CHAPTER 6

Basic image transformations

Contents
6.1. OpenVX image object 85
6.2. Image filtering 87
6.2.1 Simple image filtering example 87
6.2.2 Custom convolution 89
6.3. Regions of interest 91
6.3.1 Reading from regions of interest 91
6.3.2 Writing to regions of interest 92
6.4. Feature extraction 95
6.4.1 Hough transform 95
6.4.2 Postprocessing hough transform results 100
6.5. Geometric image transformations 108
6.5.1 Undistortion implemented with remap 108
6.5.2 Perspective transformations 114
6.5.2.1 Applying a perspective transformation 116
6.5.2.2 Generating a perspective transformation 118

At the time of writing this book, computer vision is developing with a very
fast pace, so building an API to account for rapid changes in the field is an
extremely challenging task. However, there is a pretty well-defined set of
methods that many computer vision algorithms use, and being able to exe-
cute these methods efficiently is a core requirement for building a real-time
embedded product. It is no surprise that basic image processing functions
are a significant part of OpenVX. This chapter will go over the vx_image
object, which encapsulates images, discuss image properties such as color
space and region of interest, and talk about linear filtering border modes.
We will then look at Hough transform, remapping and its application to
fast undistorted transformation, as well as perspective transformations in
OpenVX.

6.1 OpenVXimage object

OpenVX is a computer vision API, and it is no surprise that an image
object is a first-class citizen. As we observed in Chapter 2 (see Example 1),
we need fairly limited information to create an image: a context, width,
height, and color space. For example:

OpenVX Programming Guide Copyright © 2020 Elsevier Inc. 85
https://doi.org/10.1016/B978-0-12-816425-9.00012-7 All rights reserved.

https://doi.org/10.1016/B978-0-12-816425-9.00012-7

86 OpenVX Programming Guide

FA00
Lk
BELE
LEEE

Figure 6.1 An illustration of chroma subsampling.

vx_context context = vxCreateContext();
vx_image image = vxCreatelmage(context, 640, 480, VX_DF_IMAGE_U8);

Whereas the first three arguments of vxCreatelImage are straightforward,
the fourth one that encodes color space is less trivial. There is a range of
color space options supported by OpenVX, both grayscale and color. Most
functions in OpenVX support grayscale 8-bit images, but a few functions
will have 16- and 32-bit images as input and/or output. Here is a list of
grayscale image types:

* VX_DF_IMAGE_U8: a single plane of unsigned 8-bit pixels (pixel intensity

varies from 0 to 255)

* VX_DF_IMAGE_U16: a single plane of unsigned 16-bit pixels (pixel intensity

varies from 0 to 65535)

* VX_DF_IMAGE_S16: a single plane of signed 16-bit pixels (pixel intensity

varies from —32768 to 32767)

* VX_DF_IMAGE_U32: a single plane of unsigned 32-bit pixels
* VX_DF_IMAGE_S32: a single plane of signed 32-bit pixels

There are a few OpenVX functions that can work with color images,
but this is not the only reason color images are supported by the standard.
Cameras will often produce images in various formats that OpenVX has
to support to avoid expensive copying or transforming pixel data for each
frame. Many of these images come in the YUv format, which uses a difterent
number of bits to encode the intensity ¥ and the chroma channels u and v.
Usually this subsampling is described by three numbers A:8:¢, for example,
4:2:2. Here the first number means the block of Ax2 pixels (A columns and
2 rows). B describes the number of pixels used to encode chroma channels
for the first row, and ¢ for the second row. This is illustrated by Fig. 6.1.
4:4:4 encodes chroma for a 4 x 2 block of pixels using 8 values for U and V
channels, 4:4:0 is using 4 values, so that pixels in each column have the

Basic image transformations 87

same color, and 4:2:0 is using only two values. OpenVX supports a range

of color formats:

* VX_DF_IMAGE_RGB: standard RGB color space in 3 separate planes

e vX_DF_IMAGE_RGBX: RGB color space with alpha channel in 4 separate
planes

e VX_DF_IMAGE_NV12: 2 YUV color space with 2 planes: a Y plane and an
interleaved UV plane at 4:2:0 sampling

* VX_DF_IMAGE_NV21: 2 YUV color space with 2 planes: a Y plane and an
interleaved VU plane at 4:2:0 sampling

