.

Following diagram shows the software architecture.

Figure 1-1. Software Architecture.

1.2 Overview of XDAIS, XDM, and Framework Component Tools

TI’s multimedia codec implementations are based on the eXpressDSP
Digital Media (XDM) standard. XDM is an extension of the eXpressDSP
Algorithm Interface Standard (XDAIS). IRES is a TMS320 DSP Algorithm
Standard (xDAIS) interface for management and utilization of special
resource types such as hardware accelerators, certain types of memory
and DMA. RMAN is a generic Resource Manager that manages software
component’s logical resources based on their IRES interface configuration.
Both IRES and RMAN are Framework Component modules.

1.2.1 XDAIS Overview

An eXpressDSP-compliant algorithm is a module that implements the
abstract interface IALG. The IALG API takes the memory management
function away from the algorithm and places it in the hosting framework.

Linux Kernel

Application

DM365 Codecs

Framework Component

Linux User

 Space

Linux Kernel
 Space

CMEM APIs EDMA APIs

CMEM
Driver

CSL iMX

SYNC APIs

IRQ driver EDMA driver

Introduction

1-5

Thus, an interaction occurs between the algorithm and the framework. This
interaction allows the client application to allocate memory for the algorithm
and share memory between algorithms. It also allows the memory to be
moved around while an algorithm is operating in the system. In order to
facilitate these functionalities, the IALG interface defines the following
APIs:

 algAlloc()

 algInit()

 algActivate()

 algDeactivate()

 algFree()

The algAlloc() API allows the algorithm to communicate its memory

requirements to the client application. The algInit() API allows the

algorithm to initialize the memory allocated by the client application. The

algFree() API allows the algorithm to communicate the memory to be

freed when an instance is no longer required.

Once an algorithm instance object is created, it can be used to process

data in real-time. The algActivate() API provides a notification to the

algorithm instance that one or more algorithm processing methods is about
to be run zero or more times in succession. After the processing methods

have been run, the client application calls the algDeactivate() API prior

to reusing any of the instance’s scratch memory.

The IALG interface also defines two more optional APIs algNumAlloc()

and algMoved(). For more details on these APIs, see TMS320 DSP

Algorithm Standard API Reference (SPRU360).

1.2.2 XDM Overview

In the multimedia application space, you have the choice of integrating any
codec into your multimedia system. For example, if you are building a
video decoder system, you can use any of the available video decoders
(such as MPEG4, H.263, or H.264) in your system. To enable easy
integration with the client application, it is important that all codecs with
similar functionality use similar APIs. XDM was primarily defined as an
extension to XDAIS to ensure uniformity across different classes of codecs
(for example audio, video, image, and speech). The XDM standard defines
the following two APIs:

 control()

 process()

The control() API provides a standard way to control an algorithm

instance and receive status information from the algorithm in real-time. The

control() API replaces the algControl() API defined as part of the

IALG interface. The process() API does the basic processing

(encode/decode) of data. This API represents a blocking call for the
encoder and the decoder, that is, with the usage of this API, the control is
returned to the calling application only after encode or decode of one unit
(frame) is completed. Since in case of DM365/DM368, the main encode or

Introduction

1-6

decode is carried out by the hardware accelerators, the host processor

from which the process() call is made can be used by the application in

parallel with the encode or the decode operation. To enable this, the
framework provides flexibility to the application to pend the encoder task
when the frame level computation is happening on coprocessor.

Apart from defining standardized APIs for multimedia codecs, XDM also
standardizes the generic parameters that the client application must pass
to these APIs. The client application can define additional implementation
specific parameters using extended data structures.

The following figure depicts the XDM interface to the client application.

As depicted in the figure, XDM is an extension to XDAIS and forms an
interface between the client application and the codec component. XDM
insulates the client application from component-level changes. Since TI’s
multimedia algorithms are XDM compliant, it provides you with the flexibility
to use any TI algorithm without changing the client application code. For
example, if you have developed a client application using an XDM-
compliant MPEG4 video decoder, then you can easily replace MPEG4 with
another XDM-compliant video decoder, say H.263, with minimal changes
to the client application.

For more details, see eXpressDSP Digital Media (XDM) Standard API
Reference (literature number SPRUEC8).

1.2.3 Framework Component

As discussed earlier, Framework Component acts like a middle layer
between the codec and OS and also serves as a resource manager. The
following block diagram shows the FC components and their interfacing
structure.

XDAIS Interface (IALG)

TI’s Codec Algorithms

XDM Interface

Client Application

Introduction

1-7

Figure 1-2. Framework Component Interfacing Structure.

Each component is explained in detail in the following sections.

1.2.3.1 IRES and RMAN

IRES is a generic, resource-agnostic, extendible resource query,
initialization and activation interface. The application framework defines,
implements and supports concrete resource interfaces in the form of IRES
extensions. Each algorithm implements the generic IRES interface, to
request one or more concrete IRES resources. IRES defines standard
interface functions that the framework uses to query, initialize,
activate/deactivate and reallocate concrete IRES resources. To create an
algorithm instance within an application framework, the algorithm and the
application framework agrees on the concrete IRES resource types that
are requested. The framework calls the IRES interface functions, in
addition to the IALG functions, to perform IRES resource initialization,
activation and deactivation.

The IRES interface introduces support for a new standard protocol for
cooperative preemption, in addition to the IALG-style non-cooperative
sharing of scratch resources. Co-operative preemption allows activated
algorithms to yield to higher priority tasks sharing common scratch
resources. Framework components include the following modules and
interfaces to support algorithms requesting IRES-based resources:

 IRES - Standard interface allowing the client application to query and
provide the algorithm with its requested IRES resources.

 RMAN - Generic IRES-based resource manager, which manages and
grants concrete IRES resources to algorithms and applications. RMAN
uses a new standard interface, the IRESMAN, to support run-time
registration of concrete IRES resource managers.

Client applications call the algorithm’s IRES interface functions to query its
concrete IRES resource requirements. If the requested IRES resource type
matches a concrete IRES resource interface supported by the application

FC

FCtools

 ires

vicpsy
nc

vicp
rman

hdvicpsyn
c

EDMA3 memutils

Introduction

1-8

framework, and if the resource is available, the client grants the algorithm
logical IRES resource handles representing the allotted resources. Each
handle provides the algorithm with access to the resource as defined by the
concrete IRES resource interface.

IRES interface definition and function-calling sequence is depicted in the
following figure. For more details, see Using IRES and RMAN Framework
Components for C64x+ (literature number SPRAAI5).

Figure 1-3. IRES Interface Definition and Function-calling Sequence.

In DM365/DM368, FC manages multiple resources for smooth interaction with
other algorithms and application. The resources and the utilities provided by
FC are listed in this section.

1.2.3.2 HDVICP

The IRES HDVICP Resource Interface, IRES_HDVICP, allows algorithms
to request and receive handles representing Hardware Accelerator
resource, HDVICP, on supported hardware platforms. Algorithms can
request and acquire one of the co-processors using a single IRES request
descriptor. IRES_HDVICP is an example of a very simple resource type
definition, which operates at the granularity of the entire processor and
does not publish any details about the resource that is being acquired other
than the ‘id’ of the processor. It leaves it up to the algorithm to manage
internals of the resource based on the ID.

1.2.3.3 EDMA3

The IRES EDMA3 Resource Interface, IRES_EDMA3CHAN, allows
algorithms to request and receive handles representing EDMA3 resources
associated with a single EDMA3 channel. This is a very low-level resource
definition.

Introduction

1-9

Note:

The existing xDAIS IDMA3 and IDMA2 interfaces can be used to request
logical DMA channels, but the IRES EDMA3CHAN interface provides
the ability to request resources with finer precision than with IDMA2 or
IDMA3.

1.2.3.4 VICP

VICP resource manager provides access to its VICP compute engine and
its buffer. The compute engines are MJCP, NSF, IMX0 and IMX1. In
addition to this, the VICP buffers are also assumed as resources and can
be requested as either named buffers (for MPEG and JPEG codec
operation) of generic scratch buffer (for H.264 codec operation).

1.2.3.5 HDVICP Sync

Synchronization is necessary in a coprocessor system. HDVICP sync
provides framework support for synchronization between codec and HDVICP
coprocessor usage. This module is used by frameworks or applications, which
have xDIAS algorithms that use HDVICP hardware accelarators.

1.2.3.6 Memutils

This is for generic APIs to perform cache and memory related operations.

 cacheInv – Invalidates a range of cache

 cacheWb – Writes back a range of cache

 cacheWbInv – Writes back and invalidate cache

 getPhysicalAddr – Obtains physical (hardware specific) address

1.2.3.7 TCM

ARM TCM resource manager provides access to request ARM926 TCM
memory. ARM926 in DM365/DM368 has 32K TCM, which can be allocated
to codec/algorithm on request. The allocation is in granularity of 1/2K
blocks, which can be used as scratch memory by the codec/algorithm.

1.3 Overview of H.264 Base/Main/High Profile Encoder

H.264 (from ITU-T, also called as H.264/AVC) is a popular video coding
algorithm enabling high quality multimedia services on a limited bandwidth
network. H.264 standard defines several profiles and levels that specify
restrictions on the bit stream and hence limits the capabilities needed to
decode the bit streams. Each profile specifies a subset of algorithmic
features and limits that all decoders conforming to that profile may support.
Each level specifies a set of limits on the values that may be used by the
syntax elements in the profile.

Introduction

1-10

Some important H.264 profiles and their special features are (These are
feature as defined by H.264 standard, few of them may not be part of
DM365/DM368 H.264 implementation):

 Baseline Profile:

o Only I and P type slices are present

o Only frame mode (progressive) picture types are present

o Only CAVLC is supported

o ASO/FMO and redundant slices for error concealment is supported

 High Profile:

o Only I, P, and B type slices are present

o Frame and field picture modes (in progressive and interlaced modes)
picture types are present

o Both CAVLC and CABAC are supported

o ASO is not supported

o Transform 8x8 is supported

o Sequence scaling list is supported

o B frames and weighted prediction.

The input to the encoder is a YUV sequence, which can be of format 420
with the chroma components interleaved in little endian. The output of the
encoder is an H.264 encoded bit-stream in the byte-stream syntax. The
byte-stream consists of a sequence of byte-stream NAL unit syntax
structures. Each byte-stream NAL unit syntax structure contains one start
code prefix of size four bytes and value 0x00000001, followed by one NAL
unit syntax structure. The encoded frame data is a group of slices, each is
encapsulated in NAL units. The slice consists of the following:

 Intra coded data: Spatial prediction mode and prediction error data,
subjected to DCT and later quantized.

 Inter coded data: Motion information and residual error data
(differential data between two frames), subjected to DCT and later
quantized.

The first frame is called Instantaneous Decode Refresh (IDR) picture
frame. The decoder at the receiving end reconstructs the frame by spatial
intra-prediction specified by the mode and by adding the prediction error.
The subsequent frames may be intra or inter coded.

In case of inter coding, the decoder reconstructs the bit-stream by adding
the residual error data to the previously decoded image, at the location
specified by the motion information. This process is repeated until the
entire bit-stream is decoded.

In motion estimation, the encoder searches for the best match in the
available reference frame(s). After quantization, contents of some blocks
become zero. H.264 Encoder tracks this information and passes the
information of coded 4x4 blocks to inverse transform so that it can skip
computation for those blocks that contain all zero co-efficients and are not
coded.

Introduction

1-11

H.264 Encoder defines in-loop filtering to avoid blocks across the 4x4 block
boundaries. It is the second most computational task of H.264 encoding
process after motion estimation. In-loop filtering is applied on all 4x4 edges
as a post-process and the operations depend upon the edge strength of
the particular edge.

H.264 Encoder applies entropy coding methods to use context based
adaptivity, which in turn improves the coding performance. All the macro
blocks, which belong to a slice, must be encoded in a raster scan order.
Baseline profile uses the Context Adaptive Variable Length Coding
(CAVLC). CAVLC is the stage where transformed and quantized
coefficients are entropy coded using context adaptive table switching
across different symbols. The syntax defined by the H.264 Encoder stores
the information at 4x4 block level.

The following figure depicts the working of the encoder.

Figure 1-4. Block Diagram of H.264 Encoder.

From this point onwards, all references to H.264 Encoder mean H.264
Base/Main/High Profile Encoder only.

Entropy

Coding

Coder
Control

Transform /
Scal / Quant

Deblocking
Filter

Reconstructed
Picture

Intra-frame
Prediction

Motion-
Compensation

Motion-

Estimation

Decoder
Scaling and Inv.

Transform

Control

 Data

 Quant

Transf coeffs

Output
Picture

Motion

Data

Input
Picture

Introduction

1-12

1.4 Supported Services and Features

This user guide accompanies TI’s implementation of H.264 Encoder on the
DM365/DM368 platform.

This version of the codec has the following supported features of the
standard:

 eXpressDSP Digital Media (XDM1.0 IVIDENC1) interface compliant

 Compliant with H.264 High Profile up to level 5.0

 Supports resolutions up to 4096x4096 in Platinum mode and
2048x2048 in Version 1.1 backward compatible mode.

 Supports YUV420 semi planer input format for the frames

 Supports progressive and interlaced encoding

 Generates bit-stream compliant with H.264 standard

 Supports CAVLC and CABAC encoding

 Supports sequence scaling matrix

 Supports transform 8x8 and transform 4x4

 Supports frame based encoding with frame size being multiples of 2

 Supports rate control (CBR, VBR, CVBR and fixed frame size)

 Supports Insertion of Buffering Period and Picture Timing
Supplemental Enhancement Information (SEI) and Video Usability
Information (VUI)

 Supports Unrestricted Motion Vectors (UMV)

 Supports Half Pel and Quarter Pel Interpolation for motion estimation

 Supports SVC-T up to four layers.

 Supports chain free P frames encoding.

 Supports ARF (Adaptive Reference field) encoding for interlaced
content.

 Supports GDR (Gradual Decoder Refresh)

 Support for User Defined Scaling Matrices

 Improved video quality at low bit rate

 Improved video quality at low bit rate

 Support for Adaptive Long-Term reference frame insertion

 Supports 1.1 backward compatible improved quality mode which has
following features

o 4 motion vectors per Macroblock

o All 16x16, 8x8 and 4x4 Intra-Prediction Modes supported in P-Frame

Introduction

1-13

 Supports following Smart Codec features:

o Simple Two Pass (STP) Encoding

o Region of Interest (ROI)

 Supports Low latency feature

o Can be configured to provide output at NAL granularity or after entire
frame is encoded.

o Supports encoded output in NAL stream or Bytes stream format

DM365/DM368 H.264 encoder can be configured in two modes:

 Platinum mode, which gives 1080P@30fps performance in DM368 –
432 Mhz device

 Version 1.1 backward compatible mode which gives performance of
720P@30fps on DM365/DM368 - 300 MHz

 Version 1.1 backward compatible improved quality mode which gives
performance of D1@30fps on DM365/DM368 - 300 MHz

This version of the encoder does not support the following features as per
the Baseline Profile feature set:

 Error Resilience features such as ASO/FMO and redundant slices

 Adaptive Reference Picture Marking

 Reference Picture List Reordering

1.5 Comparison between version 01.10.00.xx with new version 02.00.00.xx
(Platinum Encoder)

Version 02.00.00.xx is a new enhanced codec version with 1.5x better
performance than earlier version without affecting quality. Few of the
enhancements are listed below:

 Achieves 1080P@30fps on DM368.

 More feature rich codecs which includes

1. Smart codec technology

2. Low latency API support

Version 02.00.00.xx also supports version 1.1 standard mode as a
backward compatible option. This can be enabled by setting
encodingPreset = XDM_USER_DEFINED and encQuality = 0/1. It

enables application that needs low-resolution encoding, lesser EDMA
channels or some specific tools like perceptual rate control.

Feature Version 1.1 - Gen 1 Version 2.0 - Platinum

Resolution Min – 128 x 96
Max – 2k x 2k

Min – 320 x 128
Max – Current (2k x 2k)

Performance 720P@30fps on DM365/DM368 1080P@30fps on DM368

Introduction

1-14

Feature Version 1.1 - Gen 1 Version 2.0 - Platinum

EDMA channels 37 46

Support for Ver
1.1 – Gen1

NA YES

1.6 Comparison between version 02.00.00.xx with new version 02.10.00.xx
(Platinum Encoder)

Version 02.10.00.xx is a new enhanced codec version with more features
than earlier version without affecting quality. Few of the enhancements are
listed below:

 SVC-T up to four layers on DM368.

 Support of Chain free P frames encoding

 Fixed slice size encoding feature support

 Support for ARF (Adaptive Reference field) and MRCRF (Most Recent
Coded Reference Field) encoding.

 Constrained VBR Rate control (CVBR).

 Fixed frame size rate control

 Customized VUI encoding.

 Mega Pixel supports input video upto 4096x4096.

 Support for GDR(Gradual Decoder Refresh)

 Support for User Defined Scaling Matrices.

 Improved video quality at low bit rate.

 Support for Adaptive Long-Term reference frame insertion

1.7 Comparison between version 02.10.00.xx with new version 02.20.00.xx
(Platinum Encoder)

 Changes in encodingPreset Values

 Supports new High speed platinum encoder (encQuality = 3) with
improved performance.

 Supports Privacy Masking Feature.

 CVBR and custom CBR1 rcalgo’s parameters are configurable.

Introduction

1-15

1.8 Comparison between version 02.20.00.xx with new version 02.30.00.xx
(Platinum Encoder)

 Supports new High Quality platinum encoder (encQuality = 1) with
following features.

 Supports 4 motion vectors per macroblock.

 Supports all intraprediction modes in P frame.

1.9 Comparison between version 02.30.00.xx with new version 02.40.00.xx
(Platinum Encoder)

 Supports Enhanced Quality platinum encoder (encQuality = 4).

 Supports upto 720p (1280x720) resolution with Width multiple of 64.

2-1

Chapter 2

Installation Overview

This chapter provides a brief description on the system requirements and
instructions for installing the codec component. It also provides information on
building and running the sample test application.

Topic Page

2.1 System Requirements for Linux 2-2

2.2 Installing the Component for Linux 2-2

2.3 Building and Running the Sample Test Application on Linux 2-4

2.4 Configuration Files 2-4

2.5 Standards Conformance and User-Defined Inputs 2-9

2.6 Uninstalling the Component 2-9

Installation Overview

2-2

2.1 System Requirements for Linux

This section describes the hardware and software requirements for the
normal functioning of the codec in MV Linux OS. For details about the
version of the tools and software, see Release Note

2.1.1 Hardware

 DM365/DM368 EVM (Set the bits 2 and 3 of switch SW4 to low(0)
position and Set the bits 4 and 5 of switch SW5 to high(1) position)

 RS232 cable and network cable

2.1.2 Software

The following are the software requirements for the normal functioning of
the codec:

 Build Environment: This project is built using Linux with MVL ARM
tool chain.

 ARM Tool Chain: This project is compiled and linked using MVL ARM
tool chain.

2.2 Installing the Component for Linux

The codec component is released as a compressed archive. To install the
codec, extract the contents of the tar file onto your local hard disk. The tar
file extraction creates a directory called
dm365_h264enc_xx_xx_xx_xx_production. Figure 2-5 shows the sub-
directories created in this directory.

Note:

xx_xx_xx_xx in the directory name is the version of the codec. For
example, If the version of the codec is 02.00.01.00, then the directory
created on extraction of tar file is
dm365_h264enc_02_00_01_00_production.

Installation Overview

2-3

Figure 2-5. Component Directory Structure for Linux.

Table 2-2 provides a description of the sub-directories created in the
dm365_h264enc_xx_xx_xx_xx_production directory.

Table 2-2. Component Directories for Linux.

Sub-Directory Description

\package Contains files related while building the package

\packages\ti\sdo\codecs\h264enc\lib Contains the codec library files on host

\packages\ti\sdo\codecs\h264enc\docs Contains user guide, datasheet, and release notes

\packages\ti\sdo\codecs\h264enc\apps\clie
nt\build\arm926

Contains the makefile to built sample test application

\packages\ti\sdo\codecs\h264enc\apps\clie
nt\build\arm926\cmd

Contains a template (.xdt) file to used to generate linker
command file

\packages\ti\sdo\codecs\h264enc\apps\clie
nt\build\arm926\map

Contains the memory map generated on compilation of the
code

\packages\ti\sdo\codecs\h264enc\apps\clie
nt\test\src

Contains application C files

Installation Overview

2-4

Sub-Directory Description

\packages\ti\sdo\codecs\h264enc\apps\clie
nt\test\inc

Contains header files needed for the application code

\packages\ti\sdo\codecs\h264enc\apps\clie
nt\test\testvecs\input

Contains input test vectors

\packages\ti\sdo\codecs\h264enc\apps\clie
nt\test\testvecs\output

Contains output generated by the codec

\packages\ti\sdo\codecs\h264enc\apps\clie
nt\test\testvecs\reference

Contains read-only reference output to be used for verifying
against codec output

\packages\ti\sdo\codecs\h264enc\apps\clie
nt\test\testvecs\config

Contains configuration parameter files

2.3 Building and Running the Sample Test Application on Linux

To build the sample test application in linux environment, follow these
steps

1) Verify that dma library h264v_ti_dma_dm365.a exists in the
packages\ti\sdo\codecs\h264enc\lib.

2) Verify that codec object library library h264venc_ti_arm926.a exists in
the \packages\ti\sdo\codecs\h264enc\lib.

3) Ensure that you have installed the LSP, Montavista arm tool chain,
XDC, Framework Components releases with version numbers that are
mentioned in the release notes.

4) In the folder \packages\ti\sdo\codecs\h264enc\client\build\arm926,
change the paths in the file rules.make according to your setup.

5) Open the command prompt at the sub-directory
\packages\ti\sdo\codecs\h264enc\client\build\arm926 and type the
command make. This generates an executable file h264venc-r in the
same directory.

To run the executable generated from the above steps:

1) Load the kernel modules by typing the command ./loadmodules.sh,
which initializes the CMEM pools.

2) Now branch to the directory where the executable is present and type
./h264venc-r in the command window to run.

2.4 Configuration Files

This codec is shipped along with:

 Generic configuration file (testvecs.cfg) – list of configuration files for
running the codec on sample test application.

Installation Overview

2-5

 Encoder configuration file (testparams.cfg) – specifies the
configuration parameters used by the test application to configure the
Encoder.

