
main.c

1 #include <c6x.h>
2 #include <stdio.h>
3 #include <string.h>
4 #include <ti/csl/csl_tmr.h>
5 #include <ti/csl/csl_tmrAux.h>
6 #include <ti/csl/soc/k2h/src/cslr_device.h>
7 #include <ti/csl/src/intc/csl_intc.h>
8 #include <ti/csl/src/intc/csl_intcAux.h>
9 #include <ti/csl/hw_types.h>

10 #include <ti/csl/src/intc/cslr_intc.h>
11
12 /* INTC Objects */
13 CSL_IntcObj tmrIntcObj;
14 CSL_IntcContext context;
15 CSL_IntcEventHandlerRecord EventHandler[30];
16 CSL_IntcGlobalEnableState state;
17 CSL_IntcParam vectId;
18 CSL_IntcObj intcObj69,intcObj68;
19 CSL_IntcHandle hIntc69,hIntc68;
20 CSL_Status intStat,intStat1,intStat2;
21 CSL_IntcEventHandlerRecord EventRecord;
22
23 int hightimer_flag=0 ;
24 int timer_flag;
25 int t1,t2,t3,t1_un;
26 Uint32 timer_availcount = 0 ;
27 Uint32 timer_unavailcount = 0;
28 Uint32 timer0_count = 0;
29 Uint32 timer0_count1 =0;
30 void isr_Timer0();
31 void initialize_interrupt (void);
32
33
34
35 int i;
36 /* defining timer0*/
37
38
39 //#define Timer0_CNTLO0 ((volatile unsigned int *)0x02200010)
40 //#define Timer0_CNTHI0 ((volatile unsigned int *)0x02200014)
41 //#define Timer0_PRDLO0 ((volatile unsigned int *)0x02200018)
42 //#define Timer0_PRDHI0 ((volatile unsigned int *)0x0220001C)
43 //#define Timer0_TCR ((volatile unsigned int *)0x02200020)
44 //#define Timer0_TGCR ((volatile unsigned int *)0x02200024)
45 //
46 ///* defining timer1*/
47 //#define Timer1_CNTLO1 ((volatile unsigned int *)0x02210010)
48 //#define Timer1_CNTHI1 ((volatile unsigned int *)0x02210014)
49 //#define Timer1_PRDLO1 ((volatile unsigned int *)0x02210018)
50 //#define Timer1_PRDHI1 ((volatile unsigned int *)0x0221001C)
51 //#define Timer1_TCR ((volatile unsigned int *)0x02210020)
52 //#define Timer1_TGCR ((volatile unsigned int *)0x02210024)
53
54 /* defining timer8*/
55 #define Timer8_CNTLO8 ((volatile unsigned int *)0x02280010)
56 #define Timer8_CNTHI8 ((volatile unsigned int *)0x02280014)
57 #define Timer8_PRDLO8 ((volatile unsigned int *)0x02280018)
58 #define Timer8_PRDHI8 ((volatile unsigned int *)0x0228001C)
59 #define Timer8_TCR ((volatile unsigned int *)0x02280020)
60 #define Timer8_TGCR ((volatile unsigned int *)0x02280024)
61
62

Page 1

main.c

63 #define CSL_INTC_EVENTID_TINTLO0 (66)
64
65 void timer0_initilisation(Uint32 countlow,Uint32 counthigh)
66 {
67 *Timer0_CNTLO0 = 0x00000000;
68 *Timer0_CNTHI0 = 0x00000000;
69 *Timer0_PRDLO0 = countlow;
70 *Timer0_PRDHI0 = counthigh;
71 *Timer0_TGCR = 0x00000003;
72 *Timer0_TCR = 0x00000088;
73 /**Timer0_PRDLO0=count;
74 *Timer0_PRDHI0=0x00000000;
75 *Timer0_TCR=0x00000088;
76 *Timer0_TGCR=0x00000003;*/
77
78
79 }
80
81
82 void timer1_initilisation(Uint32 countlow,Uint32 counthigh)
83 {
84 *Timer1_CNTLO1 = 0x00000000;
85 *Timer1_CNTHI1 = 0x00000000;
86 *Timer1_PRDLO1 = countlow;
87 *Timer1_PRDHI1 = counthigh;
88 *Timer1_TGCR = 0x00000003;
89 *Timer1_TCR = 0x00000088;
90 /**Timer0_PRDLO0=count;
91 *Timer0_PRDHI0=0x00000000;
92 *Timer0_TCR=0x00000088;
93 *Timer0_TGCR=0x00000003;*/
94 }
95
96
97 void timer8_initilisation(Uint32 countlow,Uint32 counthigh)
98 {
99 *Timer8_CNTLO8 = 0x00000000;