* VX_DF_IMAGE_UYVY: a YUV color space with 4:2:2 sampling, organized
into a single interleaved plane of 32-bit macropixels of U0, YO0, VO, Y1
bytes

* VX_DF_IMAGE_YUYV: a YUV color space with 4:2:2 sampling, organized
into a single interleaved plane of 32-bit macropixels of YO, U0, Y1, V1
bytes

* VX_DF_IMAGE_IYUV: a YUV color space with 4:2:0 sampling in 3 separate
planes

* VX_DF_IMAGE_YUV4: a YUV color space with 4:4:4 sampling in 3 separate
planes

6.2 Image filtering

6.2.1 Simple image filtering example

One of the most primitive image transformations in computer vision is
Gaussian filtering. A 3 x 3 linear filter is independently applied to each color
channel. We will create an OpenVX program that takes a color image and
smoothes it with the Gaussian filter using the function vxGaussian3x3Node.
We will use the graph API, and the resulting code will be similar to
“changelmage.c,” which was discussed in Chapter 2. vxGaussian3x3Node
works only with greyscale images, so we will need to split a color input im-
age into channels, run the filter on each of the channels, and then combine
the channels into an output color image. To make the result more notice-
able, we run filtering several times. The corresponding graph is shown in
Fig. 6.2.

You can find the source code in “filter/filterGaussImage.c”. The graph
is constructed in the makeFilterGraph function. After creating the graph and
allocating images, we add the nodes that extract individual channels from
an input image:

88 OpenVX Programming Guide

OpenVX Graph \

~

Virtual Virtual
Channel R image Gaussian image Gaussian
extract filter > filter
Openvx Openvx. OpenvX.
Virtual Virtual
Channel R image Gaussian image Gaussian Channel
Input extract > filter > filter combine _| Output.
image OperVx Openvx. OpenVx. OperVx ey
Virtual Virtual
Channel R image Gaussian image Gaussian
extract filter > filter

OpenvX Openvx. J

Figure 6.2 OpenVX graph for the Gaussian filter example.

{

vxChannelExtractNode(graph, input, VX_CHANNEL_R, virtu8[0]);
vxChannelExtractNode(graph, input, VX_CHANNEL_G, virtu8[1]);
vxChannelExtractNode(graph, input, VX_CHANNEL_B, virtu8[2]);

Then we add the Gaussian filter nodes for each of the channels:

for(i = 0; 1 < numv8 - 3; i++)

vxGaussian3x3Node(graph, virtu8[i], virtu8[i + 31);

With numvg=18, this adds five Gaussian filters for each channel. For example,
the images corresponding to the red color channel are transformed into
the following sequence: virtu8[0] — virtu8[3] — virtu8[6] — virtu8[9] —
virtu8[15].

Finally, we combine the filtered images into an output color image:

vxChannelCombineNode(graph,
virtu8lnumv8 - 371, virtu8Lnumv8 - 21,
virtu8[numv8 - 11, NULL, output)

The rest of the code, including main() with image read/write, looks
very much like “changelmage.c,” which was already discussed. Note that all
virtug[i] images are virtual. This means that an OpenVX implementation
that has a Gaussian filter that works on color images could just run it,
skipping channel extract/combine operations. Also, if an implementation
supports Gaussian filter stacking, then it can use it instead of executing five
filters one by one, resulting in a code generating much less memory traffic.

To compile “filterGaussImage.c,” you can use either CMake or the fol-
lowing command:

Basic image transformations 89

$ gcc ../book_samples/filter/filterGaussImage.c
../book_samples/ppm-io/readImage.c
../book_samples/ppm-io/writeImage.c -1 ~/OpenVX_sample/include -1I
../book_samples/ppm-io -1 OpenVX -o filterGaussImage

You can run the sample on “cup.ppm’:
$./filterGaussImage ../../book_samples_data/cup.ppm output.ppm

Fig. 6.3 shows the input and the output images.

Input image Output image

Figure 6.3 Gaussian image filtering: input and output.