2.4.1 Generic Configuration File

The sample test application shipped along with the codec uses the
configuration file, Testvecs.cfg for determining the input and reference files
for running the codec and checking for compliance. The testvecs.cfg file is
available in the
\packages\ti\sdo\codecs\h264enc\apps\client\test\testvecs\config sub-
directory.

The format of the testvecs.cfg file is:

X

config

input

output/reference

recon

ROI

where:

 X may be set as:

o 1 - for compliance checking, no output file is created

o 0 - for writing the output to the output file

 config is the Encoder configuration file. For details, see Section 2.4.2.

 input is the input file name (use complete path).

 output/reference is the output file name (if X is 0) or reference file

name (if X is 1) (use complete path).

 recon is reconstructed YUV output file name (use complete path).

 ROI parameter configuration file.

Installation Overview

2-6

A sample testvecs.cfg file is as shown:

For output dump mode:
0

..\..\..\test\testvecs\config\testparams.cfg

..\..\..\test\testvecs\input\input.yuv

..\..\..\test\testvecs\output\output.264

..\..\..\test\testvecs\output\recon.yuv

..\..\..\test\testvecs\config\ROIparams.cfg

For reference bit-stream compliance test mode:
1

..\..\..\test\testvecs\config\testparams.cfg

..\..\..\test\testvecs\input\input.yuv

..\..\..\test\testvecs\reference\reference.264

..\..\..\test\testvecs\output\recon.yuv

..\..\..\test\testvecs\config\ROIparams.cfg

2.4.2 Encoder Configuration File

The encoder configuration file, testparams.cfg contains the configuration
parameters required for the encoder. The testparams.cfg file is available in
the \client\test\testvecs\config sub-directory.

A sample Testparams.cfg file is as shown:
 # New Input File Format is as follows
<ParameterName> = <ParameterValue> # Comment

Parameters

ImageWidth = 352 # Image width in Pels, must be

 multiple of 16

ImageHeight = 288 # Image height in Pels, must be multiple

 of 16

FrameRate = 30000 # Frame Rate per second*1000 (1-100)

BitRate = 512000 # Bitrate(bps) #if ZERO=>> RC is OFF

ChromaFormat = 9 # 9 => XDM_YUV_420P

InterlacedVideo = 0 # 0 => Progressive, 1 => Interlaced

EnableVUIParam = 0 # 1 => Enable VUI parameters,

 0 => Disable VUI Parameters,

 4 => encoded VUI buffer externally

 provided by Application user

EnableBufSEI = 0 # 1 => Enable Buffering Period SEI

 Message, 0 => Disable

ME_TYPE = 0 # 0 => Normal search

 1 => Improved Video quality at low bit
 rate

RC_PRESET = 5 # 1 => Low Delay, 2 => Storage,

 3 => 2 Pass, 4 => None,

 5 => user defined

ENC_PRESET = 3 # 0 => default, 1 => High Quality,

 2 => High Speed, 3 => user defined

###

Encoder Control

ProfileIDC = 100 # Profile IDC (66=baseline, 77=main,

Installation Overview

2-7

 100=HighProfile)

LevelIDC = 40 # Level IDC (e.g. 20 = level 2.0)

Log2MaxFrameNumMinus4 = 0 # Sets the maximum frame number (Allowed

 Values 0 - 12)

ConstraintFlag = 0 # Bit 0 set/reset constraint flag 0,

 Bit 1 set/reset constraint flag 1,

 Bit 2 set/reset constraint flag 2,

 Bit 3 set/reset constraint flag 3

IntraPeriod = 0 # Period of I-Frames (0 -> only 1st

 one is I- Frame, 1 -> all I-Frames

 (range 0 - 255)

IDRFramePeriod = 0 # Period of IDR Frames (0 -> only 1st

 one is IDR- Frame, 1 -> all IDR-

 Frames (range 0 - 255) (IDR

 overrides I, if both periods match)

LongTermRefreshInterval = 0 # Interval to refresh longterm reference

 Frames.

EnableLongTermFrame = 0 # 0 -> Disable using longterm ref frame

 1 -> Enable using longterm ref frame

FramesToEncode = 5 # Number of frames to be coded

SliceSize = 0 # Size of each slice in bits

RateControl = 1 # 0 => CBR, 1 => VBR, 2 => Fixed QP,

 3=> CVBR, 4=> FIXED_RC 5=> CBR1

 custom 6=> VBR1 custom

MaxDelay = 2000 # Delay Parameter for Rate Control in

 milliseconds (>=100)

QPInit = 30 # Initial QP for RC (-1,0-51)

QPISlice = 28 # Quant. param for I Slices (0-51)

QPSlice = 28 # Quant. param for non - I slices (0-51)

MaxQP = 51 # Maximum value for QP (0-51)

MinQP = 0 # Minimum value for QP (0-51)

MaxQPI = 51 # Maximum value for QP for I frame(0-51)

MinQPI = 0 # Minimum value for QP for I frame(0-51)

AirRate = 0 # Number of Forced Intra MBs

EntropyCodingMode = 0 # Entropy Coding Mode (0 = CAVLC,

 1 = CABAC)

Transform8x8FlagIntra = 0 # 0 = Disable, 1 = Enable

Transform8x8FlagInter = 0 # 0 = Disable, 1 = Enable

SequenceScalingFlag = 0 # 0 = Disable, 1 = Auto, 2 = Low, 3 =

 Moderate, 4 = Reserved

PerceptualRC = 0 # 1 => Enable Perceptual QP modulation,

 0 => Disable

EncoderQuality = 0 # 0 => version 1.1 backward Compatible,

 2 => High quality platinum mode,

 3 => High speed platinum mode

 1 => version 1.1 backward Compatible

 Improved Quality

 4 => Enhanced quality platinum mode,

mvSADout = 0 # 0->disable mvsad out,

 1->enable mvsad out

useARM926Tcm = 0 # 0->do not use arm 926 tcm

 1-> use arm 926 tcm

enableROI = 0 # 0->disable ROI 1-> enable ROI

mapIMCOPtoDDR = 0 # 0->do not use DDR

 1-> use DDR instead of IMCOP

metaDataGenerateConsume = 0 # 0->Not in use, 1-> Generate Meta data,

 2-> Use Metadata generated by other

 encoder.

sliceMode = 0 # 0 -> no multiple slices,

 1 -> multiple slices - bits/slice ,

 2 -> multiple slices-MBs/slice,

 3 -> multiple slices - Rows/slice

Installation Overview

2-8

numTemporalLayers = 0 # 0-> one layer, 1-> two layer,

 2-> three layer, 3-> four layer,

 255 -> Chain free P frames

svcSyntaxEnable = 0 # 0-> SVC off ST refframes,

 1-> SVC on ST refframes,

 2-> SVC off LT refframes,

 3-> SVC on LT refframes,

outputDataMode = 1 # 0 -> low latency, encoded streams

 produced after N (configurable)

 slices encode,

 1 -> encoded stream produce at the end

 of frame

sliceFormat = 1 # 0 -> encoded stream in NAL Unit format,

 1 -> encoded stream in bytes stream

 format

interlaceRefMode = 0 # 0 = ARF (default mode),1 = SPF,2 = MRCF

maxBitrateCVBR = 768000 # Max bit rate for CVBR RC algortihm

enableGDR = 0 # Flag to enable Gradual Decoder Refresh

GDRduration = 5 # GDR refresh duration

GDRinterval = 30 # Interval between GDR refresh

###

Loop filter parameters

LoopFilterDisable = 0 # Disable loop filter in slice header

 (0=Filter, 1=No Filter, 2 = Disable

 across Slice Boundaries)

To check the functionality of the codec for the inputs other than those
provided with the release, change the configuration file accordingly, and
follow the steps as described in Section 2.2.

2.4.3 Encoder Sample Base Param Setting

The encoder can be run in IVIDENC1 base class setting. The extended

parameter variables of encoder will then assume default values. The

following list provides the typical values of IVIDENC1 base class variables.

typedef struct IVIDENC1_Params {

XDAS_Int32 size;

XDAS_Int32 encodingPreset = XDM_HIGH_SPEED; // Value = 2

XDAS_Int32 rateControlPreset = IVIDEO_STORAGE; //value = 2

XDAS_Int32 maxHeight = 1088;

XDAS_Int32 maxWidth = 1920;

XDAS_Int32 maxFrameRate = 120000;

XDAS_Int32 maxBitRate = 50000000;

XDAS_Int32 dataEndianness = XDM_BYTE;

XDAS_Int32 maxInterFrameInterval = 1;

XDAS_Int32 inputChromaFormat = XDM_YUV_420SP; //value = 9

XDAS_Int32 inputContentType = IVIDEO_PROGRESSIVE;

XDAS_Int32 reconChromaFormat XDM_YUV_420SP; //value = 9;

} IVIDENC1_Params;

typedef struct IVIDENC1_DynamicParams {

XDAS_Int32 size; /**< @sizeField */

XDAS_Int32 inputHeight; /**< Input frame height. */

XDAS_Int32 inputWidth; /**< Input frame width. */

XDAS_Int32 refFrameRate = 30000;

XDAS_Int32 targetFrameRate = 30000;

XDAS_Int32 targetBitRate; < 10000000 /**< Target bit rate

in bits per second. */

XDAS_Int32 intraFrameInterval = 29;

Installation Overview

2-9

XDAS_Int32 generateHeader = 0;

XDAS_Int32 captureWidth; // for demo, same as inputWith

XDAS_Int32 forceFrame; = IVIDEO_NA_FRAME

XDAS_Int32 interFrameInterval = 0;

XDAS_Int32 mbDataFlag = 0;

} IVIDENC1_DynamicParams;

typedef struct IVIDENC1_InArgs {

XDAS_Int32 size; /**< @sizeField */

XDAS_Int32 inputID; /* as per application*/

XDAS_Int32 topFieldFirstFlag = 0;

} IVIDENC1_InArgs;

2.5 Standards Conformance and User-Defined Inputs

To check the reference bit-stream conformance of the codec for the default
input file shipped along with the codec, follow the steps as described in
Section 2.3.

To check the conformance of the codec for other input files of your choice,
follow these steps:

1) Copy the input files to the \client\test\testvecs\input sub-directory.

2) Copy the reference files to the \client\test\testvecs\reference sub-
directory.

3) Edit the configuration file, Testvecs.cfg available in the
\client\test\testvecs\config sub-directory. For details on the format of
the testvecs.cfg file, see section 2.4.

For each encoded frame, the application displays the message
indicating the frame number. In reference bit-stream compliance check
mode, the application additionally displays FAIL message, if the bit-
stream does not match with reference bit-stream.

After the encoding is complete, the application displays a summary of
total number of frames encoded. In reference bit-stream compliance
check mode, the application additionally displays PASS message, if
the bit-stream matches with the reference bit-stream.

If you have chosen the option to write to an output file (X is 0), you can
use any of the standard file comparison utility to compare the codec
output with the reference output and check for conformance.

2.6 Uninstalling the Component

To uninstall the component, delete the codec directory from your hard disk.

Installation Overview

2-10

This page is intentionally left blank

3-1

Chapter 3

Sample Usage

This chapter provides a detailed description of the sample test application
that accompanies this codec component.

Topic Page

3.1 Overview of the Test Application 3-2

3.2 Handshaking Between Application and Algorithm 3-6

3.3 Cache Management by Application 3-9

3.4 Sample Test Application 3-11

Sample Usage

3-2

3.1 Overview of the Test Application

The test application exercises the IVIDDEC1 base class of the H.264

Encoder library. The main test application files are h264encoderapp.c and
h264encoderapp.h. These files are available in the \client\test\src and
\client\test\inc sub-directories respectively.

Figure 3-1 depicts the sequence of APIs exercised in the sample test
application.

Figure 3-1. Test Application Sample Implementation

Sample Usage

3-3

The test application is divided into four logical blocks:

 Parameter setup

 Algorithm instance creation and initialization

 Process call

 Algorithm instance deletion

3.1.1 Parameter Setup

Each codec component requires various codec configuration parameters to
be set at initialization. For example, a video codec requires parameters
such as video height, video width, and so on. The test application obtains
the required parameters from the Encoder configuration files.

In this logical block, the test application does the following:

1) Opens the generic configuration file, testvecs.cfg and reads the list of
Encoder configuration file name (testparams.cfg).

2) Opens the Encoder configuration file, (testparams.cfg) and reads the
various configuration parameters required for the algorithm.

For more details on the configuration files, see Section 2.4.

3) Sets the IVIDDEC1_Params structure based on the values it reads

from the Testparams.cfg file.

4) Sets the extended parameters of the IH264VENC_Params structure

based on the values it reads from the testparams.cfg file.

After successful completion of the above steps, the test application does
the algorithm instance creation and initialization.

3.1.2 Algorithm Instance Creation and Initialization

In this logical block, the test application accepts the various initialization
parameters and returns an algorithm instance pointer. The following APIs
are called in a sequence:

1) algNumAlloc() - To query the algorithm about the number of

memory records it requires.

2) algAlloc() - To query the algorithm about the memory requirement

to be filled in the memory records.

3) algInit() - To initialize the algorithm with the memory structures

provided by the application.

A sample implementation of the create function that calls

algNumAlloc(), algAlloc(), and algInit() in sequence is provided

in the ALG_create() function implemented in the alg_create.c file.

After successful creation of the algorithm instance, the test application
does DMA resource allocation for the algorithm.

Sample Usage

3-4

Note:

DMAN3 function and IDMA3 interface is not implemented in
DM365/DM368 codecs. Instead, it uses a DMA resource header file,
which gives the framework the flexibility to change DMA resource to
codec.

3.1.3 Process Call

After algorithm instance creation and initialization, the test application does
the following:

1) Sets the dynamic parameters (if they change during run-time) by

calling the control() function with the XDM_SETPARAMS command.

2) Sets the input and output buffer descriptors required for the

process()function call. The input and output buffer descriptors are

obtained by calling the control() function with the XDM_GETBUFINFO

command.

3) Implements the process call based on the mode of operation –
blocking or non-blocking. These different modes of operation are
explained below. The behavior of the algorithm can be controlled using
various dynamic parameters (see section 4.2.1.10). The inputs to the

process()functions are input and output buffer descriptors, pointer to

the IVIDDEC1_InArgs and IVIDDEC1_OutArgs structures.

4) Call the process() function to encode/decode a single frame of data.

After triggering the start of the encode/decode frame start, the video
task can be moved to SEM-pend state using semaphores. On receipt
of interrupt signal for the end of frame encode/decode, the application
should release the semaphore and resume the video task, which
performs book-keeping operations and updates the output parameters

structure -IVIDDEC1_OutArgs.

Figure 3-2. Process Call with Host Release

Host
System
application

Process call frame n

HDVICP
Tasks

MB level tasks for
frame n

Host Video
Task

HDVICP Busy

Transfer of

tasks at Host

MB level tasks for
frame n+1

Process call frame n+1

Host system
tasks

Interrupt between
HDVICP and Host

Sample Usage

3-5

Note:

 The process call returns control to the application after the initial
setup related tasks are completed.

 Application can schedule a different task to use the Host resource
released free.

 All service requests from HDVICP are handled through interrupts.

 Application resumes the suspended process call after handling the
last service request for HDVICP.

 Application can now complete concluding portions of the process
call.

The control() and process() functions should be called only within

the scope of the algActivate() and algDeactivate() XDAIS

functions. The algActivate() and algDeactivate() XDAIS functions

activate and deactivate the algorithm instance respectively. Once the

algorithm is activated, the control() and process() functions can be of

any order. The following APIs are called in a sequence:

1) control() (optional) - To query the algorithm on status or setting of

dynamic parameters and so on, using the seven available control
commands.

2) process() - To call the Encoder with appropriate input/output buffer

and arguments information.

3) control() (optional) - To query the algorithm on status or setting of

dynamic parameters and so on, using the seven available control
commands.

4) algDeactivate() - To deactivate the algorithm instance.

The for loop encapsulates frame level process() call and updates the

input buffer and the output buffer pointer every time before the next call.
The for loop runs for the designated number of frames and breaks-off
whenever an error condition occurs.

In the sample test application, after calling algDeactivate(), the output

data is either dumped to a file or compared with a reference file.

3.1.4 Algorithm Instance Deletion

Once decoding/encoding is complete, the test application deletes the
current algorithm instance The following APIs are called in a sequence:

1) algNumAlloc() - To query the algorithm about the number of

memory records it used.

2) algFree() - To query the algorithm to get the memory record

information, which can be used by the application for freeing them up.

Sample Usage

3-6

A sample implementation of the delete function that calls algNumAlloc()

and algFree() in sequence is provided in the aLG_delete() function

implemented in the alg_create.c file.

3.2 Handshaking Between Application and Algorithm

3.2.1 Resource Level Interaction

Following diagram explains the resource level interaction of the application
with framework component and codecs. Application uses XDM for
interacting with codecs. Similarly, it uses RMAN to grant resources to the
codec.

Figure 3-3. Resource Level Interaction.

Creation

Application

Framework component

components
CODEC

IALG_create fns

Register
Resource

RMAN_register

Assign
Resource

RMAN_assign
resource

Control and
Process

Free
Resource and
Exit

Codec
Deletion

RMAN_freeresou
rce and
RMAN_exit

Encoding /
Decoding

IALG_free fns

Details of
resource held by
codec

VICP buffers
memories, DMA
channel
information and
details of
iresfxns
implemented by
the codec.

Sample Usage

3-7

3.2.2 Handshaking Between Application and Algorithms

Application provides the algorithm with its implementation of functions for
the video task to move to SEM-pend state, when the execution happens in
the co-processor. The algorithm calls these application functions to move
the video task to SEM-pend state.

Figure 3-4. Interaction Between Application and Codec.

Note:

 Process call architecture shares Host resource among multiple
threads.

 ISR ownership is with the FC resource manager – outside the
codec.

 Codec implementation is OS independent.

The functions to be implemented by the application are:

1) HDVICPSYNC_start(IALG_Handle handle,

HDVICPSYNC_InterruptType intType, IRES_HDVICP_Handle

hdvicpHandle)

This function is called by the algorithm to register the interrupt with the
OS. This function also configures the Framework Component interrupt
synchronization routine.

2) HDVICPSYNC_wait (IRES_HDVICP_Handle hdvicpHandle)

This function is a FC call back function use to pend on a semaphore.
Whenever the codec has completed the work on Host processor (after
transfer of frame level encode/decode to HDVICP) and needs to relive
the CPU for other tasks, it calls this function.

Framework Provided
HDVICP Callback APIs

_process()

Application Side
Codec

#include <…/ires_hdvicp.h>

void _MyCodecISRFunction();

MYCODEC::IVIDENC1::process() {

 :

 …. set up for frame encoder

HDVICPSYNC_start(handle,

HDVICPSYNC_FIQ,

 handle->hdvicpResourceHandles[0])

HDVICPSYNC_wait(((H264VENC_TI_Obj

*)handle)->hdvicpResourceHandles[0]);

/* Wait until HDVICP set interrupt */

 // Release of HOST

 …. End of frame processing

}

void H264VENC_TI_isrfunction

(IALG_Handle handle)

{ H264venc_TII_Obj *h264venc = (void

*)handle;

 HDVICP_done(h264d ,

 h264d-

>hdvicpHandle);

}

int _doneSemaphore;

HDVICP_configure(handle,

hdVicpHandle, ISRFunction){

 installNonBiosISR(handle,

hdvicpHandle, ISRFunction);

}

VICP_register();

VICP_done();

VICP_unregister();

Sample Usage

3-8

This function of FC implements a semaphore which goes into pend
state and then the OS switches the task to another non-codec task.

Interrupts from HDVICP to Host ARM926 is used to inform when the

frame processing is done. HDVICP sends interrupt which maps to INT

No 10 (KALINT9 Video MJCP) of ARM926 INTC. After receiving this

interrupt, the semaphore on which the codec task was waiting gets

released and the execution resumes after the HDVICPSYNC_wait()

function.

The following figure explains the interrupt interaction between
application and codec.

Figure 3-5. Interrupt Between Codec and Application.

Framework calls Encoder Init

HOST
ARM926

HDVICP

Start frame processing
At the end send interrupt to Host
that it has finished

Inform Host through interrupt

Codec task wakes up to finish end
of frame processing and returns
back to framework

Framework Calls Encode frame
process

HDVICPSYNC_wait() uses to make
the codec task sleep

Pending over
Exit HDVICPSYNC_wait()

Different task running

This interrupt is not
visible to
framework. It
happens inside
codec library

This interrupt
should be serviced
by framework

Codec lib calls HDVICPSYNC_start
to register the ISR with framework
Codec library internally sends
interrupt to HDVICP to start
processing
Codec calls framework
HDVICP_wait()

Sample Usage

3-9

3.3 Cache Management by Application

3.3.1 Cache Usage By Codec Algorithm

The codec source code and data, which runs on Host ARM926 can be
placed in DDR. The host of DM365/DM368 has MMU and cache that the
application can enable for better performance. Since the codec also uses
DMA, there can be inherent cache coherency problems when application
turns on the cache.

3.3.2 Cache and Memory Related Call Back Functions for Linux

To resolve the cache coherency and virtual to physical address issues, FC
provides memory until library. These following functions can be used by
codecs to resolve the cache coherency issues in Linux:

 cacheInvalidate

 cacheWb

 cacheWbInv

 getPhysicalAddr

Sample Usage

3-10

3.3.2.1 cacheInvalidate

In cache invalidation process, the entries of the cache are deleted. This
API invalidates a range of cache.

Void MEMUTILS_cacheInv (Ptr addr, Int sizeInBytes)

3.3.2.2 cacheWb

This API writes back cache to the cache source when it is necessary.

Void MEMUTILS_cacheWb (Ptr addr, Int sizeInBytes)

3.3.2.3 cacheWbInv

This API writes back cache to the cache source when it is necessary and
deletes the cache contents.

Void MEMUTILS_cacheWbInv (Ptr addr, Int sizeInBytes)

3.3.2.4 getPhysicalAddr

This API obtains the physical address.

Void* MEMUTILS_getPhysicalAddr (Ptr addr))

Sample Usage

3-11

3.4 Sample Test Application

The test application exercises the IVIDDEC1 base class of the H.264

Encoder.