100 *Timer8_CNTHI8 = 0x00000000;
101 *Timer8_PRDLO8 = countlow;
102 *Timer8_PRDHI8 = counthigh;
103 *Timer8_TGCR = 0x00000003;
104 *Timer8_TCR = 0x00000088;
105 /**Timer0_PRDLO0=count;
106 *Timer0_PRDHI0=0x00000000;
107 *Timer0_TCR=0x00000088;
108 *Timer0_TGCR=0x00000003;*/
109
110
111 }
112
113 //void timer8_disable(Uint32 countlow,Uint32 counthigh)
114 //{
115 // *Timer8_CNTLO8 = 0x00000000;
116 // *Timer8_CNTHI8 = 0x00000000;
117 // *Timer8_PRDLO8 = countlow;
118 // *Timer8_PRDHI8 = counthigh;
119 // *Timer8_TGCR = 0x00000003;
120 // *Timer8_TCR = 0x00000048;
121 // /**Timer0_PRDLO0=count;
122 // *Timer0_PRDHI0=0x00000000;
123 // *Timer0_TCR=0x00000088;
124 // *Timer0_TGCR=0x00000003;*/

Page 2

main.c

125 //
126 //
127 //}
128 void main(void)
129 {
130 int count=0;
131
132 initialize_interrupt();
133 timer8_initilisation(0x0003000,0x00);
134 //
135 while(1)
136 {
137 timer8_initilisation(0x0003000,0x00);
138 // initialize_interrupt();
139
140 while(1)
141 {
142 if(hightimer_flag==1)
143 {
144 printf("\n timer complete");
145
146 hightimer_flag=0;
147 // timer8_disable(0x00,0x00);
148 break;
149 }
150
151
152 else
153 {
154 printf("\n timer not complete");
155 }
156 }
157 // timer0_initilisation(0x0000300,0x00);
158 // for(count=0;count<1000;count++);
159 //
160 //// // timer0_initilisation(0x0002710,0x00);
161 //// while(1)
162 ////
163 //// {
164 //// timer0_initilisation(0x0300,0x00);
165 //// for(count=0;count<1000;count++);
166 ////
167 //// }
168 // // printf("timer");
169 }
170 }
171
172
173
174 void initialize_interrupt(void)
175 {
176 CSL_IntcGlobalEnableState state;
177
178 /* INTC module initialization */
179 context.eventhandlerRecord = EventHandler;
180 context.numEvtEntries = 10;
181 if (CSL_intcInit(&context) != CSL_SOK)
182 return -1;
183
184 /* Enable NMIs */
185 if (CSL_intcGlobalNmiEnable() != CSL_SOK)
186 return -1;

Page 3

main.c

187
188 /* Enable global interrupts */
189 if (CSL_intcGlobalEnable(&state) != CSL_SOK)
190 return -1;
191
192 /* INTC has been initialized successfully. */
193
194 vectId = CSL_INTC_VECTID_6;//TIMER0VectId
195
196 /************ handler of timer0***********************/
197
198 hIntc68 = CSL_intcOpen (&intcObj68, CSL_INTC_EVENTID_TINTLO0, &vectId ,

NULL);
199
200
201 //3. hook isr to event //
202 intStat2= CSL_intcHookIsr(CSL_INTC_VECTID_6,&isr_Timer0);
203 if (intStat2 != CSL_SOK)
204 {
205 printf("INTR: error while hooking isr for interrupt .\n");
206 return;
207 }
208 // /* Bind ISR to Interrupt */
209 // EventRecord.handler = &isr_Timer0;
210 // EventRecord.arg = (hIntc68);
211 // CSL_intcPlugEventHandler(hIntc68, &EventRecord);
212 // 4. hw control event //
213 intStat2=CSL_intcHwControl(hIntc68,CSL_INTC_CMD_EVTENABLE,NULL);
214 if (intStat2 != CSL_SOK)
215 {
216 printf("INTR: error while invoking hw control for interrupt .\n");
217 return;
218 }
219 // CSL_Status CSL_intcClose (hIntc68);
220 //return 0;
221 }
222 /***************** TIMER0 INTERRUPT************/
223 void isr_Timer0()
224 {
225 printf("In ISR");
226 timer0_count++;
227 hightimer_flag = 1;
228 *(Uint32*)0x00810000 = 4*timer0_count;
229 // *(Uint32*)0x01800048 = 0x00000004; // clearing the event 66
230
231 }
232
233

Page 4