6.2.2 Custom convolution

Now let us see how we can apply an arbitrary linear filter to an image.
OpenVX has a special object for linear image filters called vx_convolution.
We will need to create this object, set filter coefficients, and then apply
the convolution to each of the image channels. You can find the source
code in “filter/filterlmage.c,” which is very similar to “filterGaussImage,”
which we discussed in the previous section. We begin by defining the filter
coefticients. In this example, we will use a Scharr 3 x 3 filter:

vx_intl6 scharr_coeffs[31[3] = {

{3, 0, -3},
{10, 0, -10},
{3, 0, -3}

1

Now we create a vx_convolution object and assign our convolution coeffi-
cients to it:

90 OpenVX Programming Guide

vx_convolution scharr = vxCreateConvolution(context, 3, 3);
vxCopyConvolutionCoefficients(scharr, (vx_intléx)scharr_coeffs,
VX_WRITE_ONLY,
VX_MEMORY_TYPE_HOST) ;

Apart from coefficients, there is one more attribute of our convolution ob-
ject that we need to take care of. Convolutions used on a VX_DF_IMAGE_U8 im-
age can result in pixel values outside of the 0-255 range. Because OpenVX
needs to be efficient on embedded platforms that may not have full sup-
port for floating point arithmetics, the output of a convolution is either
a VX_DF_IMAGE_U8 or a VX_DF_IMAGE_S16 image. The policy used for convo-
lution is VX_CONVERT_POLICY_SATURATE, which means that if the output pixel
value is above the maximum, then it is clamped to the maximum value. To
make it possible to use VX_DF_IMAGE_US in a reasonable number of cases,
vx_convolution has a parameter called “scale,” which, together with the
saturation policy, gives the output intensity output(x,y) in the pixel with
coordinates (x, y) for 8-bit unsigned images defined as follows:

0 if sum(x, y) <0,
output(x, y) = § 255 if sum(x, y)/scale > 255, (6.1)
sum(x, y)/scale otherwise,

where sum(x, y) is the result of a convolution applied to an image patch of
the same size as the convolution with a center in coordinates (x, y). To set
the convolution scale, we will use the attribute set function:

vx_uint32 scale = 2;
vxSetConvolutionAttribute(scharr, VX_CONVOLUTION_SCALE, &scale,
sizeof(scale));

Note that for the reasons of efficiency, the scale can be only a power of two
(up to 23!) for OpenVX 1.x. Now that we have the vx_convolution object
set up, we construct a graph. First, we add nodes for splitting the color
input image into three grayscale images:

vxChannelExtractNode(graph, input, VX_CHANNEL_R, virtu8[0]);
vxChannelExtractNode(graph, input, VX_CHANNEL_G, virtu8[1]);
vxChannelExtractNode(graph, input, VX_CHANNEL_B, virtu8[2]);

Then we add a convolution node for each channel:

for(i = 0; 1 < 3; i++)
vxConvolveNode(graph, virtu8[il, scharr, virtu8[i + 31);

Basic image transformations 91

Note that you can use different convolutions on diftferent channels here.
However, if you change the convolution coefficients in between graph ex-
ecutions, then the graph will need to be reverified each time. This allows
OpenVX to check the filter coefficients and the sequence of filters in a
graph and see if any optimizations can be applied for a specific hardware
platform. Finally, we combine the grayscale images into a color one:

vxChannelCombineNode(graph, virtu8[3], virtu8[4], virtu8[5], NULL,
output);

“filterlmage.c” can be compiled similarly to the “filterGaussImage.c” in
the previous section. Fig. 6.4 shows the input and the output images for
the “filterImage.c” executed on “cup.ppm”.

Input image Output image

Figure 6.4 Scharr image filtering: input and output.

6.3 Regions of interest

6.3.1 Reading from regions of interest

A standard operation in computer vision is preprocessing an image and
selecting a rectangular area (region of interest, ROI) containing an object
of interest for further processing. An ROI in OpenVX is an image that
can be created using the vxCreateImageFromROI function. The ROI image
is a part of a parent image, so, for instance, if a pixel value in an ROI
image is updated, then this change will be reflected in a parent image. We
will demonstrate the use of ROI with a slightly modified version of the
Scharr filtering graph discussed in the previous section. You can find the
full source code in “filter/filterlmageROI.c”. The first change is that we