Table 3-1. process () Implementation

/* Main Function acting as a client for Video encode Call*/

/* Acquiring and intializing the resources needed to run the

encoder */

iresStatus = (IRES_Status) RMAN_init();

iresStatus = (IRES_Status) RMAN_register(&IRESMAN_EDMA3CHAN,

(IRESMAN_Params *)&configParams);

/*---------------- Encoder creation -----------------*/

handle = H264VENC_create(&fxns, ¶ms)

/*Getting instance of algorithms that implements IALG and

IRES functions*/

iErrorFlag = RMAN_assignResources((IALG_Handle)handle,

 &H264VENC_TI_IRES, /* IRES_Fxns* */

 1 /* scratchId */);

/* Get Buffer information */

iErrorFlag = H264VENC_control(

 handle, // Instance Handle

 XDM_GETSTATUS, // Command

 &dynamicparams, // Pointer to Dynamicparam structure

 &status // Pointer to the status structure

);

/*SET BASIC INPUT PARAMETERS */

iErrorFlag = H264VENC_control(

 handle, // Instance Handle

 XDM_GETSTATUS, // Command

 &dynamicparams, // Pointer to Dynamicparam structure

 &status // Pointer to the status structure

);

/* Based on the Num of buffers requested by the algorithm,

 the application will allocate for the same here

 */

AllocateH264IOBuffers(

 status, // status structure

 &inobj, // Pointer to Input Buffer Descriptor

&outobj) // Pointer to Output Buffer Descriptor

);

/*Set Dynamic input parameters */

iErrorFlag = H264VENC_control(

 handle, // Instance Handle

 XDM_GETSTATUS, // Command

 &dynamicparams, // Pointer to Dynamicparam structure

 &status // Pointer to the status structure

);

/* for Loop for encode Call for a given no of frames */

For(;;)

/* Read the input frame in the Application Input Buffer */

ReadInputData (inFile);

/*--*/

/* Start the process : To start Encoding a frame */

/* This will always follow a H264VENC_encode_end call */

Sample Usage

3-12

/*--*/

 iErrorFlag = H264VENC_encode (

 handle, // Instance Handle - Input

 &inobj, // Input Buffers - Input

 &outobj, // Output Buffers - Output

 &inargs, // Input Parameters - Input

 &outargs // Output Parameters - Output

);

/* Get the statatus of the Encoder using control */

H264VENC_control(

 handle, // Instance Handle

 XDM_GETSTATUS, // Command - GET STATUS

 &dynamicparams, // Input

 &status // Output

);

 }

/* end of Do-While loop - which Encodes frames */

/* Free Input and output buffers */

FreeH264IOBuffers(

 &inobj, // Pointer to Input Buffer Descriptor

&outobj // Pointer to Output Buffer Descriptor);

/* Free assigned resources */

RMAN_freeResources((IALG_Handle)(handle),

 &H264VENC_TI_IRES, /* IRES_Fxns* */

);

/* Delete the encoder Object handle*/

H264VENC_delete(handle);

/* Unregister protocal*/

RMAN_unregister(&IRESMAN_EDMA3CHAN);

RMAN_exit();

Note:

This sample test application does not depict the actual function parameter or
control code. It shows the basic flow of the code.

4-1

Chapter 4

API Reference

This chapter provides a detailed description of the data structures and
interfaces functions used in the codec component.

Topic Page

4.1 Symbolic Constants and Enumerated Data Types 4-2

4.2 Data Structures 4-26

4.3 H.264 Encoder ROI specific Data Structures and Enumerations 4-62

4.4 H264 Encoder Two Pass Encoder data structure 4-65

4.5 H.264 Encoder Low latency specific Data Structures and
Enumerations

4-67

4.6 Interface Functions 4-71

API Reference

4-2

4.1 Symbolic Constants and Enumerated Data Types

This section summarizes all the symbolic constants specified as either
#define macros and/or enumerated C data types. For each symbolic
constant, the semantics or interpretation of the same is also provided.

4.1.1 Common XDM Symbolic Constants and Enumerated Data Types

Table 4-1. List of Enumerated Data Types

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDEO_FrameType IVIDEO_I_FRAME Intra coded frame

IVIDEO_P_FRAME Forward inter coded frame

IVIDEO_B_FRAME Bi-directional inter coded frame.
Not supported in this version of
H.264 Encoder.

IVIDEO_IDR_FRAME Intra coded frame that can be
used for refreshing video content

IVIDEO_II_FRAME Interlaced frame, both fields are I
frames..

IVIDEO_IP_FRAME Interlaced frame, first field is an I
frame, second field is a P frame.

IVIDEO_IB_FRAME Interlaced frame, first field is an I
frame, second field is a B frame.
Not supported in this version of
H.264 Encoder.

IVIDEO_PI_FRAME Interlaced frame, first field is a P
frame, second field is an I frame.
Not supported in this version of
H.264 Encoder.

IVIDEO_PP_FRAME Interlaced frame, both fields are P
frames.

IVIDEO_PB_FRAME Interlaced frame, first field is a P
frame, second field is a B frame.
Not supported in this version of
H.264 Encoder.

IVIDEO_BI_FRAME Interlaced frame, first field is a B
frame, second field is an I frame.
Not supported in this version of
H.264 Encoder.

IVIDEO_BP_FRAME Interlaced frame, first field is a B
frame, second field is a P frame.
Not supported in this version of
H.264 Encoder.

API Reference

4-3

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDEO_BB_FRAME Interlaced frame, both fields are B
frames.
Not supported in this version of
H.264 Encoder.

IVIDEO_MBAFF_I_FRAME Intra coded MBAFF frame.
Not supported in this version of
H.264 Encoder.

IVIDEO_MBAFF_P_FRAME

Forward inter coded MBAFF
frame.
Not supported in this version of
H.264 Encoder.

IVIDEO_MBAFF_B_FRAME Bi-directional inter coded MBAFF
frame.
Not supported in this version of
H.264 Encoder.

IVIDEO_MBAFF_IDR_FRAME Intra coded MBAFF frame that can
be used for refreshing video
content.
Not supported in this version of
H.264 Encoder.

IVIDEO_FRAMETYPE_DEFAULT The default value is set to

IVIDEO_I_FRAME.

IVIDEO_ContentType IVIDEO_CONTENTTYPE_NA

Content type is not applicable.
Encoder assumes

IVIDEO_PROGRESSIVE.

IVIDEO_PROGRESSIVE Progressive video content.
This is the default value.

IVIDEO_INTERLACED Interlaced video content.

IVIDEO_RateControlPreset IVIDEO_NONE No rate control is used

IVIDEO_LOW_DELAY Constant Bit-Rate (CBR) control
for video conferencing.

IVIDEO_STORAGE Variable Bit-Rate (VBR) control for
local storage and recording.
This is the default value.

IVIDEO_USER_DEFINED User defined configuration using
advanced parameters (extended
parameters).

IVIDEO_TWOPASS Two pass rate control for non real
time applications.
Not supported in this version of
H.264 Encoder.

IVIDEO_RATECONTROLPRESET_

DEFAULT

Set to IVIDEO_LOW_DELAY

API Reference

4-4

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDEO_SkipMode IVIDEO_FRAME_ENCODED Input content encoded

IVIDEO_FRAME_SKIPPED Input content skipped, that is, not
encoded

IVIDEO_SKIPMODE_DEFAULT Default value is set to
IVIDEO_FRAME_ENCODE

XDM_DataFormat XDM_BYTE Big endian stream.
This is the default value.

XDM_LE_16 16-bit little endian stream.
Not supported in this version of
H.264 Encoder.

XDM_LE_32 32-bit little endian stream.
Not supported in this version of
H.264 Encoder.

XDM_ChromaFormat XDM_CHROMA_NA

Chroma format not applicable.
Encoder assumes
IH264VENC_YUV_420IUV

XDM_YUV_420P YUV 4:2:0 planar.
Not supported in this version of
H.264 Encoder.

XDM_YUV_422P YUV 4:2:2 planar.
Not supported in this version of
H.264 Encoder.

XDM_YUV_422IBE YUV 4:2:2 interleaved (big
endian).
Not supported in this version of
H.264 Encoder.

XDM_YUV_422ILE YUV 4:2:2 interleaved (little
endian).
Not supported in this version of
H.264 Encoder.

XDM_YUV_444P YUV 4:4:4 planar.
Not supported in this version of
H.264 Encoder.

XDM_YUV_411P YUV 4:1:1 planar.
Not supported in this version of
H.264 Encoder.

XDM_GRAY Gray format.
Not supported in this version of
H.264 Encoder.

XDM_RGB RGB color format.
Not supported in this version of
H.264 Encoder.

API Reference

4-5

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

XDM_YUV_420SP YUV 420 semiplanar (Luma 1st
plane, * CbCr interleaved 2nd
plane)

XDM_ARGB8888 Alpha plane
Not supported in this version of
H.264 Encoder

XDM_RGB555 RGB 555 color format
Not supported in this version of
H.264 Encoder

XDM_RGB565 RGB 556 color format
Not supported in this version of
H.264 Encoder

XDM_YUV_444ILE YUV 4:4:4 interleaved (little
endian)
Not supported in this version of
H.264 Encoder

XDM_CmdId XDM_GETSTATUS Query algorithm instance to fill

Status structure

XDM_SETPARAMS Set run-time dynamic parameters

through the DynamicParams

structure

XDM_RESET Reset the algorithm

XDM_SETDEFAULT Initialize all fields in

DynamicParams structure to

default values specified in the
library

XDM_FLUSH Handle end of stream conditions.
This command forces algorithm
instance to output data without
additional input.
Not supported in this version of
H.264 Encoder.

XDM_GETVERSION Query the algorithm version.

XDM_GETBUFINFO Query algorithm instance
regarding the properties of input
and output buffers.

XDM_EncodingPreset XDM_DEFAULT Default setting of the algorithm
specific creation time parameters.

XDM_HIGH_QUALITY Set algorithm specific creation
time parameters for high quality
(default setting).

XDM_HIGH_SPEED Set algorithm specific creation
time parameters for high speed.

API Reference

4-6

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

XDM_USER_DEFINED User defined configuration using
advanced parameters.

XDM_EncMode XDM_ENCODE_AU Encode entire access unit. This is
the default value.

XDM_GENERATE_HEADER Encode only header.

XDM_ErrorBit XDM_APPLIEDCONCEALMENT Bit 9
 1 – Applied concealment
 0 – Ignore

XDM_INSUFFICIENTDATA Bit 10
 1 – Insufficient data
 0 – Ignore

XDM_CORRUPTEDDATA Bit 11
 1 – Data problem/corruption
 0 – Ignore

XDM_CORRUPTEDHEADER Bit 12
 1 – Header

problem/corruption
 0 – Ignore

XDM_UNSUPPORTEDINPUT Bit 13
 1 – Unsupported

 feature/parameter in
input

 0 – Ignore

XDM_UNSUPPORTEDPARAM Bit 14
 1 – Unsupported input

 parameter or
configuration

 0 – Ignore

XDM_FATALERROR Bit 15
 1 – Fatal error (stop

encoding)
 0 – Recoverable error

Note:

 encodingPreset: When encodingPreset = XDM_USER_DEFINED,

user has to set proper values for encQuality.

 The remaining bits that are not mentioned in XDM_ErrorBit are
interpreted as:

 Bit 16-32: Reserved

 Bit 8: Reserved

 Bit 0-7: Codec and implementation specific

The algorithm can set multiple bits to 1 depending on the error condition.

API Reference

4-7

4.1.2 H264 Encoder Symbolic Constants and Enumerated Data Types

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

IH264VENC_Level

IH264VENC_LEVEL_10 Level 1.0 identifier for H.264 Encoder

IH264VENC_LEVEL_1b Level 1.b identifier for H.264 Encoder

IH264VENC_LEVEL_11 Level 1.1 identifier for H.264 Encoder

IH264VENC_LEVEL_12 Level 1.2 identifier for H.264 Encoder

IH264VENC_LEVEL_13 Level 1.3 identifier for H.264 Encoder

IH264VENC_LEVEL_20 Level 2.0 identifier for H.264 Encoder

IH264VENC_LEVEL_21 Level 2.1 identifier for H.264 Encoder

IH264VENC_LEVEL_22 Level 2.2 identifier for H.264 Encoder

IH264VENC_LEVEL_30 Level 3.0 identifier for H.264 Encoder

IH264VENC_LEVEL_31 Level 3.1 identifier for H.264 Encoder

 IH264VENC_LEVEL_32 Level 3.2 identifier for H.264 Encoder

 IH264VENC_LEVEL_40 Level 4.0 identifier for H.264 Encoder

 IH264VENC_LEVEL_41 Level 4.1 identifier for H.264 Encoder

 IH264VENC_LEVEL_42 Level 4.2 identifier for H.264 Encoder

 IH264VENC_LEVEL_50 Level 5.0 identifier for H.264 Encoder

4.1.3 H264 Encoder Error code Enumerated Data Types

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

API Reference

4-8

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

IH264VENC_STATUS

IH264VENC_ERR_MAXWIDTH maxWidth not supported. “Fatal input

error” is returned in algInit instance

creation stage if maxWidth in the input

params exceeds
H264VENC_TI_MAX_WIDTH

or is less than
H264VENC_TI_MIN_WIDTH

H264VENC_TI_MAX_WIDTH takes

value of
2048 in case of encodingPreset =
XDM_USER_DEFINED and

encQuality = 0/1

OR

4096 in case of encodingPreset =

XDM_HIGH_QUALITY.

OR
2048 in case of encodingPreset =

XDM_HIGH_SPEED

OR

1280 in case of encodingPreset =
XDM_USER_DEFINED and

encQuality = 4.

H264VENC_TI_MIN_WIDTH takes

value of
128 in case of encodingPreset =
XDM_USER_DEFINED and

encQuality = 0/1/4

OR

320 in case of encodingPreset =

XDM_HIGH_QUALITY.

OR
352 in case of encodingPreset =

XDM_HIGH_SPEED

API Reference

4-9

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

 IH264VENC_ERR_MAXHEIGH

T

maxHeight not supported. fatal input

error is returned in algInit instance

creation stage if maxHeight in input

params exceeds
H264VENC_TI_MAX_HEIGHT (2048)

or is less than
H264VENC_TI_MIN_HEIGHT

H264VENC_TI_MAX_HEIGHT takes

value of 2048
 in case of encodingPreset =

XDM_USER_DEFINED and

encQuality = 0/1

OR

4096 in case of encodingPreset =

XDM_HIGH_QUALITY.

OR
2048 in case of encodingPreset =

XDM_HIGH_SPEED.

OR

720 in case of encodingPreset =

XDM_USER_DEFINED and

encQuality = 4

H264VENC_TI_MIN_HEIGHT takes

value of
96 in case of encodingPreset =

XDM_USER_DEFINED and

encQuality = 0/1/4

OR
128 in case of encodingPreset =

XDM_HIGH_QUALITY.

OR

288 in case of encodingPreset =
XDM_HIGH_SPEED.

 IH264VENC_ERR_ENCODING

PRESET

encodingPreset not supported fatal

input error” is returned during
algInit if the encodingPreset

parameter is out of supported range
XDM_DEFAULT (0) to

XDM_USER_DEFINED (3) inclusive .

 IH264VENC_ERR_RATECONT

ROLPRESET

rateControlPreset not supported

fatal input error is returned during
algInit if the rateControlPreset

parameter is out of supported range 0
to IVIDEO_USER_DEFINED (5)

inclusive.

 IH264VENC_ERR_MAXFRAME

RATE

maxFrameRate not supported. “Fatal

input error” is returned during
algInit if maxFrameRate exceeds

max supported value of 120000 or is
less than 0.

API Reference

4-10

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

 IH264VENC_ERR_MAXBITRA

TE

maxBitRate not supported fatal input

error is returned during algInit if

maxBitRate exceed max supported

value of 50000000 or is less than 0.

 IH264VENC_ERR_MAXBITRA

TE_CVBR

maxBitrateCVBR not supported fatal

input error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

maxBitrateCVBR exceed

maxBitRate or is less than 0.

 IH264VENC_ERR_CVBR_SEN

SITIVITY

CVBRsensitivity not supported

fatal input error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

CVBRsensitivity is less than 0 or
greater than 8

 IH264VENC_ERR_CVBR_MAX

_CMPX_INT

maxHighCmpxIntCVBR not

supported fatal input error is returned
in videncStatus.extendedError

during XDM_SETPARAMS control call if

maxHighCmpxIntCVBR is less than 0
or greater than 60

 IH264VENC_ERR_DATAENDI

ANNESS

dataEndianness not supported fatal

input error is returned during algInit

if dataEndianness is not set to

XDM_BYTE.

 IH264VENC_ERR_INPUTCHR

OMAFORMAT

inputChromaFormat not supported

fatal input error is returned during

algInit if inputChromaFormat is

not set to XDM_YUV_420SP or

XDM_CHROMA_NA.

 IH264VENC_ERR_INPUTCON

TENTTYPE

inputContentType not supported

fatal input error is returned during
algInit if inputContentType is

not set to IVIDEO_PROGRESSIVE or
IVIDEO_INTERLACED.

This error is also returned during
algInit if interlaced encoding is

enabled (inputContentType set to

IVIDEO_INTERLACED) for levels less

than 2.1 or more than 4.1.

 IH264VENC_ERR_RECONCHR

OMAFORMAT

reconChromaFormat not supported

fatal input error is returned during
algInit if reconChromaFormat is

not set to XDM_YUV_420SP or

XDM_CHROMA_NA.

API Reference

4-11

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

 IH264VENC_ERR_INPUTWID

TH

inputWidth not supported fatal input

error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

the inputWidth in input dynamic

params exceeds

H264VENC_TI_MAX_WIDTH or if

inputWidth is less than

H264VENC_TI_MIN_WIDTH or not

multiple of 2. Control call returns
IVIDENC1_EFAIL.

H264VENC_TI_MAX_WIDTH takes

value of
2048 in case of encodingPreset =
XDM_USER_DEFINED and

encQuality = 0/1

OR

4096 in case of encodingPreset =

XDM_HIGH_QUALITY.

OR
2048 in case of encodingPreset =

XDM_HIGH_SPEED

OR

1280 in case of encodingPreset =
XDM_USER_DEFINED and

encQuality = 4

H264VENC_TI_MIN_WIDTH takes

value of
128 in case of encodingPreset =
XDM_USER_DEFINED and

encQuality = 0/1/4

OR

320 in case of encodingPreset =

XDM_HIGH_QUALITY.

OR
352 in case of encodingPreset =

XDM_HIGH_SPEED

API Reference

4-12

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

 IH264VENC_ERR_INPUTHEI

GHT

inputHeight not supported fatal

input error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

the inputHeight in input dynamic

params exceeds maxHeight or if

inputHeight is less than

H264VENC_TI_MIN_HEIGHT or not

multiple of 2 for progressive content
and not multiple of 4 for interlaced
content. Control call returns
IVIDENC1_EFAIL.

H264VENC_TI_MAX_HEIGHT takes

value of 2048
 in case of encodingPreset =

XDM_USER_DEFINED and

encQuality = 0/1

OR

4096 in case of encodingPreset =

XDM_HIGH_QUALITY.

OR
2048 in case of encodingPreset =

XDM_HIGH_SPEED.

OR

720 in case of encodingPreset =

XDM_USER_DEFINED and

encQuality = 4

H264VENC_TI_MIN_HEIGHT takes

value of
96 in case of encodingPreset =

XDM_USER_DEFINED and

encQuality = 0/1/4

OR
128 in case of encodingPreset =

XDM_HIGH_QUALITY.

OR

288 in case of encodingPreset =

XDM_HIGH_SPEED.

 IH264VENC_ERR_MAX_MBS_

IN_FRM_LIMIT_EXCEED

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

the number of MBs in a frame exceeds
the maximum limit for resolution of
4096x4096. Control call returns
IVIDENC1_EFAIL

 IH264VENC_ERR_TARGETFR

AMERATE

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

targetFrameRate in dynamic

params exceeds maxFrameRate or is

less than 0 or not a multiple of 500.

Control call returns IVIDENC1_EFAIL.

API Reference

4-13

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

 IH264VENC_ERR_TARGETBI

TRATE

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

targetBitRate in dynamic params

exceeds maxBitRate or less than 0.

Control call returns IVIDENC1_EFAIL.

 IH264VENC_ERR_PROFILEI

DC

profileIdc not supported fatal

input error is returned during algInit

if profileIdc is not 66 (BP) or

77(MP) or 100 (H)

 IH264VENC_ERR_LEVELIDC levelIdc not supported fatal input

error is returned during g algInit if
levelIdc is not as per

IH264VENC_Level range

IH264VENC_LEVEL_1b(9) to

IH264VENC_LEVEL_50(50)

 IH264VENC_ERR_ENTROPYM

ODE_IN_BP

entropyMode not supported, a fatal

input error is returned during algInit

if entropyMode is 1 (CABAC) for

Baseline Profile (profileIdc = 66)

or if the value is out of the supported
range 0 or 1 for Main/High Profile
(profileIdc = 77/100)

 IH264VENC_ERR_TRANSFOR

M8X8FLAGINTRA_IN_BP_MP

transform8x8FlagIntraFrame

not supported, a fatal input error is
returned during algInit if

transform8x8FlagIntraFrame is

enabled for Baseline or Main Profile
(profileIdc = 66 or 77) or if the

value is out of the supported range 0
or 1 for High Profile (profileIdc =

100)

 IH264VENC_ERR_TRANSFOR

M8X8FLAGINTER_IN_BP_MP

transform8x8FlagInterFrame

not supported, a fatal input error is
returned during algInit if

transform8x8FlagInterFrame is

enabled for Baseline or Main Profile
(profileIdc = 66 or 77) or if the

value is out of the supported range 0
or 1 for High Profile (profileIdc =

100)

 IH264VENC_ERR_SEQSCALI

NGFLAG_IN_BP_MP

seqScalingFlag not supported, a

fatal input error is returned during

algInit if seqScalingFlag is

enabled for Baseline or Main Profile
(profileIdc = 66 or 77) or if the value is
out of the supported range from 0:4 for
High Profile (profileIdc = 100)

API Reference

4-14

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

 IH264VENC_ERR_ASPECTRA

TIOX

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

aspectRatioX extended dynamic

parameter is less than 1. Control call

returns IVIDENC1_EFAIL

 IH264VENC_ERR_ASPECTRA

TIOY

This fatal error is returned in

videncStatus.extendedError

during XDM_SETPARAMS control call if

aspectRatioY extended dynamic

parameter is less than 1. Control call
returns IVIDENC1_EFAIL

 IH264VENC_ERR_PIXELRAN

GE

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

pixelRange extended dynamic

parameter is not 0 or 1. Control call
returns IVIDENC1_EFAIL

 IH264VENC_ERR_TIMESCAL

E

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

timeScale is less than 0 or if

timeScale * 1000 exceeds

targetFrameRate.

