1#include
2 #tinclude
3 #include
4 #include

<c6x.h>
<stdio.h>
<string.h>

main.c

<ti/csl/csl_tmr.h>

S#include <ti/csl/csl_tmrAux.h>

6 #include <ti/csl/soc/k2h/src/cslr_device.h>

7 #include <ti/csl/src/intc/csl_intc.h>

8 #tinclude <ti/csl/src/intc/csl_intcAux.h>

9 #include <ti/csl/hw_types.h>

10 #include <ti/csl/src/intc/cslr_intc.h>

11

12 /* INTC Objects */

13 CSL_IntcObj tmrIntcObj;

14 CSL_IntcContext context;

15 CSL_IntcEventHandlerRecord EventHandler[30];
16 CSL_IntcGlobalEnableState state;

17 CSL_IntcParam vectId;

18 CSL_IntcObj intcObj69,intcObj68;
19 CSL_IntcHandle hIntc69,hIntc68;
20 CSL_Status intStat,intStatl,intStat2;
21 CSL_IntcEventHandlerRecord EventRecord;

22

23 int hightimer_flag=0 ;

24 int timer_flag;

25 int t1,t2,t3,t1 _un;

26 Uint32 timer_availcount = 0 ;

27 Uint32 timer_unavailcount = 0;

28 Uint32 timer@_count = 0;

29 Uint32 timer@_countl =0;

30 void isr_Timero();
31void initialize_interrupt (void);

32

33

34
35int i;
36 /* defini
37

38

39 //#define
40 //#define
41 //#define
42 //#define
43 //#define
44 / /#define
45 //

46 ///* defi
47 //#define
48 //#define
49 //#define
50 //#define
51 //#define
52 //#define
53

54 /* defini
55 t#tdefine
56 ttdefine
57 #define
58 tdefine
59 #define
60 #define
61

62

ng timero*/

Timer@ CNTLOO
Timer©_CNTHIO
Timer© PRDLO®
Timer©_PRDHIO
Timero TCR
Timero_TGCR

ning timerl*/
Timerl CNTLO1
Timerl CNTHI1
Timerl PRDLO1
Timerl_ PRDHI1
Timerl TCR
Timerl TGCR

ng timer8*/

((volatile
((volatile
((volatile
((volatile
((volatile
((volatile

((volatile
((volatile
((volatile
((volatile
((volatile
((volatile

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

int
int
int
int
int
int

int
int
int
int
int
int

*)0x02200010)
*)0x02200014)
*)0x02200018)
*)0x0220001C)
*)0x02200020)
*)0x02200024)

*)0x02210010)
*)0x02210014)
*)0x02210018)
*)0x0221001C)
*)0x02210020)
*)0x02210024)

Timer8_CNTLO8
Timer8 CNTHI8
Timer8_PRDLO8
Timer8_ PRDHI8
Timer8_TCR
Timer8_TGCR

((volatile
((volatile
((volatile
((volatile
((volatile
((volatile

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

Page 1

int
int
int
int
int
int

*)0x02280010)
*)0x02280014)
*)0x02280018)
*)0x0228001C)
*)0x02280020)
*)0x02280024)

main.c

63 #tdefine CSL_INTC_EVENTID_TINTLO® (66)
64

65void +timer@_initilisation(Uint32 countlow,Uint32 counthigh)
66 {

67 *Timer@ _CNTLOO = 0x00000000;

68 *Timer@_CNTHIO = Ox00000000;

69 *Timer@_PRDLO® = countlow;

70 *Timer@_PRDHIO = counthigh;

71 *Timer@_TGCR = Ox00000003;

72 *Timer@_TCR = OX00000088;

73 /**Timer@ PRDLO@=count;

74 *Timer©_PRDHIO=0x00000000;
75 *Timer@_TCR=0x00000088;
76 *Timer@_TGCR=0x00000003; */

77

78

79}

80

81

82void timerl_initilisation(Uint32 countlow,Uint32 counthigh)
83 {

84 *Timerl_CNTLOl1 = Ox00000000;
85 *Timerl CNTHI1 = 0x00000000;
86 *Timerl_PRDLO1 = countlow;
87 *Timerl_PRDHI1 = counthigh;
88 *Timerl_TGCR = OX00000003;
89 *Timerl TCR = Ox00000088;

90 /**Timer@_PRDLOO@=count;
91 *Timer©_PRDHIO=0x00000000;
92 *Timer@_TCR=0x00000088;
93 *Timer@_TGCR=0x00000003; */