92 OpenVX Programming Guide

need to define an output image in the “main” function with the size of the
ROI rather than the size of the input image:

vx_rectangle_t rect;

rect.start_x = 48;

rect.start_y = 98;

rect.end_x = 258;

rect.end_y = 202;

int width = rect.end_x - rect.start_x;

int height = rect.end_y - rect.start_y;

vx_image output = vxCreatelmage(context, width, height, VX_DF_IMAGE_RGB);

Then we pass the “rect” structure to the “makeFilterGraph” function,
where we make the following change to the “vxChannelExtractNode”
calls:

/* create ROI image =*/

vx_image roi = vxCreatelmageFromROI(input, rect);

/* Do scharr filtering on the input image =x/

/* First, extract R, G, and B channels to individual virtual images =%/
vxChannelExtractNode(graph, roi, VX_CHANNEL_R, virtu8[0]);
vxChannelExtractNode(graph, roi, VX_CHANNEL_G, virtu8[1]);
vxChannelExtractNode(graph, roi, VX_CHANNEL_B, virtu8[2]);

Now the convolution node will take the channels of the ROI image as
an input. The sample can be compiled similarly to “filterGaussIlmage.c” in
Section 6.2.1. Fig. 6.5 shows the input and output images for the “filter-
ImageROI.c” executed on “cup.ppm”.

6.3.2 Writing to regions of interest

A less frequent use of ROI is modifying a part of an image. We will take an
object on a cup and enhance its edges. We will use a Canny edge detector
to find edges and binary operations to change the corresponding part of an
input image. However, it will be challenging to do with the graph API. We
will need to write both to an output image (to copy the pixels outside of the
ROI) and to an ROI image within it. This means that two nodes will write
to the same data object. Such a topology will cause a graph verification
failure “VX_ERROR_MULTIPLE_WRITERS”. So, to write to a region
of interest, we will use the immediate mode API. You can find the source
code in “filter/filterImageROIvxu.c”. First, we will create an ROI image:

Basic image transformations 93

N
Input image Output image

Figure 6.5 Scharr ROl image filtering: input and output.

vx_rectangle_t rect;

rect.start_x = 48;

rect.start_y = 98;

rect.end_x = 258;

rect.end_y = 202;

vx_image roi = vxCreatelmageFromROI(input, &rect);

Then we create temporary images for running the Canny edge detector
and working with edge images:

int width = rect.end_x - rect.start_x;
int height = rect.end_y - rect.start_y;

/* create temporary images for working with edge images =/
vx_image copy_channel[3], roi_channel[3], edges, edges_inv;

edges = vxCreatelImage(context, width, height, VX_DF_IMAGE_U8);
edges_inv vxCreateImage(context, width, height, VX_DF_IMAGE_U8);

Since we will run a Canny edge detector, we need to create a threshold
object:

/* set the threshold value */
vx_pixel_value_t lower, higher;
Tower.U32 = 50;

higher.U32 = 100;

/* create a threshold object */
vx_threshold threshold = vxCreateThresholdForImage(context,
VX_THRESHOLD_TYPE_RANGE, VX_DF_IMAGE_U8, VX_DF_IMAGE_U8);

94 OpenVX Programming Guide

if(vxGetStatus(threshold) != VX_SUCCESS)

{
printf("Threshold creation failed\n");

/* set threshold values =/
vxCopyThresholdRange(threshold, &lower, &higher, VX_WRITE_ONLY,
VX_MEMORY_TYPE_HOST) ;

Finally, we iterate through channels of our color image, compute a canny
edge detector for each of them (stored in edges), invert it, and then use a
bitwise “and” to make the corresponding pixels in the input image black:

enum vx_channel_e channels[] = {VX_CHANNEL_R, VX_CHANNEL_G,
VX_CHANNEL_B};
for(int i = 0; 1 < 3; i++)
{
roi_channel[i] = vxCreatelImage(context, width, height,
VX_DF_IMAGE_U8);
copy_channel[i] = vxCreatelmage(context, width, height,
VX_DF_IMAGE_U8);
vxuChannelExtract(context, roi, channels[i], roi_channell[i]);

vxuCannyEdgeDetector(context, roi_channelli], threshold, 3,
VX_NORM_L2, edges);

vxuNot(context, edges, edges_inv);
vxuAnd(context, roi_channel[i], edges_inv, copy_channell[i]);
}

Finally, we combine all the modified channels in the input image and save
it to disk. Note that we combine channels in the roi image and then save
the input image: our changes in the former have a direct impact on the
latter:

vxuChannelCombine(context, copy_channel[0], copy_channel[1l],
copy_channel[2], NULL, roi);
if(writeImage(input, \"cup_roi.ppm\"))
printf("Problem writing the output image\\n\");

The sample code can be compiled similarly to the “filterGaussImage.c”
in Section 6.2.1. Fig. 6.6 shows the input and output images for the “fil-
terlmageROIvxu.c” code executed on “cup.ppm.”