 IH264VENC_ERR_NUMUNITS

INTICKS

This fatal error is returned in

videncStatus.extendedError

during XDM_SETPARAMS control call if

numUnitsInTicks is less than 0.

 IH264VENC_ERR_ENABLEVU

IPARAMS

enableVUIparams not supported

fatal input error is returned during
algInit if enableVUIparams is

not 0, 1 or 2.

 IH264VENC_ERR_SEQSCALE

MATRIXVALUENOTINRANGE

This fatal error is returned in
videncStatus.extendedError during
XDM_SETPARAMS control call if any
of Sequence Scaling Matrix Values is
not in closed range [9,255] or if input
Sequence Scaling Matrix structure is a
NULL Pointer.

 IH264VENC_ERR_RESETHDV

ICPEVERYFRAME

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

resetHDVICPeveryFrame extended

dynamic parameter is not 0 or 1.
Control call returns IVIDENC1_EFAIL.

API Reference

4-15

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

 IH264VENC_ERR_MEALGO meAlgo not supported fatal input error

is returned during algInit if meAlgo

is not 0 or 1.

 IH264VENC_ERR_UNRESTRI

CTEDMV

unrestrictedMV not supported fatal

input error is returned during algInit

if unrestrictedMV is not 0 or 1.

 IH264VENC_ERR_ENCQUALI

TY

encQuality not supported fatal input

error is returned during algInit if

encQuality is not 0, 1, 2, 3 or 4.

 IH264VENC_ERR_ENABLEAR

M926TCM

enableARM926Tcm not supported

fatal input error is returned during
algInit if enableARM926Tcm is

not 0 or 1. This error is also returned if

enableARM926Tcm is 1 for

maxWidth greater than 1280.

 IH264VENC_ERR_ENABLEDD

RBUFF

mapIMCOPtoDDR not supported fatal

input error is returned during algInit

if mapIMCOPtoDDR is not 0 or 1.

 IH264VENC_ERR_SLICEMOD

E

sliceMode not supported fatal input

error is returned during algInit if

sliceMode is not 0, 1, 2 or 3

 IH264VENC_ERR_OUTPUTDA

TAMODE

oututDataMode not supported fatal

input error is returned during algInit

if outputDataMode is not 0 or 1.

 IH264VENC_ERR_SLICEFOR

MAT

sliceFormat not supported fatal

input error is returned during algInit

if sliceFormat is not 0 or 1.

 IH264VENC_ERR_LEVEL_NO

T_FOUND

This fatal error is returned in
videncStatus.extendedError during

XDM_SETPARAMS control call if

inputWidth, inputHeight,

targetBitRate and

targetFrameRate are not compliant

to Level limits specified in Table A-1 of
ISO/IEC 14496-10. Control call returns

IVIDENC1_EFAIL.

 IH264VENC_ERR_REFFRAME

RATE_MISMATCH

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

refFrameRate and

targetFrameRate mismatch. Control

call returns IVIDENC1_EFAIL.

API Reference

4-16

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

 IH264VENC_ERR_INTRAFRA

MEINTERVAL

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

intraFrameInterval is less than 0.

Control call returns IVIDENC1_EFAIL.

 IH264VENC_ERR_GENERATE

HEADER

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

generateHeader is not 0 or 1.

Control call returns IVIDENC1_EFAIL.

 IH264VENC_ERR_FORCEFRA

ME

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

forceFrame is not

IVIDEO_NA_FRAME or

IVIDEO_I_FRAME or

IVIDEO_IDR_FRAMEE. Control call

returns IVIDENC1_EFAIL.

 IH264VENC_ERR_RCALGO This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

rcAlgo is less than 0 or greater than

6 when rcPreset is

IVIDEO_USER_DEFINED. Control call

returns IVIDENC1_EFAIL.

 IH264VENC_ERR_INTRAFRA

MEQP

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

intraFrameQP is less than 0 or more

than 51. Control call returns

IVIDENC1_EFAIL.

 IH264VENC_ERR_INTERPFR

AMEQP

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

interPFrameQP is less than 0 or

more than 51. Control call returns
IVIDENC1_EFAIL.

 IH264VENC_ERR_RCQMAX This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

rcQMax is less than 0 or more than

51. Control call returns
IVIDENC1_EFAIL.

API Reference

4-17

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

 IH264VENC_ERR_RCQMIN This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

rcQMin is less than 0 or more than

rcQMax. Control call returns

IVIDENC1_EFAIL.

 IH264VENC_ERR_RCIQMAX This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

rcQMaxI is less than 0 or more than

51. Control call returns
IVIDENC1_EFAIL.

 IH264VENC_ERR_RCIQMIN This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

rcQMinI is less than 0 or more than

rcQMaxI. Control call returns

IVIDENC1_EFAIL.

 IH264VENC_ERR_INITQ This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

initQ is less than -1 or more than 51.

Control call returns IVIDENC1_EFAIL.

 IH264VENC_ERR_MAXDELAY This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

maxDelay exceeds 30000. Control

call returns IVIDENC1_EFAIL.

 IH264VENC_ERR_LFDISABL

EIDC

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

lfDisableIdc is less than 0 or more

than 2. Control call returns
IVIDENC1_EFAIL.

 IH264VENC_ERR_ENABLEBU

FSEI

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

enableBufSEI is not 0 or 1. Control

call returns IVIDENC1_EFAIL.

 IH264VENC_ERR_ENABLEPI

CTIMSEI

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

enablePicTimSEI is not 0 or 1.

Control call returns IVIDENC1_EFAIL.

API Reference

4-18

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

 IH264VENC_ERR_SLICESIZ

E

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

sliceSize is not with in range. The

range depends on the value of
sliceMode. Control call returns

IVIDENC1_EFAIL.

See the note at end of section 4.2.2.2
for more details on range and
interpretation of sliceSize.

 IH264VENC_ERR_INTRASLI

CENUM

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

intraSliceNum is less than 0.

Control call returns IVIDENC1_EFAIL.

 IH264VENC_ERR_AIRRATE This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

airRate is less than of 0. Control call

returns IVIDENC1_EFAIL.

 IH264VENC_ERR_MEMULTIP

ART

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

meMultiPart is not 0 or 1. Control

call returns IVIDENC1_EFAIL.

 IH264VENC_ERR_INTRATHR

QF

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

intraThrQF is less than 0 or more

than 5. Control call returns
IVIDENC1_EFAIL.

 IH264VENC_ERR_PERCEPTU

ALRC

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

perceptualRC is not 0 or 1. Control

call returns IVIDENC1_EFAIL.

 IH264VENC_ERR_IDRFRAME

INTERVAL

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

idrFrameInterval is less than 0.

Control call returns IVIDENC1_EFAIL.

 IH264VENC_ERR_MVSADOUT

FLAG

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

mvSADoutFlag is not 0 or 1. Control

call returns IVIDENC1_EFAIL

API Reference

4-19

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

 IH264VENC_ERR_ENABLERO

I

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

enableROI is not 0 or 1. Control call

returns IVIDENC1_EFAIL

 IH264VENC_ERR_ENABLEGD

R

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

enableGDRis not 0, 1 or 2

 IH264VENC_ERR_GDRINTER

VAL

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

GDRinterval is less than 0

 IH264VENC_ERR_GDRDURAT

ION

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

GDRduration is less than 0 or greater

than GDRinterval.

 IH264VENC_ERR_ENABLELO

NGTERMFRAME

EnableLongTermFrame not

supported fatal input error is returned

during algInit if

EnableLongTermFrame is not 0 or

1.

 IH264VENC_ERR_LONGTERM

DURATION

This fatal error is returned in

videncStatus.extendedError

during XDM_SETPARAMS control call if
LongTermRefreshInterval

extended dynamic parameter is less
than 0. Control call returns
IVIDENC1_EFAIL

 IH264VENC_ERR_USELONGT

ERMFRAME

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

UseLongTermFrame extended

dynamic parameter is not 0 or 1.

Control call returns IVIDENC1_EFAIL

 IH264VENC_ERR_SETLONGT

ERMFRAME

This fatal error is returned in

videncStatus.extendedError

during XDM_SETPARAMS control call if

SetLongTermFrame extended

dynamic parameter is not 0 or 1.

Control call returns IVIDENC1_EFAIL

 IH264VENC_ERR_NUMTEMPO

RALLAYERS

numTemporalLayers not supported

fatal input error is returned during
algInit if numTemporalLayers is

not 0, 1, 2, 3 or 255.

API Reference

4-20

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

 IH264VENC_ERR_SVCSYNTA

XENABLE

svcSyntaxEnable not supported

fatal input error is returned during

algInit if svcSyntaxEnable is

not 0, 1, 2 or 3.

 IH264VENC_ERR_MAXPICSI

ZE

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

LBRmaxpicsize is less than 0.

Control call returns
IVIDENC1_EFAIL.

 IH264VENC_ERR_MINPICSI

ZE

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

LBRminpicsize is less than 0.

Control call returns
IVIDENC1_EFAIL.

 IH264VENC_ERR_SKIPINTE

RVAL

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

LBRskipcontrol is less than or

equal to 0. or skip window length is
greater than 10 or minimum number of
encoded frames in a set is greater than
the set. Control call returns
IVIDENC1_EFAIL.

 IH264VENC_ERR_PUTDATAG

ETSPACEFUNC

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

putDataGetSpaceFxn is set to 0 .

Control call returns VIDENC1_EFAIL.

 IH264VENC_ERR_INTERLAC

E_REF_MODE

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

interlaceRefMode is less than 0

or greater than 2 . Control call returns
VIDENC1_EFAIL.

 IH264VENC_ERR_METADATA

FLAG

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

metaDataGenerateConsume is

not set between 0 and 3. Control call

returns IVIDENC1_EFAIL.

 IH264VENC_ERR_MAXINTER

FRAMEINTERVAL

This fatal unsupported param error is

returned in algInit instance creation

if maxInterFrameInterval not 0 or

1.

API Reference

4-21

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

 IH264VENC_ERR_CAPTUREW

IDTH

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

captureWidth is not 0 and less than

inputWidth. Control call returns

IVIDENC1_EFAIL.

 IH264VENC_ERR_INTERFRA

MEINTERVAL

This fatal error is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

interFrameInterval is not 0 or 1.

Control call returns
IVIDENC1_EFAIL..

 IH264VENC_ERR_MBDATAFL

AG

This warning is returned in
videncStatus.extendedError

during XDM_SETPARAMS control call if

mbDataFlag is not set to 0. Control

call returns IVIDENC1_EFAIL.

 IH264VENC_ERR_IVIDENC1

_DYNAMICPARAMS_SIZE_IN

_CORRECT

This fatal error is returned in
videncStatus.extendedError

during a control call if dynamic param
size is not
IVIDENC1_DynamicParams or

IH264VENC_DynamicParams.

Control call returns IVIDENC1_EFAIL.

 IH264VENC_ERR_IVIDENC1

_PRO CESS_ARGS_NULL

This fatal error is returned in process
call if any of input handle or inBufs or

inArgs or outBufs are NULL.

 IH264VENC_ERR_IVIDENC1

_INARGS_SIZE

This fatal error is returned in
outArgs->extendedError if

inargs size in process call is not set

to IVIDENC1_InArgs or

IH264VENC_InArgs. This error is

returned provided OutArgs size is set

correctly. Process call returns
IVIDENC1_EFAIL.

 IH264VENC_ERR_IVIDENC1

_OUTARGS_SIZE

This fatal error can be retrieved from a
XDM_GETSTATUS control call if

outArgs size in process call was not

set to IVIDENC1_OutArgs or

IH264VENC_OutArgs. Process call

returns IVIDENC1_EFAIL.

 IH264VENC_ERR_IVIDENC1

_INARGS_INPUTID

This fatal error is returned in
outArgs->extendedError if

inputID in inArgs of process call is

0. Process call returns
IVIDENC1_EFAIL.

API Reference

4-22

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

 IH264VENC_ERR_IVIDENC1

_INARGS_TOPFIELDFIRSTF

LAG

This fatal error is retruned in
outArgs->extendedError if

topFieldFirstFlag in inArgs is

not set correctly to 0 or 1 for interlace
content. Process call returns
IVIDENC1_EFAIL.

 IH264VENC_ERR_IVIDENC1

_INBUFS

This fatal error is returned in
outArgs->extendedError if

inBufs is null or if numBufs in

inBufs is not set to 2 or if

frameWidth and frameHeight in

inBufs are not equal to inputWidth

and inputHeight of

XDM_SETPARAMS control call. Process

call returns IVIDENC1_EFAIL.

 IH264VENC_ERR_IVIDENC1

_INBUFS_BUFDESC

This fatal error is returned in
outArgs->extendedError if buffer

descriptors in inBufs are either NULL

or if their sizes are less than the frame
size. Process call returns
IVIDENC1_EFAIL.

 IH264VENC_ERR_IVIDENC1

_OUTBUFS

This fatal error is returned in
outArgs->extendedError if

outBufs is NULL or if numBufs in

outBufs is less than 1, Process call

returns IVIDENC1_EFAIL.

 IH264VENC_ERR_IVIDENC1

_OUTBUFS_NULL

This fatal error is returned in
outArgs->extendedError if bufs

or bufSizes of outBufs is NULL,

Process call returns
IVIDENC1_EFAIL.

 IH264VENC_ERR_IVIDENC1

_INVALID_NUM_OUTDATA_U

NIT

This fatal error is returned in

outArgs->extendedError if

numOutputDataUnits is not valid. Valid
values are 1 to
IH264VENC_TI_MAXNUMBLOCKS.
Process call returns

IVIDENC1_EFAIL.

 IH264VENC_ERR_INTERLAC

E_IN_BP

This fatal error is returned during

algInit() instance creation stage if

application tries to encode interlaced
content in Baseline Profile mode.

 IH264VENC_ERR_INSERTUS

ERDATA

This fatal error is returned in
outArgs->extendedError if

insertUserData in extended

inArgs is not 0 or 1, Process call

returns IVIDENC1_EFAIL.

API Reference

4-23

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

 IH264VENC_ERR_LENGTHUS

ERDATA

This fatal error is returned in
outArgs->extendedError if

lengthUserData in extended

inArgs is less than 0. Process call

returns IVIDENC1_EFAIL.

 IH264VENC_ERR_ROIPARAM This fatal error is returned in
outArgs->extendedError if ROI

parameters in extended inArgs

are not set correctly. Process call
returns IVIDENC1_EFAIL.

 IH264VENC_ERR_PROCESS_

CALL

This fatal error is returned in
outArgs->extendedError if

process call encounters a fatal error
during execution. Process call returns

IVIDENC1_EFAIL.

 IH264VENC_ERR_HANDLE_N

ULL

This fatal error is returned when input

handle is NULL. If the handle is NULL

in algFree or algInit call this error

is returned to call function. If the

handle is NULL in a control call this

error is returned in sStatus-
>videncStatus.extendedError

and control call returns

IVIDENC1_EFAIL. If the handle is

NULL in a process call this error is

returned in outArgs-

>extendedError and process call

returns IVIDENC1_EFAIL.

 IH264VENC_ERR_INCORREC

T_HANDLE

This fatal error is returned when
incorrect codec handle is passed to
code API. If the handle is incorrectly
passed in algFree or algInit call

this error is returned to callee function.
If the handle is incorrectly passed in a
control call this error is returned in
sStatus-

>videncStatus.extendedError

and control call returns
IVIDENC1_EFAIL. If the handle is

incorrectly passed in a process call this
error is returned in outArgs-

>extendedError and process call

returns IVIDENC1_EFAIL.

 IH264VENC_ERR_MEMTAB_N

ULL

This fatal error is returned when
memtabs passed to algInit or

algFree are NULL or not aligned to

32bit word boundary.

API Reference

4-24

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

 IH264VENC_ERR_IVIDENC1

_INITPARAMS_SIZE

This fatal error is returned when size of
algParams passed to algInit is not

set to size of IVIDENC1_Params or

size of IH264VENC_Params.

 IH264VENC_ERR_MEMTABS_

BASE_NULL

This fatal error is returned when base

pointer of memTabs passed to

algInit are NULL.

 IH264VENC_ERR_MEMTABS_

BASE_NOT_ALIGNED

This fatal error is returned when base

pointer of memTabs passed to

algInit are not aligned as per the

requested alignment specified in

algAlloc.

 IH264VENC_ERR_MEMTABS_

SIZE

This fatal error is returned when size

of memTabs passed to algInit are

less than the requested size specified
in algAlloc.

 IH264VENC_ERR_MEMTABS_

ATTRS

This fatal error is returned when
attrs of memTabs passed to

algInit are not as per the requested

attrs specified in algAlloc.

 IH264VENC_ERR_MEMTABS_

SPACE

This fatal error is returned when
space of memTabs passed to

algInit are not as per the requested

space specified in algAlloc.

 IH264VENC_ERR_MEMTABS_

OVERLAP

This fatal error is returned any two

memTabs passed to algInit are

overlapping in memory.

 IH264VENC_ERR_CODEC_IN

ACTIVE

This fatal error is returned when codec
process call or control call is made
without activating it. If a control call is
made without aprior algActivate

this error is returned in sStatus-
>videncStatus.extendedError

and control call returns
IVIDENC1_EFAIL. If a process call is

made without aprior algActivate

this error is returned in outArgs-

>extendedError and process call

returns IVIDENC1_EFAIL

API Reference

4-25

Group or Enumeration
Class

Symbolic Constant Name Description or Evaluation

 IH264VENC_WARN_LEVELID

C

This warning is returned in
videncStatus.extendedError in

XDM_GETSTATUS control call after

instance creation if leveldc during

instance creation is not set to valid
level enumerations range from
IH264VENC_LEVEL_1b to

IH264VENC_LEVEL_50. Encoder

would continue assuming levelIdc

as IH264VENC_LEVEL_50.

 IH264VENC_WARN_RATECON

TROLPRESET

This warning is returned in
videncStatus.extendedError in

XDM_GETSTATUS control call after

instance creation if rcPreset is

neither of IVIDEO_NONE or

IVIDEO_LOW_DELAY or

IVIDEO_STORAGE. Encoder would

continue by assuming rcPreset is

IVIDEO_LOW_DELAY.

 IH264VENC_ERR_STATUS_B

UF

This warning is returned in
videncStatus.extendedError

during XDM_GETVERSION control call

if videncStatus.data.buf is

NULL or if

videncStatus.data.bufSize is

insufficient to copy the library version
string. The control call returns
IVIDENC1_EFAIL.

API Reference

4-26

4.2 Data Structures

This section describes the XDM defined data structures that are common
across codec classes. These XDM data structures can be extended to
define any implementation specific parameters for a codec component.

4.2.1 Common XDM Data Structures

This section includes the following common XDM data structures:

 XDM_BufDesc

 XDM1_BufDesc

 XDM_SingleBufDesc

 XDM1_SingleBufDesc

 XDM_AlgBufInfo

 IVIDEO_BufDesc

 IVIDEO1_BufDescIn

 IVIDENC1_Fxns

 IVIDENC1_Params

 IVIDENC1_DynamicParams

 IVIDENC1_InArgs

 IVIDENC1_Status

 IVIDENC1_OutArgs

API Reference

4-27

4.2.1.1 XDM_BufDesc

║ Description

This structure defines the buffer descriptor for input and output buffers.
║ Fields

Field Data type Input/
Output

Description

**bufs XDAS_Int8 Input Pointer to the vector containing buffer addresses

numBufs XDAS_Int32 Input Number of buffers

*bufSizes XDAS_Int32 Input Size of each buffer in bytes

4.2.1.2 XDM_AlgBufInfo

║ Description

This structure defines the buffer information descriptor for input and output

buffers. This structure is filled when you invoke the control() function

with the XDM_GETBUFINFO command.

║ Fields

Field Data type Input/
Output

Description

minNumInBufs XDAS_Int32 Output Number of input buffers

minNumOutBufs XDAS_Int32 Output Number of output buffers

minInBufSize[XDM_MAX

_IO_BUFFERS]

XDAS_Int32 Output Size in bytes required for each input buffer

minOutBufSize[XDM_MA

X_IO_BUFFERS]

XDAS_Int32 Output Size in bytes required for each output buffer

Note:

For H.264 Base/Main/High Profile Encoder, the buffer details are:

 Number of input buffer required is 2 for YUV 420P with chroma
interleaved.

 Number of output buffer required is 1.

 The input buffer sizes (in bytes) for 2048x2048 resolution are:

 For YUV 420P:
 Y buffer = 2048 * 2048
 UV buffer = 2048 * 1024

The above input buffer size calculation is done assuming that the
capture width is same as input width. For details on capture width, see

API Reference

4-28

Section 4.2.1.10.

For interlaced sequence, encoder ignores the input field buffers if they
are stored in interleaved or non-interleaved format. But, it expects the
start pointer of top or bottom field be given to it during the process call
of the top or bottom fields, respectively. The pitch to move to the next
line of the field is conveyed using captureWidth of DynamicParams.

 There is no restriction on output buffer size except that it should be
enough to store one frame of encoded data.The output buffer size

returned by the XDM_GETBUFINFO command assumes that the worst

case output buffer size is (frameHeight*frameWidth)/2.

 In case of STP, low resolution needs an extra output buffer to pass
metadata information from codec to application. High resolution
needs an extra input buffer to pass metadata information from
application to codec. The metadata is copied from output buffer of
low resolution encoder to the input buffer of high resolution encoder.

These are the maximum buffer sizes, but you can reconfigure
depending on the format of the bit-stream.

4.2.1.3 XDM1_BufDesc

║ Description

This structure defines the buffer descriptor for input and output buffers in
XDM 1.0 IVIDENC1.

║ Fields

Field Data type Input/
Output

Description

numBufs XDAS_Int32 Input Number of buffers

descs[XDM_MAX_I

O_BUFFERS]

XDM1_Singl

eBufDesc

Input Array of buffer descriptors.

4.2.1.4 XDM_SingleBufDesc

║ Description

This structure defines the single buffer descriptor for input and output
buffers in XDM 1.0 IVIDENC1.

║ Fields

Field Data type Input/
Output

Description

*buf XDAS_Int8 Input Pointer to a buffer address

bufSize XDAS_Int32 Input Size of the buffer in bytes

API Reference

4-29

4.2.1.5 XDM1_SingleBufDesc

║ Description

This structure defines the single buffer descriptor for input and output
buffers in XDM 1.0 IVIDENC1.