94}

95

96

97 void +timer8_initilisation(Uint32 countlow,Uint32 counthigh)

98 {

99 *Timer8 CNTLO8 = 0x00000000;
100 *Timer8_CNTHI8 = Ox00000000;
101 *Timer8 PRDLO8 = countlow;
102 *Timer8_PRDHI8 = counthigh;
103 *Timer8 TGCR = Ox00000003;
104 *Timer8_TCR = OX00000088;

105 /**Timer@_ PRDLO@=count;

106 *Timer@_PRDHIO=0x00000000;

107 *Timer@_TCR=0x00000088;

108 *Timer@_TGCR=0x00000003; */

109

110

111}

112

113 //void timer8 disable(Uint32 countlow,Uint32 counthigh)
114 //{

115// *Timer8_CNTLO8 0x00000000 ;
116 // *Timer8_CNTHI8 = Ox00000000;

117 // *Timer8_PRDLO8 = countlow;

118 // *Timer8_PRDHI8 = counthigh;
119// *Timer8_TGCR = 0X00000003;
120 // *Timer8_TCR = 0X00000048;

121 // /**Timer@_ PRDLO@=count;
122 // *Timer@_PRDHIO=0x00000000;
123// *Timer@_TCR=0x00000088;
124 // *Timer@_TGCR=0x00000003; */

Page 2

125//
126 //
127 //}
128 void
129 {
130

131

132

133

134 //
135

136

137
138//
139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157 //
158 //
159 //
160////
161////
162////
163////
164////
165////
166////
167////
168 //
169 }
170}
171

172

173

main.c

main(void)
int count=0;

initialize_interrupt();
timer8 initilisation(0x0003000,0x00);

while(1)

{
timer8 initilisation(0x0003000,0x00);

initialize_interrupt();

while(1)
{
if(hightimer_flag==1)
{

printf("\n timer complete");

hightimer_flag=0;
// timer8_disable(0x00,0x00);
break;

}

else

printf("\n timer not complete");

¥
¥
timere_initilisation(0x0000300,0x00);
for(count=0;count<1000;count++);

// timer®@_initilisation(0x0002710,0x00);
while(1)

timer@_initilisation(0x0300,0x00);
for(count=0;count<1000;count++);

}
// printf("timer");

174 void initialize_interrupt(void)

175 {
176
177
178
179
180
181
182
183
184
185
186

CSL_IntcGlobalEnableState state;

/* INTC module initialization */

context.eventhandlerRecord = EventHandler;

context.numEvtEntries = 10;

if (CSL_intcInit(&context) != CSL_SOK)
return -1;

/* Enable NMIs */

if (CSL_intcGlobalNmiEnable() != CSL_SOK)
return -1;

Page 3

main.c

187
188 /* Enable global interrupts */
189 if (CSL_intcGlobalEnable(&state) != CSL_SOK)

190 return -1;

191

192 /* INTC has been initialized successfully. */

193

194 vectId = CSL_INTC_VECTID_6;//TIMER@OVectId

195

196 /************ handler OF timepe***********************/

197

198 hIntc68 = CSL_intcOpen (&intcObj68, CSL_INTC_EVENTID_TINTLOO, &vectId ,
NULL);

199

200

201 //3. hook isr to event //

202 intStat2= CSL_intcHookIsr(CSL_INTC VECTID 6,&isr Timer®9);

203 if (intStat2 != CSL_SOK)

204 {

205 printf("INTR: error while hooking isr for interrupt .\n");

206 return;

207 }

208 // /* Bind ISR to Interrupt */

209 // EventRecord.handler = &isr_Timero;

210 // EventRecord.arg = (hIntc68);

211 // CSL_intcPlugEventHandler(hIntc68, &EventRecord);

212 // 4. hw control event //

213 intStat2=CSL_intcHwControl(hIntc68,CSL_INTC CMD_EVTENABLE,NULL);

214 if (intStat2 != CSL_SOK)

215 {

216 printf("INTR: error while invoking hw control for interrupt .\n");

217 return;

218 }

219 // CSL_Status CSL_intcClose (hIntc68);

220 //return 0;

221}

222/***************** TIMER@ INTERRUPT************/
223 void isr_Timere()

224 {

225 printf("In ISR");

226 timero_count++;

227 hightimer_flag = 1;

228 *(Uint32*)0x00810000 = 4*timer@ count;

229 // *(Uint32*)0x01800048 = 0x00000004 ; // clearing the event 66
230

231 }

232

233

Page 4