Basic image transformations 95

Input image Output image

Figure 6.6 Canny edge effect on an ROI: input and output.

6.4 Feature extraction

6.4.1 Hough transform

Now let us see how we can use OpenVX to extract some meaningful
information about the scene. One of the important functions in com-
puter vision is extracting lines from an image. OpenVX has the function
vxHoughLinesPNode, an implementation of the probabilistic Hough transform
algorithm [35]. This function takes a binary image as an input and returns
a set of lines. A single line in OpenVX is represented by a data structure

vx_line2d_t:

typedef struct _vx_line2d_t {
vx_float32
vx_float32
vx_float32
vx_float32
} vx_Tine2d_t;

A collection of lines is represented by an array object vx_array. Be-
ing a graph API object, vx_array is opaque, just like vx_image. The
vxCopyArrayRange function can be used to map the contents of the array
into host memory for both reading and writing. Let us start with a simple
example of the probabilistic hough transtorm, applied to an image of a road
taken from a car. Our goal is to find the road lines. To do that, we will bi-
narize an input image by computing a Sobel filter magnitude and applying
a threshold and then running a hough transform on the resulting binary
image. The scheme of the OpenVX graph that we will use is shown in
Fig. 6.7. You can find the source code in the file “hough/houghLines.c.”

96 OpenVX Programming Guide

Input

Figure 6.7 OpenVX graph for the Hough transform example.

We start by reading the input image with the function vxa_read_image
from the vxa library, and finding its dimensions in the main function:

const charx input_filename = argv[1];
const charx binary_filename = argv[2];

const charx lines_filename = argv[3];

vx_context context = vxCreateContext();
vx_image image, binary;

vxa_read_image((const char x)input_filename, context, &image);

vx_uint32 width, height;
vxQueryImage(image, VX_IMAGE_WIDTH, &width, sizeof(vx_uint32));
vxQueryImage(image, VX_IMAGE_HEIGHT, &height, sizeof(vx_uint32));

Then we create the lines array, create a graph (we will review this
function in detail further), register log callback function, and initiate graph

processing:

/* create an array for storing hough Tines output =*/
const vx_size max_num_lines = 2000;
lines = vxCreateArray(context, VX_TYPE_LINE_2D, max_num_lines);

vx_graph graph = makeHoughlLinesGraph(context, image, &binary, &lines);
vxRegisterLogCallback(context, Tog_callback, vx_true_e);

vxProcessGraph(graph);

Basic image transformations 97

Note that the binary image is passed to the graph creation function as a
pointer; it will be created inside the graph processing function as we do
not know its dimensions here. Finally, we save the binary image, draw the
detected lines on top of it, and also save the result:

vxa_write_image(binary, binary_filename);

// draw the Tines
vx_pixel_value_t color;
color.RGBLO] = 0;
color.RGB[1] = 255;
color.RGB[2] 0;

vx_image image_lines;

vx_size _num_lines;
// query the number of Tines in the Tines array
vxQueryArray(Tines, VX_ARRAY_NUMITEMS, &_num_lines, sizeof(_num_Tines));
draw_lines(context, binary, Tines, _num_Tines,
&color, 2, &image_lines);

vxa_write_image(image_lines, lines_filename);

Now let us review the function that creates the graph. It starts by query-
ing the dimensions of the image and defining the dimensions of the binary
image that we will use for line detection, since the input image resolution
is too high:

vx_graph makeHoughlLinesGraph(vx_context context, vx_image input,
vx_1imagex binary, vx_array lines)

vx_uint32 width, height;
vxQueryImage(input, VX_IMAGE_WIDTH, &width, sizeof(vx_uint32));
vxQueryImage(input, VX_IMAGE_HEIGHT, &height, sizeof(vx_uint32));

int widthr = width/4;
int heightr = height/4;