║ Fields

Field Data type Input/
Output

Description

*buf XDAS_Int8 Input Pointer to a buffer address

bufSize XDAS_Int32 Input Size of buffer in bytes

accessMask XDAS_Int32 Input If the buffer was not accessed by the algorithm
processor (for example, it was filled through
DMA or other hardware accelerator that does
not write through the algorithm CPU), then bits
in this mask should not be set.
Note: This feature is not supported in this

version of H264 Encoder.

4.2.1.6 IVIDEO_BufDesc

║ Description

This structure defines the buffer descriptor for input and output buffers.
║ Fields

Field Data type Input/
Output

Description

numBufs XDAS_Int32 Input Number of buffers

width XDAS_Int32 Input Padded width of the video data

*bufs[XDM_MAX_IO_BUF

FERS]

XDAS_Int8 Input Pointer to the vector containing buffer
addresses

bufSizes[XDM_MAX_IO_

BUFFERS]

XDAS_Int32 Input Size of each buffer in bytes

numBufs XDAS_Int32 Input Number of buffers

API Reference

4-30

4.2.1.7 IVIDEO1_BufDescIn

║ Description

This structure defines the buffer descriptor for input video buffers.
║ Fields

Field Data type Input/
Output

Description

numBufs XDAS_Int32 Input Number of buffers in bufDesc[]

frameWidth XDAS_Int32 Input Width of the video frame.

Note: It will be same as inputWidth for

width multiple of 16. For inputWidth non-

multiple of 16, application will set this field to
next multiple of 16.

frameHeight XDAS_Int32 Input Height of the video frame.

Note:
Progressive: It will be same as

inputHeight for height multiple of 16.For

inputHeight non-multiple of 16,

application will set this field to next multiple
of 16.

Interlaced: It will be same as

inputHeight for height multiple of 32.For

inputHeight non-multiple of 32,

application will set this field to next multiple
of 32.

framePitch XDAS_Int32 Input Frame pitch used to store the frame.
The encoder does not use this field.

bufDesc[XDM_MAX_IO_B

UFFERS]

XDM1_Singl

eBufDesc

Input Picture buffers

4.2.1.8 IVIDENC1_Fxns

║ Description

This structure contains pointers to all the XDAIS and XDM interface
functions.

║ Fields

Field Data type Input/
Output

Description

ialg IALG_Fxns Input Structure containing pointers to all the XDAIS
interface functions.

API Reference

4-31

Field Data type Input/
Output

Description

For more details, see TMS320 DSP Algorithm
Standard API Reference (literature number
SPRU360).

*process XDAS_Int32 Input Pointer to the process() function.

*control XDAS_Int32 Input Pointer to the control() function.

4.2.1.9 IVIDENC1_Params

║ Description

This structure defines the creation parameters for an algorithm instance

object. Set this data structure to NULL, if you are not sure of the values to

be specified for these parameters.
║ Fields

Field Data type Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used)
data structure in bytes.

Default size is size of IH264VENC_PARAMS

structure.

encodingPreset XDAS_Int32 Input Encoding preset. See

XDM_EncodingPreset enumeration for

details..

Default value = XDM_USER_DEFINED.

rateControlPreset XDAS_Int32 Input Rate control preset. See
IVIDEO_RateControlPreset

enumeration for details.

Default value = IVIDEO_STORAGE.

maxHeight XDAS_Int32 Input Maximum video height to be supported in
pixels.
Default value = 1088

maxWidth XDAS_Int32 Input Maximum video width to be supported in
pixels.
Default value = 1920.

maxFrameRate XDAS_Int32 Input Maximum frame rate in fps * 1000 to be
supported.
Default value = 120000.

maxBitRate XDAS_Int32 Input Maximum bit-rate to be supported in bits per
second.
Default value = 50000000.

API Reference

4-32

Field Data type Input/
Output

Description

dataEndianness XDAS_Int32 Input Endianness of input data. See

XDM_DataFormat enumeration for details.

Default value = XDM_BYTE.

maxInterFrameInterv

al

XDAS_Int32 Input Distance from I-frame to P-frame:
 1 - If no B-frames
 2 - To insert one B-frame
This parameter is not supported as B-frames
are not supported. Set value = 1

inputChromaFormat XDAS_Int32 Input Input chroma format. See

XDM_ChromaFormat and

IH264VENC_ChromaFormat enumeration

for details.

Set value as = XDM_YUV_420SP. Other

values are not supported.

inputContentType XDAS_Int32 Input Input content type. See

IVIDEO_ContentType enumeration for

details.

Default value = IVIDEO_PROGRESSIVE.

reconChromaFormat XDAS_Int32 Input Chroma formats for the reconstruction
buffers.

Set value as = XDM_YUV_420SP. Other

values are not supported.

Note:

In case of encodingPreset = XDM_HIGH_QUALITY, encoder supports

encoding upto 4096x4096 resolution (MegaPixel). To enable Mega Pixel

encoding, maxWidth should be given more than 2048 pixels. If

Megapixel encoding is enabled SVC-T is disable internally.

In case of encodingPreset =0 or encodingPreset =

XDM_HIGH_SPPED, encoder support encoding upto 2048x2048

resolution.

In case of encodingPreset XDM_USER_DEFINED and

encQuality = 4, encoder support encoding upto 1280x720 resolution.

With Width multiple of 64 pixels.

For the supported maxBitRate values, see Annex A in ISO/IEC 14496-

10.

The following fields of IVIDENC1_Params data structure are level

dependent:

 maxHeight

 maxWidth

 maxFrameRate

 maxBitRate

API Reference

4-33

To check the values supported for maxHeight and maxWidth use the

following expression:

maxFrameSizeinMbs >= (maxHeight*maxWidth) / 256;

See Table A.1 – Level Limits in ISO/IEC 14496-10 for the supported

maxFrameSizeinMbs values.

For example, consider you have to check if the following values are
supported for level 2.0:

 maxHeight = 480

 maxWidth = 720

The supported maxFrameSizeinMbs value for level 2.0 as per Table A.1

– Level Limits is 396.

Compute the expression as:

maxFrameSizeinMbs >= (480*720) / 256

The value of maxFrameSizeinMbs is 1350 and hence the condition is

not true. Therefore, the above values of maxHeight and maxWidth are

not supported for level 2.0.

The maximum value for maxFrameRate and maxBitRate is 120

(120000) and 50000000 respectively.

Use the following expression to check the supported maxFrameRate

values for each level:

maxFrameRate <= maxMbsPerSecond / FrameSizeinMbs;

See Table A.1 – Level Limits in ISO/IEC 14496-10 for the supported

values of maxMbsPerSecond.

Use the following expression to calculate FrameSizeinMbs:

FrameSizeinMbs = (inputWidth * inputHeight) / 256;

See Table A.1 – Level Limits in ISO/IEC 14496-10 for the supported
values of Max Video bit-rate.

During creation time, these values are checked against the maximum
values defined for the encoder. If the specified values exceed or do not
match the limit supported by encoder, the encoder continues to encode
with the next higher supported level. Since the actual height and width
are specified later using control operation with dynamic parameters, the
level based checking is done during the control operation.

API Reference

4-34

4.2.1.10 IVIDENC1_DynamicParams

║ Description

This structure defines the run-time parameters for an algorithm instance

object. Set this data structure to NULL, if you are not sure of the values to

be specified for these parameters.
║ Fields

Field Data type Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes.
Default value is size of

IVIDENC1_DynamicParams structure.

inputHeight XDAS_Int32 Input Height of input frame in pixels. Input height can
be changed before start of encoding within the
limits of maximum height set in creation phase.

inputHeight must be multiple of two.
Minimum height supported is 128. Irrespective of
interlaced or progressive content, input height
should be given as frame height. For any height
lesser than 128 and greater than 96, you can use
version 1.1, backward compatible mode See
section 1.5 for details

Note:

Progressive: When the input height is a non-

multiple of 16, the encoder expects the
application to pad the input frame to the nearest
multiple of 16 at the bottom of the frame. In this
case, the application should set input height to
actual height but should provide the padded input
YUV data buffer to encoder. The encoder then
sets the difference of the actual height and
padded height as crop information in the bit-
stream.

Interlaced: When the input height is a non-

multiple of 32, the encoder expects the
application to pad the input frame to the nearest
multiple of 32 at the bottom of the frame. In this
case, the application should set input height to
actual height but should provide the padded input
YUV data buffer to encoder. The encoder then
sets the difference of the actual height and
padded height as crop information in the bit-
stream.

Default value = 576.

API Reference

4-35

Field Data type Input/
Output

Description

inputWidth XDAS_Int32 Input Width of input frame in pixels. Input width can be
changed before the start of encoding within the
limits of maximum width set in creation phase.

inputWidth must be multiples of two.

Minimum width supported by encoder is 320.
For any width lesser than 320 and greater than
128, you can use version 1.1, backward
compatible mode. See section 1.5 for details.

Note: When the input width is a non-multiple of

16, the encoder expects the application to pad
the input frame to the nearest multiple of 16 to
the right of the frame. In this case, application

should set inputWidth to actual width but

should provide the padded input YUV data buffer
to encoder. The encoder then sets the difference
of the actual width and padded width as crop
information in the bit-stream.

Default value = 720

refFrameRate XDAS_Int32 Input Reference or input frame rate in fps * 1000. For
example, if the frame rate is 30, set this field to
30000.
This parameter is not supported, should be set

equal to targetFrameRate.

Default value = 25000

targetFrameRate XDAS_Int32 Input Target frame rate in fps * 1000. For example, if
the frame rate is 30, set this field to 30000.
Default value = 25000. Frame rate should be in
multiple of 0.5 fps.
Default value = 25000

targetBitRate XDAS_Int32 Input Target bit-rate in bits per second. For example, if
the bit-rate is 2 Mbps, set this field to 2000000.
Default value = 10000000.

intraFrameInter

val

XDAS_Int32 Input Interval between two consecutive intra frames.
 0: First frame will be intra coded
 1: No inter frames, all intra frames
 2: Consecutive IPIPIP
 3: 1PPIPPIPP or IPBIPBIPB, and so on
Default value = 30

generateHeader XDAS_Int32 Input Encode entire access unit or only header. See
XDM_EncMode enumeration for details.

Default value = XDM_ENCODE_AU.

API Reference

4-36

Field Data type Input/
Output

Description

captureWidth XDAS_Int32 Input Capture width parameter enables the application
to provide input buffers with different line width
(pitch) alignment than input width.

For progressive content, if the parameter is set
to:
 0 - Encoded input width is used as pitch.
 >= encoded input width - capture width is

used as pitch.

For interlaced content, captureWidth should

be equal to the pitch/stride value needed to move
to the next row of pixel in the same field.

Default value = 0

forceFrame XDAS_Int32 Input Force the current (immediate) frame to be
encoded as a specific frame type.

Only the following values are supported:

 IVIDEO_NA_FRAME - No forcing of any

specific frame type for the frame.

 IVIDEO_I_FRAME - Force the frame to be

encoded as I frame.

 IVIDEO_IDR_FRAME - Force the frame to

be encoded as an IDR frame.

Default value = IVIDEO_NA_FRAME.

interFrameInter

val

XDAS_Int32 Input Number of B frames between two reference
frames; that is, the number of B frames between
two P frames or I/P frames.
This parameter is not supported. It should be set
to 0.

mbDataFlag XDAS_Int32 Input Flag to indicate that the algorithm should use MB

data supplied in additional buffer within inBufs.

This parameter is not supported. It should be set
to 0.

Note:

The following are the limitations on the parameters of

IVIDENC1_DynamicParams data structure:

 inputHeight <= maxHeight

 inputWidth <= maxWidth

 refFrameRate <= maxFrameRate

 targetFrameRate <= maxFrameRate

 targetFrameRate should be multiple of 500

 The value of the refFrameRate and targetFrameRate

should be the same

API Reference

4-37

 APIs refFrameRate and targetFrameRate were initially

maintained (XDM API perspective) to enable frame rate
conversion by codec. For example, you could set

refFrameRate = 30000 and targetFrameRate = 24000. This

implies that the encoder will get input @ 30frames per sec and
will convert frame rate from 30 to 24 while encoding. Hence, the
encoded bit-stream will have only 24 frames of data per sec.

 DM365/DM368 implementation of refFrameRate and

targetFrameRate: This feature is not supported in

DM365/DM368. Hence, we make refFrameRate =

targetFrameRate. For example:

Capturing at 15 fps and required bitrate is 768kbps, set

refFrameRate = targetFrameRate = 15000 and

targetBitrate = 768000

Capturing at 30fps and required bitrate is 1mbps, set

refFrameRate = targetFrameRate = 30000 and

targetBitrate = 1000000

Capturing at 30fps to encode at 15fps with bitrate of 768kbps,
Convert frame rate from 30 to 15 in application and then set

refFrameRate = targetFrameRate = 15000 and

targetBitrate = 768000

 targetBitRate <= maxBitRate

 The inputHeight and inputWidth must be multiples of two.

 The inputHeight, inputWidth, and targetFrameRate

should adhere to the standard defined level limits. For an
incorrect level, the encoder tries to match the best level for the
parameters provided. However, if it exceeds level 5.0, an error is
reported. As per the requirement, level limit can be violated for

targetBitRate.

 When inputHeight/inputWidth are non-multiples of 16,

encoder expects the application to pad the input frame to the
nearest multiple of 16 at the bottom/right of the frame. In this
case, application sets the inputHeight/inputWidth to the

actual height/actual width; however, it should provide

the padded input YUV data buffer to the encoder.

 When inputWidth is non-multiple of 16, the encoder expects

capture width as padded width(nearest multiple of 16). If the
capture width is 0, then the capture width is assumed to be the
padded width. In all other cases, the capture width provided
through input parameter is used for input frame processing.

 For out of bound and invalid parameters, encoder returns with
fatal error.

 intraFrameInterval is used to signal the I frame interval in

H.264. There is one more field in extended dynamic params

called idrFrameInterval, which specifies the IDR frame

interval for H.264. With each IDR frame, SPS and PPS is sent.
The first frame of the sequence is always an IDR frame

API Reference

4-38

4.2.1.11 IVIDENC1_InArgs

║ Description

This structure defines the run-time input arguments for an algorithm
instance object.

║ Fields

Field Data type Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes.

inputID XDAS_Int32 Input Identifier to attach with the corresponding
encoded bit stream frames.
This is useful when frames require buffering (for
example, B frames), and to support buffer
management. When there is no re-ordering,

IVIDENC1_OutArgs::outputID will be the

same as this inputID field.

Zero (0) is not a supported inputID. This value

is reserved for cases when there is no output
buffer provided.

topFieldFirstFlag XDAS_Int32 Input Flag to indicate the field order in interlaced
content.

Valid values are XDAS_TRUE and XDAS_FALSE.

This field is only applicable to the input image
buffer. This field is only applicable for interlaced
content and not progressive. Currently, supported

value is XDAS_TRUE.

API Reference

4-39

4.2.1.12 IVIDENC1_Status

║ Description

This structure defines parameters that describe the status of an algorithm
instance object.

║ Fields

Field Data type Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used)
data structure in bytes.

extendedError XDAS_Int32 Output Extended error code. See XDM_ErrorBit

enumeration for details.

data XDM1_SingleBuf

Desc

Input/Out
put

Buffer descriptor for data passing

bufInfo XDM_AlgBufInfo Output Input and output buffer information. See

XDM_AlgBufInfo data structure for

details.

4.2.1.13 IVIDENC1_OutArgs

║ Description

This structure defines the run-time output arguments for an algorithm
instance object.

║ Fields

Field Data type Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used)
data structure in bytes.

extendedError XDAS_Int32 Output Extended error code. See XDM_ErrorBit

enumeration for details.

bytesGenerated XDAS_Int32 Output The number of bytes generated.

encodedFrameType XDAS_Int32 Output Frame types for video. See

IVIDEO_FrameType enumeration for details.

Following values are only supported
 IVIDEO_I_FRAME

 IVIDEO_IDR_FRAME

 IVIDEO_P_FRAME

 IVIDEO_II_FRAME

 IVIDEO_PP_FRAME

inputFrameSkip XDAS_Int32 Output Frame skipping modes for video. See

IVIDEO_SkipMode enumeration for details.

API Reference

4-40

Field Data type Input/
Output

Description

outputID XDAS_Int32 Output Output ID corresponding to the encoder buffer.
This can also be used to free the corresponding
image buffer for further use by the client
application code.

In this encoder, outputID is set to

IVIDENC1_InArgs::inputID.

encodedBuf XDM1_SingleBuf

Desc

Output The encoder fills the buffer with the encoded bit-
stream. In case of sequences with only I and P

frames, these values are identical to outBufs

passed in IVIDENC1_Fxns::process()

The encodedBuf.bufSize field returned

corresponds to the actual valid bytes available in
the buffer.
The bit-stream is in encoded order.

The outputId and encodedBuf together

provide information related to the corresponding
encoded image buffer.

reconBufs IVIDEO1_BufDes

c

Output Pointer to reconstruction buffer descriptor.

API Reference

4-41

4.2.2 H.264 Encoder Data Structures

This section includes the following H.264 Encoder specific extended data
structures:

 IH264VENC_Params

 IH264VENC_DynamicParams

 IH264VENC_InArgs

 IH264VENC_Status

 IH264VENC_OutArgs

 IH264VENC_Fxns

4.2.2.1 IH264VENC_Params

║ Description

This structure defines the creation parameters and any other
implementation specific parameters for a H.264 Encoder instance object.
The creation parameters are defined in the XDM data structure,

IVIDENC1_Params.

║ Fields

Field Data type Input/
Output

Description

videncParams IVIDENC1_Params Input See IVIDENC1_Params data structure for

details.

The size parameter in videncParams is

set to size of IH264VENC_Params

structure by default while using extended
parameters.

profileIdc XDAS_Int32 Input Profile identification for the encoder.
The current version supports High Profile.
The value must be set to 66(Base line
profile), 77(main profile), 100(high profile).
Default value = 100.

levelIdc XDAS_Int32 Input Level identification for the encoder. See

IH264VENC_Level enumeration for

details.

Default value = IH264VENC_LEVEL_40.

meAlgo XDAS_Int32 Input 0- Normal Search,
1- Improved Video quality at low bit rate.
This feature is supported when
encodingPreset =

XDM_HIGH_QUALITY

API Reference

4-42

Field Data type Input/
Output

Description

enableVUIparams XDAS_Int32 Input Flag for Enable VUI Parameters

 Bit 0: Controls VUI params insertion in

SPS. If 0 -> VUI is not inserted in SPS,
1-> VUI is inserted in SPS. The VUI
message is generated internally by the
codec based on RC and some other API
parameters

 Bit 1: Controls IDR frame insertion in
case of RC parameter change, If 0 ->
IDR is inserted with change in RC
parameters, 1-> IDR is not inserted with
change in RC parameters

 Bit 2: VUI parameters provided by
application. If 0 -> VUI parameters are
not provided by application . 1-> VUI
parameters are provided by application.
When this bit is 1, it overrides the
meaning of Bit 0 and Bit 3.

 Bit 3: Controls custom VUI packet
insertion. If 0 -> custom VUI is not
enabled. 1-> custom VUI is enabled.
When this bit is 1, it overrides the
meaning of Bit 0. It is disabled if Bit 2 is
set to 1

Note:

 If enableBufSEI = 1, VUI param

insertion condition is enabled i.e. Bit 0 is
assumed to be 1. This enables insertion
of VUI param as per above condition set

 VUI parameters can be provided by the
application by setting the address of the
VUI parameter buffer as a part of the
extended run-time parameters.

 In custom VUI packet mode, codec
allows application to send its own VUI

data packet through inBuf parameter

of process call. Below points should be
noted –
 The application has to provide

entropy encoded VUI RBSP in a
buffer pointer pointed by inBuf API
parameter. The format in which the
VUI has to be passed is specified in
the interface header file.

 The codec takes care of stitching
the VUI information in SPS header

 .HRD compliance of H.264 bitstream
generated in this mode is not
guaranteed as HRD parameters is not
set by the codec

API Reference

4-43

Field Data type Input/
Output

Description

entropyMode XDAS_Int32 Input Flag for Entropy Coding Mode
 0 – CAVLC
 1 – CABAC
Default value = 1.
This tool is supported only in Main Profile

and High Profile (profileIdc = 77 and

100)

transform8x8FlagIn

traFrame

XDAS_Int32 Input Flag for 8x8 Transform for I frame
 0 – Disable
 1 – Enable
Default value = 1.
This tool is supported only in High Profile
(profileIdc = 100)

transform8x8FlagIn

terFrame

XDAS_Int32 Input Flag for 8x8 Transform for P frame
 0 – Disable
 1 – Enable
Default value = 0.
This tool is supported only in High Profile
(profileIdc = 100)

seqScalingFlag XDAS_Int32 Input Flag for use of Sequence Scaling Matrix
 0 – Disable
 1 – Auto
 2 – Low
 3 – Moderate
 4 – Reserved
Default value = 1.
This tool is supported only in High Profile
(profileIdc = 100)

Currently the behavior for input value of 4
will be same as 3 i.e. Moderate SM.

encQuality XDAS_Int32 Input Flag for Encoder setting
 0 – version 1.1, backward compatible

mode,
 2 – High quality mode(This is same as

encodingPreset =

XDM_HIGH_QUALITY).

 3-High speed mode (This is same as
encodingPreset =

XDM_HIGH_SPEED)

 1- version 1.1, backward compatible

with improved video quality mode

 4- Enhanced quality mode

Default value = 2.