Then we create a graph and allocate all images that we need:

vx_graph graph = vxCreateGraph(context);

ftdefine numsl6 (3)
vx_image virt_sl6[numsl6];

/* create virtual images =/

98 OpenVX Programming Guide

vx_image virt_nvl2 = vxCreateVirtuallImage(graph, 0, 0, VX_DF_IMAGE_NVI12);
vx_image virt_y = vxCreateVirtuallImage(graph, 0, 0, VX_DF_IMAGE_U8);
vx_image virt_yr = vxCreateVirtualImage(graph, widthr, heightr,
VX_DF_IMAGE_U8);
vx_image binary_thresh = vxCreateVirtuallmage(graph, 0, 0,
VX_DF_IMAGE_U8);

for(int i = 0; 1 < numsl6; i++)
{
virt_s16[i] = vxCreateVirtualImage(graph, 0, 0, VX_DF_IMAGE_S16);

*binary = vxCreateImage(context, widthr, heightr, VX_DF_IMAGE_US8);

Now we proceed with adding the graph nodes. First, we convert the
input RGB image into the YUV color format, extract the Y channel, and
resize it down:

/* extract grayscale channel %/
vxColorConvertNode(graph, input, virt_nvl2);
vxChannelExtractNode(graph, virt_nv12, VX_CHANNEL_Y, virt_y);

/* resize down x/
vxScalelmageNode(graph, virt_y, virt_yr, VX_INTERPOLATION_BILINEAR);

Then we compute image gradient magnitude with a Sobel filter:

vxSobel3x3Node(graph, virt_yr, virt_sl16[0], virt_sl16[1]);
vxMagnitudeNode(graph, virt_s16[0], virt_sl6[1], virt_sl6[2]);

Now we apply a threshold to the resulting greyscale image. Choosing
a threshold value can be a complex task, but for simplicity, here we will
use a constant value. As we discussed earlier, we need to create a threshold
object, set its value, and only then add a thresholding graph node:

vx_threshold thresh = vxCreateThresholdForImage(context,
VX_THRESHOLD_TYPE_BINARY, VX_DF_IMAGE_S16, VX_DF_IMAGE_U8);

vx_pixel_value_t pixel_value;

pixel_value.S16 = 256;

vxCopyThresholdValue(thresh, &pixel_value, VX_WRITE_ONLY,
VX_MEMORY_TYPE_HOST);

vx_node thresh_node = vxThresholdNode(graph, virt_sl16[2], thresh,

binary_thresh);

Basic image transformations 99

There are some filters you can run on the resulting binary image to
improve line detection. We will use a 3 x 3 dilate filter:

vxDilate3x3Node(graph, binary_thresh, *binary);

Finally, we are ready to run a Hough transform function on the binary
image. It is important to choose right parameters for the Hough transform
that are stored in the vx_nough_Tines_p_t structure. The most important pa-
rameters are: rho is the size of a histogram bin for the distance from a line
to the coordinate center, theta is the size of a histogram bin for the line
orientation angle, and threshold is the minimum number of white pixels

from the binary image that will lie on the detected line:

vx_hough_Tines_p_t hough_params;
hough_params.rho = 1.0f;
hough_params.theta = 3.14f/180;
hough_params.threshold = 100;
hough_params.line_length = 100;
hough_params.line_gap = 10;
3.14;
hough_params.theta_min = 0.0;

hough_params.theta_max

vx_scalar num_lines = vxCreateScalar(context, VX_TYPE_SIZE, NULL);
vxHoughlLinesPNode(graph, *binary, &hough_params, lines, num_lines);

The results of executing the code on “IMG-7875JPG” are given in
Fig. 6.8. We can see that there are quite a few false alarms that should be
filtered out. We will consider such a filtering in the next section.

Input image

Figure 6.8 Lines detected with Hough transform.

100 OpenVX Programming Guide

6.4.2 Postprocessing hough transform results

Usually, it is not enough to just find the lines in an image; there is infor-
mation about scene or 3D geometry that can be extracted from the lines.
Specifically, for the lane detection problem we considered in the previous
section, it is often useful to find the vanishing point, the crossing of the
parallel lines representing road markings. We will implement the OpenVX
graph shown in Fig. 6.9. The code that solves this problem is located in
the “hough/houghLinesEx.c” example. First, judging from Fig. 6.8, we
have too many false positives that we need to filter out. To this end, we
will create a user node. We already covered the concept of user nodes in
Section 4.6, so here we will just briefly review the code for the user node
that implements line filtering. The filtering algorithm is based on two as-
sumptions: the lines should be oriented almost vertically, and they should
be located in the lower part of the image. First, let us review the callback
function implementing the user kernel. This function (which will be called
during graph execution) takes an array of lines as an input and also returns
an array of lines.

Virtual Virtual Virtual
| Colorconvert || image || Exiracty || image r— image

Input Output
image Virtual Virtual Virtual image
| Magnitude || mage L g |1 image [e | image [hLines |

Virtual
b Ueorr . || image A Usernode:udl

Figure 6.9 OpenVX graph for the Hough transform postprocessing example.

vx_status VX_CALLBACK filter_lines_calc_function(vx_node node, const
vx_reference » refs, vx_uint32 num)
{
vx_array lines = (vx_array) refs[0];
vx_array lines_output = (vx_array) refs[1];

We start by extracting data from the input array of lines 1ines. First, we find
the number of elements in the input array:

Basic image transformations 101

vx_size num_lines = -1;
ERROR_CHECK_STATUS(vxQueryArray(lines, VX_ARRAY_NUMITEMS,
&num_lines, sizeof(num_lines)));

Note that we are using the macro ERROR_CHECK_STATUS and later ERROR_CHECK_
0BJECT, which are handy for locating return value errors, as they will print
both the error code, which you can look up in the OpenVX specification,
and the line number of the function call generating this error. The macros
are defined as follows:

ffdefine ERROR_CHECK_STATUS(status) { \

vx_status status_ = (status); \
if(status_ != VX_SUCCESS) { \
printf("ERROR: failed with status = (%d) at " __FILE__ "#%d\n", \
status_, __LINE_); \
exit(l); \
b

f#define ERROR_CHECK_OBJECT(obj) { \

vx_status status_ = vxGetStatus((vx_reference)(obj)); \
if(status_ != VX_SUCCESS) { \
printf("ERROR: failed with status = (%d) at " _FILE__ "#%d\n", \
status_, __LINE_); \
exit(l); \
b

We continue the filtering function by mapping the input array data into
host memory:

char+* __Tines = NULL;
vx_map_id map_id;
vX_size stride = sizeof(vx_line2d_t);
vxMapArrayRange(lines, 0, num_lines, &map_id, &stride,
(void*x)&__lines,
VX_READ_ONLY, VX_MEMORY_TYPE_HOST, 0);

Then we go through each line, and if it satisfies the filtering conditions,
we copy it into specially allocated host memory _1ines_filtered:

vx_Tine2d_t _lines_filtered[max_num_lines];
vx_size _num_lines_filtered = 0;

102 OpenVX Programming Guide

const float max_ratio = 0.1;
for(int i = 0; 1 < num_lines; i++, __lines += stride)
{

vx_Tline2d_t* _line = (vx_Tine2d_t*)__Tlines;

int dx = _line->end_x - _line->start_x;

int dy = _line->end_y - _line->start_y;

if(_line->start_y < heightr/2 || _line->end_y < heightr/2)
{
continue;

memcpy (&_Tines_filtered[_num_lines_filtered++], _Tline,
sizeof(vx_line2d_t));

Last, we unmap the input array and add all the copied data into the
output array:

vxUnmapArrayRange(lines, map_id);

vxAddArrayItems(lines_output, _num_lines_filtered, _Tines_filtered,

sizeof(vx_Tine2d_t));

return(VX_SUCCESS);

To create a user node, we need a validator function, which will be called
during the graph verification to check the correctness of input and output
parameter types. In our case the validator enforces the input and output
arrays to be of type VX_TYPE_LINE_2D:

vx_status VX_CALLBACK filter_lines_validator(vx_node node, const
vx_reference parameters[], vx_uint32 num, vx_meta_format metas[])

// parameter #0 -- check array type

vx_enum param_type;

ERROR_CHECK_STATUS(vxQueryArray((vx_array)parameters[O0],
VX_ARRAY_ITEMTYPE, ¶m_type, sizeof(param_type)));

if(param_type != VX_TYPE_LINE_2D) // check that the array contains

lines

return VX_ERROR_INVALID_TYPE;