API Reference

4-44

Field Data type Input/
Output

Description

enableARM926Tcm XDAS_Int32 Input Flag for enabling/disabling usage of
ARM926 TCM:
 1 – Uses ARM926 TCM
 0 – Does not use ARM926 TCM
Default value = 0

This control is only active for
encodingPreset =

XDM_USER_DEFINED and encQuality =

0, 1 and 4, For other encoder preset and
mode, there is no user control over it. It is
internally set to 1 and ARM926 TCM is
always used.

enableDDRbuff XDAS_Int32 Input Flag for enabling/disabling usage of DDR
instead of IMCOP buffers.
 1 – Uses DDR instead of VICP buffers.
 0 – Use VICP buffers.
Default value = 0

sliceMode XDAS_Int32 Input Mode for specifying slice size
 0 – No multi-slice
 1 – Slice size in bits.
 2 – number of MBs per slice
 3 – number of Mb rows per slice
Default value = 0

outputDataMode XDAS_Int32 Input Mode for specifying low latency interface
 0 – Low latency enabled. Codec

interface at NAL encoding granularity
 1 – Low latency disabled. Codec

interface at frame encoding level

sliceFormat XDAS_Int32 Input Output Nal unit encoding format
 0 – Output data in NAL stream format
 1 – Output data in Byte stream format

numTemporalLayers XDAS_Int32 Input Number of temporary layers in temporal
scalable video
 0 – one layer (Stream with frame
 rate: F
 1 – two layers (Stream with frame rate:

F, F/2)
 2 – three layers(Stream with frame

rate: F, F/2, F/4)
 3 – four layers(Stream with frame rate:

F, F/2, F/4, F/8)
 255 – All P refer to the previous I or IDR

frame (Stream with frame rate: F)

Where F is the targetFrameRate

Default value = 0

API Reference

4-45

Field Data type Input/
Output

Description

svcSyntaxEnable XDAS_Int32 Input Control for SVC syntax and DPB
management
 0 – SVC disabled sliding window

enabled
 1 – SVC enabled sliding window

enabled
 2 – SVC disabled MMCO enabled
 3 – SVC enabled MMCO enabled

Default value = 0

EnableLongTermFram

e

XDAS_Int32 Input Flag to enable/disable usage of long-term
frame as reference frame for error resiliency
 0 – disable using longterm reference

frames
 1 – enable using longterm reference

frames
Default value = 0

ConstraintSetFlag XDAS_Int32 Input Sets the constraint set flags in SPS
 Bit 0: Controls Constraint Set 0 flag
 Bit 1: Controls Constraint Set 1 flag
 Bit 2: Controls Constraint Set 2 flag
 Bit 3: Controls Constraint Set 3 flag

Note:

 Extended profile is not supported by
encoder. Hence bit field 2 is a don’t care
field

 The application has to take care that the
constraints specified by the standard
are met whenever the flags are set.
Codec does not perform this check.

Log2MaxFrameNumMin

us4

XDAS_Int32 Input Specifies the maximum number value in
SPS
Allowed values are from 0 – 12
Default value = 0

Note:

 Default values of extended parameters are used when size fields are
set to the size of base structure IVIDENC1_Params.

 When enableVUIparams is set to 2, IDR frame is not inserted

when any of the following parameters are changed dynamically.

i. Framerate

ii. Bitrate

iii. MaxDelay

iv. RC Algorithm.

 When enableVUIparams is set to 0 or 1, an IDR frame containing

SPS and PPS parameter is inserted in the stream.

API Reference

4-46

 If the level is not set appropriately, the encoder tries to fit a correct
level. However, if it exceeds level 5.0, an error is reported.

 If interlace encoding is enabled for levels less than 2,1 or level more
than level 4.1 encoder will return fatal error during instance creation.

 When encodingPreset = XDM_HIGH_SPEED/

XDM_HIGH_QUALITY or encQuality = 3/2, Perceptual rate control

feature is disabled in the current encoder version:

 Types of Multiple Slices supported in different modes:

 Version 1.1, Backward comptible mode(encQuality = 0/1/4):

Multiple slices based on number of MBs per slice and number of
rows per slice.

 Platinum Mode(encQuality = 2/3): Multiple slices based on

number of rows per slice.

 In case of seqScalingFlag = 5, the sequence scaling matrices are
given via CustomScaleMatrix_Buffer pointer of CustomScalingMatrix
structure. The values of sequence scaling matrices must be in
closed range [9,255]. The behavior may not be defined if the pointer
CustomScaleMatrix_Buffer of H264VENC_DynamicParams
structure points to an invalid address.

 If meAlgo is set to 1, performance drop of 1% is observed

4.2.2.2 IH264VENC_DynamicParams

║ Description

This structure defines the run-time parameters and any other
implementation specific parameters for a H.264 Encoder instance object.
The run-time parameters are defined in the XDM data structure,

IVIDENC1_DynamicParams.

║ Fields

Field Data type Input/
Output

Description

videncDynamicPara

ms

IVIDENC1_Dy

namicParams

Input See IVIDENC1_DynamicParams data structure

for details.

The size parameter of DynamicParams is set to

size of IVIDENC1_DynamicParams structure by

default while using extended parameters.

intraFrameQP XDAS_Int32 Input Quantization Parameter (QP) of I-frames in fixed QP
mode. Valid value is 0 to 51. It is useful only when:

 rateControlPreset of

IVIDENC1_Params is equal to

IVIDEO_NONE.

 RcAlgo = 2 (Fixed QP)

 targetBitRate = 0

Default value = 28

API Reference

4-47

Field Data type Input/
Output

Description

interPFrameQP XDAS_Int32 Input Quantization Parameter (QP) of P-frames in fixed
QP mode. Valid value is 0 to 51. It is useful only
when:

 rateControlPreset of

IVIDENC1_Params is equal to

IVIDEO_NONE.

 RcAlgo = 2 (Fixed QP)

 targetBitRate = 0

Default value = 28

initQ XDAS_Int32 Input Initial Quantization (QP) for the first frame. Valid
values include -1 and any value between 0 to 51.
The parameter is applicable only when rate-control
is enabled. Should be set based on the target bit-
rate.
Default value = 28
Recommended value = -1. When -1 is used,
encoder calculates initial Qp based on bit rate, frame
rate and input resolution. This calculated Qp value is
used for first frame.

rcQMax XDAS_Int32 Input Maximum value of Quantization Parameter (QP) to
be used while encoding. Valid value is 0 to 51. The

value for rcQMax should not be less than rcQMin.

The parameter is applicable only when rate-control
is enabled.
Default value = 45

rcQMin XDAS_Int32 Input Minimum value of Quantization Parameter (QP) to
be used while encoding. Valid value is 0 to 51. The

value for rcQMin should not be greater than

rcQMax. The parameter is applicable only when

rate-control is enabled.
Default value = 0.

rcQMaxI XDAS_Int32 Input Maximum value of Quantization Parameter (QP) to
be used while encoding Intra Frame. Valid value is 0

to 51. The value for rcQMaxI should not be less

than rcQMinI. The parameter is applicable only

when rate-control is enabled.
Default value = 42

rcQMinI XDAS_Int32 Input Minimum value of Quantization Parameter (QP) to
be used while encoding Intra Frame. Valid value is 0

to 51. The value for rcQMinI should not be

greater than rcQMaxI. The parameter is applicable

only when rate-control is enabled.
Default value = 0.

airRate XDAS_Int32 Input Parameter for forced Intra MB insertion in P-frames.
 0 – No forced Intra MBs
 n > 0 – number of forced Intra MB in each

frame.
Default value = 0.
This feature is not supported for interlaced content.

API Reference

4-48

Field Data type Input/
Output

Description

sliceSize XDAS_Int32 Input The interpretation of sliceSize depends on
sliceMode value.

See the note at end of 4.2.2.2 for details on

sliceSize range and interpretation.

lfDisableIdc XDAS_Int32 Input Option to enable or disable loop filter
 0 – Loop Filter Enable
 1 – Loop Filter Disable
 2 – Disable Filter across slice boundaries
Default value = 0

rcAlgo XDAS_Int32 Input Option to specify the type of Rate Control Algorithm
 0 – CBR
 1 – VBR
 2 – Fixed QP
 3 – CVBR
 4 – Custom RC1 - Fixed size frame

 5 -- Custom CBR1

 6 --Custom VBR1

Default value = 1

CBR and Custom CBR1 Rate Control algorithms are
not supported for interlaced encoding and will be
automatically disabled by encoder.

Custom RC1 - Fixed size frame is supported for
encQuality = 2

See Appendix F for details of the RC algorithm.

maxDelay XDAS_Int32 Input Maximum acceptable delay in milliseconds for rate
control.
 Min Limit: No minimum value check
 Max Limit : 30000 ms
It is recommended to use value greater than 100
ms.
Typical value is 1000 ms.
By default, this is set to 2000 ms at the time of
encoder object creation.

aspectRatioX XDAS_Int32 Input X scale for Aspect Ratio.
The value should be greater than 0 and co-prime

with AspectRatioY.

Default value = 1

aspectRatioY XDAS_Int32 Input Y scale for Aspect Ratio
The value should be greater than 0 and co-prime

with AspectRatioX.

Default value = 1.

API Reference

4-49

Field Data type Input/
Output

Description

enableBufSEI XDAS_Int32 Input Flag for enabling buffering period SEI message
 0 – Disable
 1 – Enable
Default value = 0
Buffering period SEI insertion is not supported for
interlaced content

enablePicTimSEI XDAS_Int32 Input Flag for enabling picture timing SEI message
 0 – Disable
 1 – Enable

This parameter is disabled if EnableBufSEI is

disabled.
Default value = 0
Picture Timing SEI insertion is not supported for
interlaced content

perceptualRC XDAS_Int32 Input Flag for enabling perceptual QP
modulation of MBs
 0 – Disable
 1 – Enable
Default value = 1

This feature is only present if encQuality = 0 or

4 under encodingPreset =

XDM_USER_DEFINED. For XDM_HIGH_SPEED and

XDM_HIGH_QUALITY, this feature is disabled.

PRC is disable automatically for maxDelay<1000

and rcAlgo = CBR or rcAlgo = Custom CBR1

idrFrameInterval XDAS_Int32 Input Interval between two consecutive IDR frames
 0: first frame will be IDR coded
 1: No inter frames, all IDR frames
 2: Consecutive IDR P IDR P
 3: IDR P P IDR P P IDR .. or IDR P B IDR P B

IDR P B ….and so on
Default value = 0.

mvSADoutFlag XDAS_Int32 Input This flag enables dumping of MV and SAD value of
the encoded stream. If the flag is enabled,

XDM_GETBUFINFO call will request for one extra

buffer to dump the MV and SAD. See note for
details.
Default value = 0.

API Reference

4-50

Field Data type Input/
Output

Description

resetHDVICPeveryF

rame

XDAS_Int32 Input Flag to reset HDVICP at the start of every frame that
is encoded. This is useful for multi-channel and
multi-format encoding.
 0 – OFF
 1 – ON
 2 – ON

Default value = 1.

If this flag is set to 1, H.264 encoder assumes that
the memories of HDVICP was overwritten by some
other codec or by other instance of same codec with
different quality settings between process call and
hence reloads the code and data.

If this flag is set to 2, H.264 encoder assumes that
the memories of HDVICP is not overwritten but the
mapping of EDMA channels on Transfer Controller
(TC) is changed by some other codec .

For example : Application will set this flag to 1 if
running another instance of different codec like
H264 decoder or if running another H264 encoder
instance with different quality setting in

encQuality or encodingPreset.

Application can set flag to 2 when an instance of
H.264 encoder is running together with an instance
of MJPEG

However, application can set this flag to 0 for better
performance if it runs multiple instances of H264

encoder with same quality settings in encQuality

and encodingPreset.

enableROI XDAS_Int32 Input Flag to enable/disable ROI coding.
 1 – enable ROI coding.
 0 – disable ROI coding.
Default value = 0.

API Reference

4-51

Field Data type Input/
Output

Description

metaDataGenerateCo

nsume

XDAS_Int32 Input Flag to enable/disable metaData Consume and

generate.
 0: Not used.

 1: Generate metaData in the current instance.

 2: Consume metaData in the current instance.

 3: metaData genenrated but not yet

consumed.
Default value = 0.

When this flag value is set to 1, the encoder will
generate the metadata and store the frame related
information in the FrameInfo_Interface structure.
This structure is then passed to the application.

If the flag value is 2 then the current encoder
instance will use the metadata generated by other
encoder to improve/customise the encoding
operation.

If the flag value is 3 the metaData is generated by
the low resolution encoder but not yet consumed by
high resolution encoder. (See Appendix D for
detailed usage).

maxBitrateCVBR XDAS_Int32 Input Specifies the max Bitrate which the rate control

can achieve during increased complexity scene
when running in CVBR mode

See Appendix F for details.

maxHighCmpxIntCVBR XDAS_Int32 Input Specifies the maximum duration of increased
complexity. maxHighCmpxIntCVBR is specified in
minutes and can take any value from 0 to 60.

Default value = 0 (corresponds to 1.5 seconds)

CVBRsensitivity XDAS_Int32 Input Specifies the target bitrate used by rate control in
high complexity state. It can take any value from 0 to
8. If set to 0, rate control decides the bitrate for high
complexity state depending on complexity. If set to
8, rate control tries to achieve maxBitrateCVBR in
increased complexity state. For any value is
between 0 and 8, rate control achieves intermediate
bitrates.

Default value = 0

API Reference

4-52

Field Data type Input/
Output

Description

LBRmaxpicsize XDAS_Int32 Input This parameter controls the maximum number of
bits consumed per frame. For example, if 'B' is the
targetBitRate and 'F' is the targetFrameRate, then
average bits per frame T is given by the relation,
T = B / F. If LBRmaxpicsize is set to 45, then the
maximum number of bits consumed per frame will
be 4.5T. When LBRmaxpicsize is set to 0, encoder
internally sets their values

Default value = 0

LBRminpicsize XDAS_Int32 Input This parameter controls the minimum number of bits
consumed per frame. If LBRminpicsize is set to 5,
then the minimum number of bits consumed per
frame will be 0.5T.When LBRminpicsize is set to 0,
encoder internally sets their values.

Default value = 0

LBRskipcontrol XDAS_Int32 Input This parameter configures the minimum number of
frames to be encoded in a set of N frames. Upper 16
bits of this is parameter represents the set of N
frames and lower 16 bits represent the minimum
number of frames to be encoded in the set.
Maximum value of N is 10. For example, if
LBRskipcontrol is assigned a value 0x00060005,
then atleast 5 frames will be encoded in a every set
of 6 frames. This feature is applicable only to
Custom CBR1 (rcAlgo = 5).

Default value 0x00050004

interlaceRefMode XDAS_Int32 Input Flag to control the reference picture selection(for
inter prediction) in case of interlaced encoding
 0: Automatic (Adaptive Reference field

selection).
 1: Same parity field chosen for reference
 2: Most recent field chosen for reference
Default Value = 0

LongTermRefreshInt

erval

XDAS_Int32 Input Specifies the interval for refreshing the longterm
frames
All the IDR/Intra frames are treated as longterm
frames.
Default value = 0.

UseLongTermFrame XDAS_Int32 Input Allows codec to use long-term frame for reference.
 0- use short term frame for reference
 1- use long term frame for reference

Default value = 0.

SetLongTermFrame XDAS_Int32 Input Sets current frame as a longterm frame
 0- Set current frame as a short term
 1- Set current frame as a long term

Default value = 0.

API Reference

4-53

Field Data type Input/
Output

Description

VUI_Buffer VUIParamBuf

fer *

Input Pointer to the VUI parameter buffer
VUI parameters from the buffer are used when bit
field 2 of enableVUIparams is set.

CustomScaleMatrix

_Buffer

CustomScali

ngMatrix *

input Pointer to thecustom sequence scaling matrix
structure. It can be used when seqScalingFlag is set
to 5.

enableGDR XDAS_Int32 Input Flag to control gradual decoder refresh feature
 0: GDR feature is disable
 1: GDR feature enable
 2: GDR feature enable with good quality
Default Value = 0

GDRduration XDAS_Int32 Input GDR refresh duration. It should be less then
GDRinterval

GDRinterval XDAS_Int32 Input Interval between GDR refresh

putDataGetSpaceFxn IH264VENC_T

I_DataSyncP

utGetFxn

Input Pointer to callback module required to enable low
latency feature

dataSyncHandle IH264VENC_T

I_DataSyncH

andle

Input Handle to DataSync descriptor

Note:

 enablePicTimSEI values are used only when enableBufSEI is set

to 1.

 aspectRatio information is included in the bit-stream only when

enableVUIparams is set to 1.

 The behavior of aspectRatioX and aspectRatioY is similar to what

is defined in the section E.1.3 of H.264 standard. You need to specify
X and Y values. If it matches with the value as provided in table E-1,
aspect_ratio_idc is sent in the streams. If it does not match, sar_width
and sar_height is sent explicitly with aspect_ratio_idc set to
255(extended SAR)

API Reference

4-54

 rcAlgo values are used only when IVIDENC1_Params -

>RateControlPreset = IVIDEO_USER_DEFINED.

 rcQMax, rcQMin, initQ, and maxDelay values are used only when

the encoder does not run in fixed QP mode.

 Generally idrFrameInterval will be larger than

intraFrameInterval. For example, idrFrameInterval = 300 and

intraFrameInterval = 30. This means that at every 30
th
 frame,

there will be an I frame. But at every 300
th
 frame, an IDR frame will be

placed instead of I frame. IDR frame is used for synchronization.

 The MV and SAD is dumped in the outBuf. The extra buffer is

requested during XDM_GETBUFINFO call. If multiple slice is on, then

MV-SAD information is in the index 2 of the buffers pointed by

XDM_BufDesc *outBufs and index 1 is for packet size information. If

multiple slice is off, the MV-SAD is dumped in index 1 of buffer
pointers. Index 0 is always used for bit-stream data. MV SAD
information is in the following format:

 Word0: MVy[bit 31-16]:MVx[bit 15-0]

 Word1: SAD [bit 31-0]

For motion vector and SAD, the top left partition is used in case
multiple MV is enabled.

 Regions where the viewer pays more attention to are called regions of
interest (ROI). In such scenarios it is important that the ROI areas are
reproduced as reliable as possible since they contribute significantly
towards the overall quality and perception of the video. This is
achieved by assigning higher number of bits to the ROI areas when
compared to non-ROI areas.

 If the current frame at low resolution encoder is encoded as IDR/I
frame then no scene change information is passed to high resolution
encoder.

 Forcing intra MBs when airRate>0 is done as explained below.

Randomized AIR is used as intra refresh startegy. In this case atlease

airRate number of MBs in a frame will be set as intra, except for the

last module. There could be more than airRate MBs as intra because

there could be macroblocks coded as intra due to intra/inter mode
decision.

Consider that there are 396 MBs in a frame and airRate = 10. So after
39 frames 390 MBs will be refreshed. So for 40

th
 frame only 6 MBs get

refreshed ti intra. So for all frames atlease airRate number of MBs in a
frame will not be Intra.

 If sliceMode = 0 then sliceSize value is ignored. Entire frame will

be encoded as a single slice.

 SliceMode = 1 is then sliceSize indicates the slice size in bits. In this

mode, it is gaurenteed that the slice size will not exceed the specified
slice size in bits. This feature is not available when encQuality =

0/1/4.

 If SliceMode = 2 then sliceSize indicates:

API Reference

4-55

Size of each slice in number of MBs.
 0 – Single Slice per Frame
 >0 – Multiple Slices with each slice having MBs <= sliceSize.
Default value = 0

This feature is only present when encQuality = 0/1/4 .

Slicesize value should be multiple of 2 always. Value of slice size is limited by
total number of MBs in frame.

In case of inputs having odd multiple of MBs in a row, an virtual MB is
considered, For example, for an input with 11MBs/row, if user wants
1row/slice;then sliceSize should be 12(11+1virtualMB=12). User
should take care of accounting this virtual MB while setting sliceSize.

 If SliceMode = 3 then sliceSize indicates:
Size of each slice in number rows per slice.
 0 – Single Slice per Frame
 >0 – Multiple Slices with each slice having rows = sliceSize.
Default value = 0

This feature is supported in all modes. Value of slice size is limited by total
number of rows in frame.

Summary of slice size with various encoding mode

 Platinum mode

-> encodingPreset

= XDM_HIGH_SPEED

or

XDM_HIGH_QUALITY

 ->

encodingPreset =

XDM_USER_DEFINED

+ encQuality =

3/2

Backward compatible STD
mode

-> encodingPreset =

XDM_USER_DEFINED +

encQuality = 0/1/4

Slice size as
no of MBs

NO YES

Slice size as
no of MBs
rows

YES YES

Slice size as
fixed number
of bytes

YES NO

 When enableVUIparams is set to 4, buffer to the VUI parameters is
provided by application by setting VUI_Buffer through control call with
XDM_SETPARAMS command. Description to VUI_buffer is below in
section 4.2.2.2.1

 control() call with the XDM_SETPARAMS command during
GDRduration will stop the GDR for the current GDRinterval

4.2.2.2.1 VUIParamBuffer

║ Description

This structure defines the VUI parameters which can be updated at run-
time for H.264 Encoder instance object.

║ Fields

API Reference

4-56

Field Data type Input/
Output

Description

aspectRatioInfo

PresentFlag

XDAS_Int32 Input Flag indicating whether aspect_ratio_idc is
present or not
 0 -> aspect_ratio_idc is not present
 1 -> aspect_ratio_idc is present.

Default value = 0

overscanInfoPre

sentFlag

XDAS_Int32 Input Flag indicating whether
overscan_info_present_flag is present or not
 0 -> overscan_info_present_flag is not

present
 1 -> overscan_info_present_flag is

present.

Default value = 0

overscanAppropr

iateFlag

XDAS_Int32 Input Sets overscan_appropriate_flag
 0 -> Cropped decoded pictures are

suitable for displaying using overscan
 1 -> Cropped decoded pictures are not

suitable for displaying using overscan

Default value = 0

videoSignalType

PresentFlag

XDAS_Int32 Input  1 -> video_format, video_full_range_flag
and colour_description_present_flag are
present

 0 -> above parameters are not present

Default value = 1

videoFormat XDAS_Int32 Input Specifies the video format.
Allowed values are 0 to 5

Default value = 2

pixelRange XDAS_Int32 Input Range for the luma and chroma pixel values
 0 – Restricted Range
 1 – Full Range (0-255)

Default value = 1

colourDescripti

onPresentFlag

XDAS_Int32 Input  1 -> colour_primaries,
transfer_characteristics and\
matrix_coefficients_are present

 0 -> above parameters are not present

Default value = 0

colourPrimaries XDAS_Int32 Input Specifies the chromaticity coordinates of the
source primaries as specified in H.264
standard
Allowed values are from 0 to 8

Default value = 2

API Reference

4-57

Field Data type Input/
Output

Description

transferCharact

eristics

XDAS_Int32 Input Specifies the opto-electronic transfer
characteristic of the source picture as
specified in H.264 standard
Allowed values are from 0 to 10

Default value = 2

matrixCoefficie

nts

XDAS_Int32 Input Specifies the matrix coefficients used in
deriving luma and chroma signals from the
green, blue,and red primaries as specified in
H.264 standard
Allowed values are from 0 to 8

Default value = 2

timingInfoPrese

ntFlag

XDAS_Int32 Input  1 -> num_units_in_tick, time_scale and
fixed_frame_rate_flag are present

 0 -> above parameters are not present

Default value = 1

numUnitsInTicks XDAS_Int32 Input Units of Time Resolution constituting the
single Tick
See Appendix A for more details.
Default value = 1.

timeScale XDAS_Int32 Input Time resolution value for Picture Timing
Information
This should be greater than or equal to frame
rate in fps.
See Appendix A for more details.
Default value = 150.

fixedFrameRateF

lag

XDAS_Int32 Input  1 -> Specifies that the temporal distance
between the HRD output times of any
two consecutive pictures in output order
is constrained as specified in H.264
standard

 0 -> no constraints apply to the temporal
distance between the HRD output times
of any two consecutive pictures in output
order

Default value = 0

nalHrdParameter

spresentFlag

XDAS_Int32 Input  1 -> specifies that NAL HRD parameters
are present

 0 -> specifies that NAL HRD parameters
are not present

Default value = 1

picStructPresen

tFlag

XDAS_Int32 Input  1 -> specifies that picture timing SEI
messages are present that include the
pic_struct syntax element

 0 -> pic_struct syntax element is not

API Reference

4-58

Field Data type Input/
Output

Description

present

Default value = 0

bitstreamRestri

ctionFlag

  1 -> specifies that the following coded
video sequence bitstream restriction
parameters are present

 0 -> bitstream restriction parameters are
not present

Default value = 1;

4.2.2.2.2 CustomScalingMatrix

║ Description

This structure defines the customized scaling matrices elements which can
be updated at run-time for H.264 Encoder instance object. Values of the
customized scaling matrices structure are the actual scaling matrices which
decoder derives from the bit-stream for decoding. Values should be in
normal order and not in Zig-Zag scanned order.

║ Fields

Field Data type Input/
Output

Description

Dummy XDAS_Int32 NA For alignemnet

scalingListinpu

t4x4_Intra_Luma

[16]

XDAS_Int8 Input Scaling List values for Intra 4x4 Luma

scalingListinpu

t4x4_Intra_Cb[1

6]

XDAS_Int8 Input Scaling List values for Intra 4x4 Cb

scalingListinpu

t4x4_Intra_Cr[1

6]

XDAS_Int8 Input Scaling List values for Intra 4x4 Cr

scalingListinpu

t4x4_Inter_Luma

[16]

XDAS_Int8 Input Scaling List values for Inter 4x4 Luma

scalingListinpu

t4x4_Inter_Cb[1

6]

XDAS_Int8 Input Scaling List values for Inter 4x4 Cb

scalingListinpu

t4x4_Inter_Cr[1

6]

XDAS_Int8 Input Scaling List values for Inter 4x4 Cr

API Reference

4-59

Field Data type Input/
Output

Description

scalingListinpu

t8x8_intra[64]

XDAS_Int8 Input Scaling List values for Intra 8x8

scalingListinpu

t8x8_Inter[64]

XDAS_Int8 Input Scaling List values for Inter 8x8

4.2.2.3 IH264VENC_InArgs

║ Description

This structure defines the run-time input arguments for H.264 Encoder
instance object.

║ Fields

Field Data type Input/
Output

Description

videncInArgs IVIDENC1_InArgs Input See IVIDENC1_InArgs data structure for

details.

timeStamp XDAS_Int32 Input Time stamp value of the frame to be placed in
bit stream. This should be integral multiple of

TimerResolution/ (frame rate in fps).

Initial time stamp value (for first frame) should
be 0.
Default is calculated as Frame number *

TimerResolution/ (Frame rate in fps).

See Appendix A for more details.

insertUserData XDAS_Int32 Input Flag to enable insertion of user data as part of
SEI unregistered user data

lengthUserData XDAS_Int32 Input Length of user data to be inserted in the bit-
stream. The codec will create space in bit-
stream of the given length for user data
insertion.

roiParameters ROI_Interface Input This is to pass the ROI related data to the
algorithm.

See ROI_Interface data structure under
section 4.3 for details.

numOutputDataUn

its

XDAS_Int32 Input This specifies number of NAL units which
encoder will encode before triggering call
back API . For details, See section 4.5

API Reference

4-60

Note:

TimeStamp is included only when IH264VENC_DynamicParams-

>EnablePicTimSEI is set to 1.

4.2.2.4 IH264VENC_Status

║ Description

This structure defines parameters that describe the status of the H.264
Encoder and any other implementation specific parameters. The status
parameters are defined in the XDM data structure, IVIDENC1_Status.

║ Fields

Field Data type Input/
Output

Description

videncStatus IVIDENC1_Status Input/Output See IVIDENC1_Status data structure for

details.

4.2.2.5 IH264VENC_OutArgs

║ Description

This structure defines the run-time output arguments for the H.264 Encoder
instance object.

║ Fields

Field Data type Input/
Output

Description

videncOutArgs IVIDENC1_OutAr

gs

Output See IVIDENC1_OutArgs data structure for

details.

numPackets XDAS_Int32 Output Total number of packets/slices in the encoded

frame. The size of the packet is part of outBufs

memory of the process call.

offsetUserDat

a

XDAS_Int32 Output This is the offset in the bit-stream for user data
insertion.

The offset (bytes) is with respect to the output
buffer where the encoded frame is dumped after

the process() call. Application should move to

this offset and place the user data of

lengthUserData.

Codec only adds placeholder in bit-stream for user
data insertion. Actual user data insertion has to be
done by the application.

API Reference

4-61

4.2.2.6 IH264VENC_Fxns

║ Description

This structure defines all of the operations for the H.264 Encoder instance
object.

║ Fields

Field Data type Input/
Output

Description

ividenc IVIDENC1_Fxns Output See IVIDENC1_Fxns data structure for

details.

API Reference

4-62

4.3 H.264 Encoder ROI specific Data Structures and Enumerations

This section includes the following H.264 Encoder ROI specific structures
and enumerations:

 XDM_Point structure.

 XDM_Rect structure.

 ROI_type enumeration.

 ROI_Interface structure.

4.3.1 XDM_Point
║ Description

This structure defines all the fields required to specify location of point. This
will be used to specify X and Y co-ordinates of given point.

║ Fields

Field Data type Input/
Output

Description

x XDAS_Int32 Input This will specify the X co-ordinate of a given
point.

y XDAS_Int32 Input This will specify the Y co-ordinate of a given
point.

4.3.2 XDM_Rect
║ Description

This structure defines all the fields required to specify a rectangle. This will
be used to specify top left and bottom right co-ordinates of a given ROI.

║ Fields

Field Data type Input/
Output

Description

topLeft XDM_Point Input This will specify the X and Y co-ordinate of top
left point of given ROI.

See XDM_Point data structure for details.

bottomRight XDM_Point Input This will specify the X and Y co-ordinate of
bottom right point of given ROI.

API Reference

4-63

Field Data type Input/
Output

Description

See XDM_Point data structure for details.

4.3.3 ROI_type
║ Description

This enumeration defines all the different types of ROI.
║ Fields

Enumeration Class Symbolic Constant Name Description

ROI_type FACE_OBJECT Type of ROI is FACE OBJECT

BACKGROUND_OBJECT Type of ROI is BACKGROUND OBJECT

FOREGROUND_OBJECT Type of ROI is FOREGROUND OBJECT

DEFAULT_OBJECT Type of ROI is DEFAULT OBJECT

PRIVACY_MASK Type of ROI is PRIVACY MASK

4.3.4 ROI_Interface
║ Description

This structure defines all the fields required to send ROI data to the
algorithm.

Field Data type Input/
Output

Description

listROI

[MAX_ROI]

XDM_Rect Input For a given ROI, this gives the X and Y co-
ordinates of the top left and bottom right
points.

See XDM_Rect data structure for details.

roiType

[MAX_ROI]

ROI_type Input This field specifies the type of ROI.

Codec may take some special action
depending on type of ROI.

See ROI_type enumeration for details.

numOfROI XDAS_Int32 Input Number of ROI limited by MAX_ROI.

API Reference

4-64

Field Data type Input/
Output

Description

roiPriority

[MAX_ROI]

XDAS_Int32 Input Priority of the given ROI.
Valid values include all integers between -8
and 8.

A higher value means that more importance
will be given to the ROI compared to other
regions. In other words, it determines the
number of bits given to ROI.

In case of fixed qp(RcAlgo=2), roiPriority
specifies the qp for corresponding ROI region.
Any integer between 0 and 51 is valid.

If roiType is set to PRIVACY_MASK, then
roiPriority specifies the colour of the mask as
shown below

Bits 0-7 : Specifies Cb value
Bits 8-15 : Specifies Cr value
Bits 16-23: Specifies luma value

Default value of 0 uses grey colour mask.

Note:

 In current implementation, MAX_ROI supported is 5.

 There is support for different priorities for different ROIs in this
version of H264 Encoder. But ROIs of same ROI_type should have

same priority.

 Overlapping of ROIs of same ROI_type is allowed in this release.

 ROI can be of any type as mentioned in ROI_type. If the ROI is

detected as FACE_OBJECT, then a guard band is added around it. For

all other ROI types no guard band is added.

 Left and right edge of the privacy mask will be rounded off to
multiple of 32 i.e. if left is set as 48 and right is set to 112, then it will be
rounded to 32 and 128 respectively. Similarly top and bottom edge will
be rounded off to multiple of 16.

 ROI_type = PRIVACY_MASK is not supported in encQuality = 0/1/4.

 When PRIVACY_MASK ROI_type is mixed other ROI_types,
PRIVACY_MASK ROI should be in higher index.

 PRIVACY_MASK will get disable in GDRduartion, when enableGDR
set to 2.

API Reference

4-65

4.4 H264 Encoder Two Pass Encoder data structure

In simple two pass encoding following data structures have been used

 MBinfo Structure

 MBRowInfo Structure

 FrameInfo_Interface Structure

4.4.1 MBinfo
║ Description

This structure is used to store MB information. It contains following
elements.

║ Fields

Field Data type Input/
Output

Description

numBitsMB XDAS_UInt16 Output Number of bits to encode MB

mbCodingMode XDAS_UInt8 Output MB coding mode Inter or Intra

mbQP XDAS_UInt8 Output QP of MB

4.4.2 MBRowinfo
║ Description

This structure contains buffer description of MB row related parameters.
║ Fields

Field Data type Input/
Output

Description

gmvVert XDAS_UInt32 Output GMV information per row.

API Reference

4-66

4.4.3 Frameinfo_Interface
║ Description

This Structure contains buffer description of frame related Parameters
which are pass from low resolution encoder to high resolution encoder.

║ Fields

Field Data type Input/
Output

Description

Width XDAS_UInt16 Output Width of the frame in pixels.

Height XDAS_UInt16 Output Height of the frame in pixels.

sceneChangeFlag XDAS_UInt32 Output Flag to indicate scene change observed at
low-resolution encoder level.

bitsPerFrame XDAS_UInt32 Output Number of bits used to encode frame by low-
resolution encoder.

frameRate XDAS_UInt32 Output Frame rate per second.

Bitrate XDAS_UInt32 Output Target bit rate in bps.

mvSADpointer XDAS_UInt32 *

Output Pointer to MVSAD of all the MBs in a frame.

mbComplexity MBinfo * Output Pointer to MB information of all the MBs in a
frame.

gmvPointerVert MBRowinfo * Output Pointer to vertical GMV values per row.

Note:

 When mvSADflag is disabled the mvSADpointer points to NULL.

 In current implementation we are not populating MBinfo and

MBRowinfo structures. Currrently, mbComplexity and

gmvPointerVert pointers points to NULL.

 When the scenechange is detected at low resolution encoder, IDR
frame is forced at high resolution encoder at the corresponding frame
number.

API Reference

4-67

4.5 H.264 Encoder Low latency specific Data Structures and
Enumerations

This section includes the following H.264 Encoder Low Latency specific
structures, constant, typedefs and enumerations:

 IH264VENC_TI_DataSyncDesc.

 IH264VENC_TI_MAXNUMBLOCKS

 IH264VENC_TI_DataSyncHandle

 IH264VENC_TI_DataSyncPutGetFxn

 IH264VENC_TI_DataMode

 IH264VENC_TI_SliceFormat enumeration.

4.5.1 Structures

4.5.1.1 IH264VENC_TI_DataSyncDesc

║ Description

This structure is a descriptor for the chunk of data being transferred via
callback for producing the encoded data at NAL level

║ Fields

Field Data type Input/
Output

Description

Size XDAS_Int32 Input Size of this structure.

numBlocks XDAS_Int32 Input Number of blocks provided for writing the
encoded NAL. Valid values are between 1 to
IH264VENC_TI_MAX_NUMBLOCKS

varBlockSizesFla

g

XDAS_Int32 Input Flag indicating whether any of the data blocks

vary in size. Valid values are XDAS_TRUE

and XDAS_FALSE.

Current supported value is XDAS_FALSE.

baseAddr XDAS_Int32 * Input Array of pointers to the first byte of all

(numBlocks) blocks provided for writing the

encoded slice.

blockSizes XDAS_Int32* Input This array contains the sizes of each valid
blocks

API Reference

4-68

4.5.2 Constant

4.5.2.1 IH264VENC_TI_MAXNUMBLOCKS

║ Description

This MACRO defines max value of numBlocks accepted by encoder when

operated in IH264VNC_TI_SLICEMODE outputData mode

4.5.3 Typdef

4.5.3.1 IH264VENC_TI_DataSyncHandle

║ Description

This typedefs is handle that identifies DataSync FIFO. Fields

Field Data type Input/
Output

Description

IH264VENC_TI_Dat

aSyncHandle

Void * Input This handle is provided by the application to
handle DataSync Fifo. Encoder passes this
handle back to application when providing
output data via callback

4.5.3.2 IH264VENC_TI_DataSyncPutGetFxn

Typedef to pointer to callback module used by encoder to signal "data
ready" to consumer and to get the space for next set of data. Consumer
need to define this API. Returns the successor failure status. Valid return
value is XDM_EOK or XDM_EFAIL.

║ Name

IH264VENC_TI_DataSyncPutGetFxn.

║ Synopsis

typedef XDAS_Int32 (*

IH264VENC_TI_DataSyncPutGetFxn)(IH264VENC_TI_DataSyncHandl

e dataSyncHandle, IH264VENC_TI_DataSyncDesc dataSyncDesc);

║ Arguments

IH264VENC_TI_DataSyncHandle dataSyncHandle /* Handle of

dataSync provided by application */

║ Arguments

IH264VENC_TI_DataSyncDesc *dataSyncDesc /*
dataSyncDescriptor containing encoded slice to be provided

to application */

║ Return Value

XDAS_Int32 /* Return Status – XDM_EOK/XDM_EFAIL */

API Reference

4-69

4.5.4 Enum

4.5.4.1 IH264VENC_TI_DataMode

║ Description

This enumeration is used to specify codec when to provide encoded data –
after entire frame encoding or after slice encoding.

║ Fields

Enumeration Class Symbolic Constant Name Description

IH264VENC_TI_DataMod

e

IH264VENC_TI_SLICEMODE provide encoded data after one slice is
encoded

IH264VENC_TI_ENTIREFRA

ME

provide encoded data after entire frame
is encoded

4.5.4.2 H264VENC_TI_SliceFormat

║ Description

Describes the output slice format of encoder. This enumeration type is
used to specify codec encode stream format type .

║ Fields

Enumeration Class Symbolic Constant Name Description

IH264VENC_TI_DataMod

e

IH264VENC_TI_NALSTREAM Output data in NAL stream format

IH264VENC_TI_BYTESTREA

M

Output data in BYTE stream format

Notes:

 If the outBuf is cacahed, then the application needs to take care of

cacahe invalidating the data before doing any read/write operation. This
is because the input/output data is always read through DMA and not
CPU.

Example Usage:

 Configuring encoder

Assume slice size as 2MB row. Set encoder with below parameters:

 IH264VENC_Params->sliceMode = 3

 IH264VENC_Params->outputDataMode = 0

IH264VENC_Params->sliceFormat = 1

API Reference

4-70

 (assuming byte stream encoding)

 IH264VENC_DynamicParams->sliceSize = 2

IH264VENC_InArgs->numOutputDataUnits = 1

This will enable encoder to produce slice of 2MB row and the Low
latency call back API will get called after 1 slice encode for data
exchange.

 Syncronization and Data Exchange

If the encoder is run in the above mode, the application will see the call
back function getting invoked after 1 slice encode. Application can use this
call back API for synchronization as well as data exchange. If the next
2MB row of data is put into DDR by capture driver, application can give the
next output slice pointer to the codec and release the call back. This will
make encoder proceed with further encoding. Please note that we use
output slice buffer pointer of encoded bitstream rather than input YUV to
control the encoder. The input YUV pointer is give at the start of process
call only as in the normal encoding.

API Reference

4-71

4.6 Interface Functions

This section describes the Application Programming Interfaces (APIs) used
in the H.264 Encoder. The APIs are logically grouped into the following
categories:

 Creation – algNumAlloc(), algAlloc()

 Initialization – algInit()

 Control – control()

 Data processing – algActivate(), process(),algDeactivate()

 Termination – algFree()

You must call these APIs in the following sequence:

1) algNumAlloc()

2) algAlloc()

3) algInit()

4) algActivate()

5) process ()

6) algDeactivate()

7) algFree()

control() can be called any time after calling the algInit() API.

algNumAlloc(), algAlloc(), algInit(), algActivate(),

algDeactivate(), and algFree() are standard XDAIS APIs. This

document includes only a brief description for the standard XDAIS APIs.
For more details, see TMS320 DSP Algorithm Standard API Reference
(SPRU360).

API Reference

4-72

4.6.1 Creation APIs

Creation APIs are used to create an instance of the component. The term
creation could mean allocating system resources, typically memory.

║ Name

algNumAlloc() – determine the number of buffers that an algorithm

requires
║ Synopsis

XDAS_Int32 algNumAlloc(Void);

║ Arguments

Void

║ Return Value

XDAS_Int32; /* number of buffers required */

║ Description

algNumAlloc() returns the number of buffers that the algAlloc()

method requires. This operation allows you to allocate sufficient space to

call the algAlloc() method.

algNumAlloc() may be called at any time and can be called repeatedly

without any side effects. It always returns the same result. The

algNumAlloc() API is optional.

For more details, see TMS320 DSP Algorithm Standard API Reference

(literature number SPRU360).
║ See Also

algAlloc()

API Reference

4-73

║ Name

algAlloc() – determine the attributes of all buffers that an algorithm

requires
║ Synopsis

XDAS_Int32 algAlloc(const IALG_Params *params, IALG_Fxns

**parentFxns, IALG_MemRec memTab[]);

║ Arguments

IALG_Params *params; /* algorithm specific attributes */

IALG_Fxns **parentFxns;/* output parent algorithm

functions */

IALG_MemRec memTab[]; /* output array of memory records */

║ Return Value

XDAS_Int32 /* number of buffers required */

║ Description

algAlloc() returns a table of memory records that describe the size,

alignment, type, and memory space of all buffers required by an algorithm.
If successful, this function returns a positive non-zero value indicating the
number of records initialized.

The first argument to algAlloc() is a pointer to a structure that defines

the creation parameters. This pointer may be NULL; however, in this case,

algAlloc() must assume default creation parameters and must not fail.

The second argument to algAlloc() is an output parameter.

algAlloc() may return a pointer to its parent IALG functions. If an

algorithm does not require a parent object to be created, this pointer must

be set to NULL.

The third argument is a pointer to a memory space of size
nbufs * sizeof(IALG_MemRec) where, nbufs is the number of buffers

returned by algNumAlloc() and IALG_MemRec is the buffer-descriptor

structure defined in ialg.h.

After calling this function, memTab[] is filled up with the memory

requirements of an algorithm.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algNumAlloc(), algFree()

API Reference

4-74

4.6.2 Initialization API

Initialization API is used to initialize an instance of the algorithm. The

initialization parameters are defined in the Params structure (see Data

Structures section for details).
║ Name

algInit() – initialize an algorithm instance

║ Synopsis

XDAS_Int32 algInit(IALG_Handle handle, IALG_MemRec

memTab[], IALG_Handle parent, IALG_Params *params);

║ Arguments

IALG_Handle handle; /* algorithm instance handle*/

IALG_memRec memTab[]; /* array of allocated buffers */

IALG_Handle parent; /* handle to the parent instance */

IALG_Params *params; /* algorithm initialization

parameters */

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */

║ Description

algInit() performs all initialization necessary to complete the run-time

creation of an algorithm instance object. After a successful return from

algInit(), the instance object is ready to be used to process data.

The first argument to algInit() is a handle to an algorithm instance. This

value is initialized to the base field of memTab[0].

The second argument is a table of memory records that describe the base
address, size, alignment, type, and memory space of all buffers allocated
for an algorithm instance. The number of initialized records is identical to

the number returned by a prior call to algAlloc().

The third argument is a handle to the parent instance object. If there is no

parent object, this parameter must be set to NULL.

The last argument is a pointer to a structure that defines the algorithm
initialization parameters.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algAlloc(), algMoved()

API Reference

4-75

4.6.3 Control API

Control API is used for controlling the functioning of the algorithm instance
during run-time. This is done by changing the status of the controllable
parameters of the algorithm during run-time. These controllable parameters

are defined in the DynamicParams data structure (see Data Structures

section for details).
║ Name

control() – change run-time parameters and query the status

║ Synopsis

XDAS_Int32 (*control) (IVIDDEC1_Handle handle,

IVIDDEC1_Cmd id, IVIDDEC1_DynamicParams *params,

IVIDDEC1_Status *status);

║ Arguments

IVIDDEC1_Handle handle; /* algorithm instance handle */

IVIDDEC1_Cmd id; /* algorithm specific control commands*/

IVIDDEC1_DynamicParams *params /* algorithm run-time
parameters */

IVIDDEC1_Status *status /* algorithm instance status
parameters */

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */

║ Description

This function changes the run-time parameters of an algorithm instance

and queries the algorithm’s status. control() must only be called after a

successful call to algInit() and must never be called after a call to

algFree().

The first argument to control() is a handle to an algorithm instance.

The second argument is an algorithm specific control command. See

XDM_CmdId enumeration for details.

The third and fourth arguments are pointers to the

IVIDDEC1_DynamicParams and IVIDDEC1_Status data structures

respectively.

API Reference

4-76

Note:

The control API can be called with base or extended DynamicParams,

and Status data structure. If you are using extended data structures,

the third and fourth arguments must be pointers to the extended

DynamicParams and Status data structures respectively. Also, ensure

that the size field is set to the size of the extended data structure.

Depending on the value set for the size field, the algorithm uses either

basic or extended parameters.

║ Preconditions

The following conditions must be true prior to calling this function;
otherwise, its operation is undefined.

 control() can only be called after a successful return from

algInit() and algActivate().

 handle must be a valid handle for the algorithm’s instance object.

║ Post conditions

The following conditions are true immediately after returning from this
function.

 If the control operation is successful, the return value from this

operation is equal to IALG_EOK; otherwise it is equal to either

IALG_EFAIL or an algorithm specific return value.

 If the control command is not recognized, the return value from this

operation is not equal to IALG_EOK.

║ Example

See test application file, h264encoderapp.c available in the \client\test\src
sub-directory.

║ See Also

algInit(), algActivate(), process()

API Reference

4-77

4.6.4 Data Processing API

Data processing API is used for processing the input data.
║ Name

algActivate() – initialize scratch memory buffers prior to processing.

║ Synopsis

Void algActivate(IALG_Handle handle);

║ Arguments

IALG_Handle handle; /* algorithm instance handle */

║ Return Value

Void

║ Description

algActivate() initializes any of the instance scratch buffers using the

persistent memory that is part of the algorithm’s instance object.

The first (and only) argument to algActivate() is an algorithm instance

handle. This handle is used by the algorithm to identify various buffers that
must be initialized prior to calling any of the algorithm processing methods.

For more details, see TMS320 DSP Algorithm Standard API Reference.
(literature number SPRU360).

║ See Also

algDeactivate()

API Reference

4-78

║ Name

process() – basic encoding/decoding call

║ Synopsis

XDAS_Int32 (*process)(IVIDDEC1_Handle handle,

IVIDEO1_BufDescIn *inBufs, XDM_BufDesc *outBufs,

IVIDDEC1_InArgs *inargs, IVIDDEC1_OutArgs *outargs);

║ Arguments

IVIDDEC1_Handle handle; /* algorithm instance handle */

IVIDEO1_BufDescIn *inBufs; /* algorithm input buffer
descriptor */

XDM_BufDesc *outBufs; /* algorithm output buffer descriptor
*/

IVIDDEC1_InArgs *inargs /* algorithm runtime input arguments
*/

IVIDDEC1_OutArgs *outargs /* algorithm runtime output
arguments */

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */

║ Description

A call to function initiates the encoding/decoding process for the current
frame.

The first argument to process() is a handle to an algorithm instance.

The second and third arguments are pointers to the input and output buffer

descriptor data structures respectively (see XDM_BufDesc data structure

for details). Input/output buffers should be allocated in non-cacheable /non-
bufferable region if low latency is enabled.

The encoder will require different number of inBufs and outBufs

depending on codec parameters used.

The following table lists the inBufs parameter based on various encoder

settings

 Attributes Buffer offset Cumulative

buffer
count

Basic encode – Input YUV
buffers

Mandatory 2 [0,1] 2

metaDataGenerateConsume
= 2

Optional 1 [2] 3

uiEnableVUIparams, bit2 = 1 Optional 1 [3] 4

API Reference

4-79

The following table lists the outBufs parameter based on various encoder

settings

 Attributes Buffer offset Cumulative

buffer
count

Basic encode – output encoded
buffers

Mandatory 1 [0] 1

sliceMode == 1 or
sliceFormat == NAL unit format

Optional 1 [1] 2

mvSADoutFlag = 1 Optional 1 [2] 3

metaDataGenerateConsume = 1 Optional 1 [3] 4

The buffer index specifies the order of the buffer requirement as a function
of various API parameters. In case an optional parameter is OFF. The
subsequent API column entry will take its place. Hence, the mapping of
optional PI parameters with its associated buffer may change depending
on the encoder setting.

The fourth argument is a pointer to the IVIDDEC1_InArgs data structure

that defines the run-time input arguments for an algorithm instance object.

The last argument is a pointer to the IVIDDEC1_OutArgs data structure

that defines the run-time output arguments for an algorithm instance object.

In case of interlaced content, process call has to be invoked for each field.

Note:

The process() API can be called with base or extended InArgs and

OutArgs data structures. If you are using extended data structures, the

fourth and fifth arguments must be pointers to the extended InArgs and

OutArgs data structures respectively. Also, ensure that the size field is

set to the size of the extended data structure. Depending on the value

set for the size field, the algorithm uses either basic or extended

parameters.

║ Preconditions

The following conditions must be true prior to calling this function;
otherwise, its operation is undefined.

 process() can only be called after a successful return from

algInit() and algActivate().

 handle must be a valid handle for the algorithm’s instance object.

 Buffer descriptor for input and output buffers must be valid.

 Input buffers must have valid input data.
║ Post conditions

API Reference

4-80

The following conditions are true immediately after returning from this
function.

If the process operation is successful, the return value from this operation

is equal to IALG_EOK; otherwise it is equal to either IALG_EFAIL or an

algorithm specific return value.
║ Example

See test application file, h264encoderapp.c available in the \client\test\src
sub-directory.

║ See Also

algInit(), algDeactivate(), control()

Note:

 A video encoder or decoder cannot be pre-empted by any other
video encoder or decoder instance. That is, you cannot perform task
switching while encode/decode of a particular frame is in progress.
Pre-emption can happen only at frame boundaries and after

algDeactivate() is called.

 The input data is YUV 4:2:0 SP. The encoder output is H.264
encoded bit stream.

API Reference

4-81

║ Name

algDeactivate() – save all persistent data to non-scratch memory

║ Synopsis

Void algDeactivate(IALG_Handle handle);

║ Arguments

IALG_Handle handle; /* algorithm instance handle */

║ Return Value

Void

║ Description

algDeactivate() saves any persistent information to non-scratch buffers

using the persistent memory that is part of the algorithm’s instance object.

The first (and only) argument to algDeactivate() is an algorithm

instance handle. This handle is used by the algorithm to identify various
buffers that must be saved prior to next cycle of algActivate() and

processing.
For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algActivate()

4.6.5 Termination API

Termination API is used to terminate the algorithm instance and free up the
memory space that it uses.

API Reference

4-82

║ Name

algFree() – determine the addresses of all memory buffers used by the

algorithm
║ Synopsis

XDAS_Int32 algFree(IALG_Handle handle, IALG_MemRec

memTab[]);

║ Arguments

IALG_Handle handle; /* handle to the algorithm instance */

IALG_MemRec memTab[]; /* output array of memory records */

║ Return Value

XDAS_Int32; /* Number of buffers used by the algorithm */

║ Description

algFree() determines the addresses of all memory buffers used by the

algorithm. The primary aim of doing so is to free up these memory regions
after closing an instance of the algorithm.

The first argument to algFree() is a handle to the algorithm instance.

The second argument is a table of memory records that describe the base
address, size, alignment, type, and memory space of all buffers previously
allocated for the algorithm instance.
For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algAlloc()

Note:

In the current implementation, algFree() API additionally resets

HDVICP hardware co-processor and also releases DMA resources held
by it. Thus, it is important that this function is used only to release the

resource at the end and not in between process()/control() API

functions.

API Reference

4-83

This page is intentionally left blank

A-1

Appendix A

Time-Stamp Insertion

The DM365/DM368 H.264 Encoder supports insertion of frame time-stamp
through the Supplemental Enhancement Information (SEI) Picture Timing
message. The time-stamp is useful for audio-synchronization and
determining the exact timing for display of frames. The parameters coded
in the SEI Picture Timing Message are also useful for testing HRD
compliance.

The application should take proper care while setting the parameters for
time-stamp and the actual time-stamp for each frame. Ideally, the time-
stamp can be set based on the frame-rate. This simplifies the process of
generating time-stamps. However, the application is free to use any
method of time-stamp generation.

Time-stamp based on frame-rate can be generated as follows.

Let f be the frame-rate of the sequence. Assuming a constant frame-rate
sequence, set

TimeScale = k * f

NumUnitsinTicks = n

where k is an integer such that (k * f) and (k/n) are

integers

units_per_frame = k/n

For the first frame, set the TimeStamp parameter in inArgs structure to 0.

For the subsequent frames, increment the TimeStamp by
units_per_frame

Example 1.

f = 30.

Let k = 2

TimeScale = 2 * 30 = 60

NumUnitInTicks = 1

units_per_frame = 2

TimeStamp = 0, 2, 4, 6, 8…

Time-Stamp Insertion

A-2

Example 2.

f = 25

k = 2

TimeScale = 2 * 25 = 50

NumUnitsInTicks = 2

units_per_frame = 1

TimeStamp = 0, 1, 2, 3, 4…

Example 3.

f = 15

k = 1000

TimeScale = 1000 * 15 = 15000

NumUnitsInTicks = 1000

units_per_frame = 1

TimeStamp = 0, 1, 2, 3, 4…

Example 4.

f = 0.5

k = 200

TimeScale = 200 * 0.5 = 100

NumUnitsinTicks = 100

units_per_frame = 2

TimeStamp = 0, 2, 4, 6, 8

B-1

Appendix B

Error Description

Encoder_Create() returns FATAL_ERROR for out of range/invalid input

parameter values. Also, the unsupported features usage in the profiles will
also result in FATAL_ERROR. List of unsupported features with respect to
the profile is listed in the following table.

ProfileIDC Profile Inputparam values that results in
FATAL ERROR

66 Baseline inputContentType =1

transform8x8FlagIntraFrame=1

transform8x8FlagInterFrame=1

seqScalingFlag=1

entropyMode=1

77 Main transform8x8FlagIntraFrame=1

transform8x8FlagInterFrame=1

seqScalingFlag=1

100 High -

In addition to this, if any other input parameter is beyond the range
specified in the user guide, it will result in codec create or control API
failure.

Error Description

B-2

This page is intentionally left blank

C-1

Appendix C

VICP Buffer Usage By Codec

H.264 codec uses VICP buffers for its internal encode/decode operation.
This buffer is accessed using EDMA. This section describes in brief how
the buffers are used.

The Framework component (FC) manages the VCIP buffers using VCIP
resource manager. In context of DM365/DM368, VICP buffers can be used
by following algorithms:

 MPEG4 and JPEG running on MJCP

 H.264 codec running on HDVICP

 Preprocessing algorithms or noise filter running on IMX/NSF

Any of these algorithms can place its request to VICP buffers. FC services
the VICP buffer request in a sequential manner.

VICP Buffer Usage By Codec

C-2

Figure C-1. VICP Buffers Managed By FC.

The above diagram shows the buffers of VICP managed by FC. The memories
shaded in green are managed by FC. The memories in red are reserved for MJCP
only.

FC gives the VICP memory to the algorithm from the start of the pool. Hence, it is the
application’s responsibility to instantiate the various algorithms in a way that an
efficient usage of VICP buffers is achieved.

The amount of VICP buffer usage by the codec is part of datasheet
provided in the release

D-1

Appendix D

ARM926 TCM Buffer Usage By Codec

H.264 encoder uses ARM926 TCM buffers for its internal encode
operation. This buffer is accessed using EDMA. This section briefly
describes the buffer usage.

The ARM926 processor provides a complete high performance sub-
system, which includes separate instruction, data, tightly-coupled
memories (TCMs) and internal RAM interfaces. Instruction and data
access is differentiated by accessing different memory map regions, with
the instruction region from 0x0000 through 0x7FFF and data from 0x10000
through 0x17FFF.

In context of DM365/DM368, ARM926 DTCM can be used for the
following:

 ARM926 for system level usage

 H.264 codec running on HDVICP

The reason for H.264 codec running in HDVICP to use ARM926 TCM:

As seen in Appendix C, H.264 codec uses part of VICP buffers for its
execution. However, when this codec is run along with an application that
requires more VICP buffers (like MPEG4 and JPEG running on MJCP),
then algorithm cannot use the VICP buffers originally used by it. Therefore,
some of the buffers used in VICP will be transferred to ARM926 TCM. The
ARM926 TCM buffers are managed by Framework component (FC) using
ARM TCM resource manager.

The user can indicate his choice of using ARM926 TCM by suitably setting

the create time parameter useARM926Tcm in config file.

Setting the useARM926Tcm to

 0 - Do not use ARM926 TCM

 1 - Use ARM926 TCM. This is supported for widths up to maxWidth of

1280.

The amount of ARM926 TCM buffer usage by the codec is a part of
datasheet provided in the release.

The ARM926TCM memory in Linux is managed though CMEM pools,
Hence, the below pool allocation needs to be appended when
ARM926TCM is used.

ARM926 TCM Buffer Usage By Codec

D-2

 allowOverlap=1 phys_start_1=0x00001000

phys_end_1=0x00008000 pools_1=1x28672

This page is intentionally left blank

E-1

Appendix E

Simple Two-pass Encoding Sample
Usage

Multi-pass encoding can be used to improve the quality of the H264 encoded
video. This version of H264 encoder on DM365/DM368 supports simple two
pass (STP) encoder. In STP encoder, two encoders run sequentially for every
frame captured, first the low-resolution encoder and then the high-resolution
encoder.

The low-resolution encoder accumulates the frame specific information
(metadata) in the structure described in the Section 4.4. After completion of
low pass encoding, metadata is passed to the high-resolution encoder. The
high-resolution encoder uses metadata appropriately to improve the quality of
the encoded video

Various example cases of simple two encoding are given below:

1) Case-1: If both encoder runs at same frame rate and no frame skip
occurs; generation and consumption of the frame level information
(metadata) happens for each frame.

2) Case-2: If there is a frame skip at low-resolution encoder; no
information is passed to high-resolution encoder for the corresponding
frame.

3) Case-3: If there is a frame skip at high-resolution encoder, the frame
level information is retained and is consumed at next frame. (For

example, if SceneChange occurs at Nth frame and it is frame skip, then

the IDR frame is inserted at high-resolution at (N+1)th frame.) This way
information is preserved and utilized at high-resolution encoder.

4) Case-4: If the low-resolution encoder is running at low frame rate and
high resolution encoder is running at high frame rate, the metadata is
consumed by the corresponding frame at high-resolution encoder. If
the corresponding frame is frame skip then metadata is used by
subsequent frame. This process continues if the frame skip persist and
the metadata is pass to next frame until the new metadata is received
from low-resolution encoder.

5) Case-5: If the low-resolution encoder is running at high frame rate and
high-resolution encoder is running at low frame rate, the metadata
information is retained inside the low-resolution codec until encoding at
high reolution encoder starts and used accordingly at the high-
resolution encoder.
.

Simple Two-pass Encoding Sample Usage

E-2

Case-1

Case-2

Case-3

Case-4

Frame
Skip

Simple Two-pass Encoding Sample Usage

E-3

Note:

Call control() function with the XDM_SETPARAMS command before

starting encoding at low-resolution and high resolution instance for every
frame (See section 3.1.3).

The following steps explains how to use STP feature of the DM365/DM368
based H264 encoder.

1) Set metaDataGenerateConsume flag value for low and high-resolution

encoder to 1 and 2 respectively. If meteDataGenerateConsume is set

to 0, no metaData is generated or consumed.

2) Request I/O buffers for two encoder instances as explained in the
Chapter 3. In case of STP extra buffers are requested to store
metadata. This is taken care inside the codec if the

metaDataGenerateConsume flag is set appropriately.

3) After creating instances of both the encoders, initiate coding of low-
resolution encoder.

4) Update metadata values in frame_info structure at low-resolution

encoder. Once encoding operation is completed, copy the metadata
into the output buffers of low-resolution encoder requested in the step
2.

5) If the frame skip occurs at low resolution, no metadata information is
passed to the high-resolution encoder.

6) Now set the value of metaDataGenerateConsume flag for low-

resolution encoder instance to 3, which means the metadata is
generated but not yet consumed.

7) Before starting high resolution encoding, if

metaDataGenerateConsume flag for low-resolution encoder instance

is 3, copy metadata information from the output buffers of low-
resolution encoder to the input buffer of the high-resolution encoder
requested in the step 2. The metadata information from this input
buffers is utilized appropriately by the codec at high-resolution
encoder.

8) If the frame skip occurs at high-resolution encoder, metadata
information will used by next frame appropriately.

Case-5

Simple Two-pass Encoding Sample Usage

E-4

9) Once the metadata is consumed and encoding is completed at high

resolution encoder, set the value of metaDataGenerateConsume flag

for low-resolution encoder instance to 1.

E.1 Example Usage:

In order to provide flexibility to generate/consume metaData information an

extended dynamic parameter metaDataGenerateConsume is provided.

Initially, it can take only three values: 0 (no metaData generated or

consumed), 1 (Generate metaData) and 2 (Consume metaData). In case of

low resolution encoder, we will set metaDataGenerateConsume to 1 and in

case of high resolution encoder metaDataGenerateConsume is set to 2.

Example settings for low resolution encoder

In this case, the application requests for buffers which are used to pass frame
level information from low resolution encoder to the high resolution encoder.

Set meetaDataGenerateConsume = 1

// generate metadata in low resolution encoder.

Output Buffer requirement by low resolution encoder

Structure Name Buffer Size

FrameInfo_Interface sizeof(FrameInfo_Interface);

MBInfo (uiSize >> 4) * 4;

MBRowInfo uiExtHeight * 4;

Where uiSize is the maximum number of pixels in a frame and

uiExtHeight is the height of the frame in pixels.

Addresses of these buffers are passed to the codec where variables of the

structures (See Section 4.6) are updated if metaDataGenerateConsume is

set to 1. Once the encoding is completed, set the value of
metaDataGenerateConsume flag for low-resolution instance to 3.

In current implementation, MBinfo and MBRowinfo structures are not

populated, hence no buffers are requested.

E.1.1 Example settings for high resolution encoder

In this case, the application copies the metadata information from the buffers
of low-resolution encoder to the buffers of high-resolution encoder. The high
resolution encoder makes use of frame level information as and when it is
required.

At application:

**

If(metaDataGenerateConsume of low resolution is 3)

{

Simple Two-pass Encoding Sample Usage

E-5

If(metaDataGenerateConsume of high resolution is 2)

 Copy metadata from low-resolution to high

resolution;

}

**

Input Buffer requirement by high resolution encoder

Structure Name Buffer Size

FrameInfo_Interface sizeof(FrameInfo_Interface);

Inside Codec:

**

If(metaDataGenerateConsume of high resolution is 2) /*

Will be used in High resolution encoder */

{

 /*

 * Use metadata given by low resolution encoder to

 * take appropriate decisions.

 */

}

**

Once the information is consumed and encoding of high-resolution encoder

is done, set the value of metaDataGenerateConsume flag of low

resolution encoder instance to 1.

At application:

**

Set metaDataGenerateConsume flag of low resolution encoder

to 1;

**

Note:
 When setting dynamicparams.metaDataGenerateConsume = 2, for

the high resolution encoder, the low resolution encoder must be run with

dynamic params.metaDataGenerateConsume = 1, else severe

quality degradation will occur.

 The usage of the generated metaData by the high resolution encoder is

internal to the codec and no further input is required from the end user.
 If the current frame at low resolution encoder is encoded as IDR/I frame

then no scene change information is passed to high resolution encoder.
 STP works with ROI enabled also.
 When the scenechange is detected at low resolution encoder, IDR frame is

forced at high resolution encoder at the corresponding frame number.

Simple Two-pass Encoding Sample Usage

E-6

Simple Two-pass Encoding Sample Usage

F-7

This page is intentionally left blank

F-1

Appendix F

Rate Control Modes

DM365 encoder specifies various rate control mode using rcAlgo dynamic
API parameter. A brief description of them is written below

CBR (rcAlgo = 0): constant Bitrate rate control – This a strict rate control
which allows you to maintain the end-to-end delay within the specified limit.
This rate control method can also skip frames to maintain the desired VBV
buffer level. CBR is suitable for the video conferencing applications because it
allows you to maintain a constant flow of bit-rate and maintain the end-to-end
delay within the specified limit required by this interactive application

VBR (rcAlgo = 1): Variable Bitrate control. VBR has flexibility to average
the bit-rate over a larger time interval when compared to CBR. Focus of the
rate control is picture quality rather than instantaneous bitrate control. Larger
bit-rate deviations from target bit-rate are allowed more often on the CBR. The
VBV buffer size is larger than that of the CBR because higher end-to-end
delay can be tolerated, which enables the encoder to use larger
instantaneous bit-rates if required, i.e., larger maximum to average picture
size is allowed than compared to CBR. Frame skips are not allowed for VBR
rate control. This implies all frames will be encoded. VBR is appropriate for
storage, broadcast, streaming and surveillance applications as the video
sequences in these applications consist of non-homogenous video content.

Constant quality(rcAlgo = 2):(Fixed QP): This method does not employ any
rate control method, rather uses fixed QP provided by user (intraFrameQP
and interFrameQP) while encoding. Since the quantization parameter is fixed
during the course of encoding, this RC method can also be considered as
constant quality rate control.

CVBR (rcAlgo = 3): Constrained variable bitrate: This rate control allows
the bitrate to change based on the complexity of the scene. The rate control
takes two inputs viz. 1. targetBitrate and 2. maxBitrateCVBR. For scene with
normal complexity, the RC operates over targetBitrate. When the scene
complexity increases, the RC increases the operating bitrate to higher value
maxed to maxBitrateCVBR. In a longer duration, the overall bitrate achieved
will be targetBitrate. This rate control is specially suited for video surveillance
where one would intend to encode with better quality when there is increase
in scene complexity

Custom RC1 – Fixed Frame size Rate Control (rcAlgo = 4): This is a
custom RC algorithm where each encoded frame produces the same number
of bits. The size of the frame is determined by
“targetBitrate/targetFrameRate”. In case of interlaced encoding, the size of the
frame is sum of top and bottom fields.

Rate Control Modes

F-2

Custom CBR1 (rcAlgo 5): This is the customized version of CBR (rcAlgo

= 0) algorithm. The main purpose of Custom CBR1 algorithm is to reduce
the breathing artifacts in encoded videos. Breathing artifacts are observed
when periodic intra frames are used at low bitrates. Another distinguishable
feature of this algorithm is that, the skip frames are distributed over a group
of encoded frames instead of occurring in bursts.

Custom VBR1 (rcAlgo 6): This is the customized version of VBR (rcAlgo

= 1) algorithm. This version of VBR algorithm is targeted for sequences
with varying complexity distribution. The important feature of this rcAlgo is
that it ensures target bitrate is achieved over shorter durations (compared
to VBR) when encoding higher complexity frames in cases when they are
preceded by relatively lower complexity frames.

F-1