Basic image transformations

// parameter #1 -- check array type
ERROR_CHECK_STATUS(vxQueryArray((vx_array)parameters[1],
VX_ARRAY_ITEMTYPE, ¶m_type, sizeof(param_type)));
if(param_type != VX_TYPE_LINE_2D)
{
return VX_ERROR_INVALID_TYPE;

// set output metadata
ERROR_CHECK_STATUS(vxSetMetaFormatAttribute(metas[1],
VX_ARRAY_ITEMTYPE, ¶m_type, sizeof(param_type)));

return VX_SUCCESS;

103

We also need a function that registers the user kernel with OpenVX:

vx_status registerUserFilterLinesKernel(vx_context context)

{

vx_kernel kernel = vxAddUserKernel(context,
"app.userkernels.filter_lines",
USER_KERNEL_FILTER_LINES,
filter_lines_calc_function,
2, // numParams
filter_Tines_validator,
NULL,
NULL)3

ERROR_CHECK_OBJECT(kernel);

ERROR_CHECK_STATUS(vxAddParameterToKernel(kernel, 0, VX_INPUT,
VX_TYPE_ARRAY, VX_PARAMETER_STATE_REQUIRED)); // input
ERROR_CHECK_STATUS(vxAddParameterToKernel(kernel, 1, VX_OUTPUT,
VX_TYPE_ARRAY, VX_PARAMETER_STATE_REQUIRED)); // output
ERROR_CHECK_STATUS(vxFinalizeKernel(kernel));
ERROR_CHECK_STATUS(vxReleaseKernel(&kernel));

vxAddLogEntry((vx_reference) context, VX_SUCCESS, "OK: registered

user kernel app.userkernels.filter_lines\n");
return VX_SUCCESS;

104 OpenVX Programming Guide

Finally, we need a function that adds a user node to the graph:

vx_node userFilterLinesNode(vx_graph graph,
vx_array input,

vx_array output)

vx_context context = vxGetContext((vx_reference) graph);

vx_kernel kernel = vxGetKernelByEnum(context,
USER_KERNEL_FILTER_LINES);

ERROR_CHECK_OBJECT(kernel);

vx_node node = vxCreateGenericNode(graph, kernel);

ERROR_CHECK_OBJECT(node);

ERROR_CHECK_STATUS(vxSetParameterBylIndex(node, 0, (vx_reference)

input));
ERROR_CHECK_STATUS(vxSetParameterByIndex(node, 1, (vx_reference)
output));

ERROR_CHECK_STATUS(vxReleaseKernel(&kernel));

return node;

At this point, we have everything we need to run line filtering as a
user node in an OpenVX graph. Now let us add a function that finds the
crossing point of all filtered lines. We will implement it as a user kernel,
which will be executed right after the line filtering kernel. We will use
the uniform coordinates (e.g., see [26]) for representing lines as they are
very convenient for finding line crossings. Each line is represented by a
three-dimensional vector [so that the equation describing the line can be
represented as (x,y, 1)T1 =0, where x,y are pixel coordinates. We start
with the function that computes the coordinates of the cross point for two
lines, each given by a three-dimensional vector. According to projective
geometry [26], the cross point in the uniform coordinates will be given by
the vector product of these vectors:

void find_cross_point(const float* Tinel, const floatx 1ine2,
float* cross_point)

cross_point[0] = linel[1]*1ine2[2] - Tinel[2]x1ine2[1];
cross_point[1] = T1inel[2]*Tine2[0] - Tinell[0lx1ine2[2];
cross_point[2] = 1inel[0]*Tine2[1] - Tinel[llx1ine2[0];

Basic image transformations 105

Now let us see the implementation of the kernel that computes the
cross point of the road lines. As with the line filtering kernel, it starts with
mapping the input array to host memory:

vx_status VX_CALLBACK vanishing_point_calc_function(vx_node node, const

vx_reference * refs, vx_uint32 num)

vx_array lines = (vx_array)refs[0];
vx_array vanishing_points = (vx_array)refs[1];

vx_size num_lines = -1;
ERROR_CHECK_STATUS (vxQueryArray(Tines, VX_ARRAY_NUMITEMS, &num_Tlines,

sizeof(num_lines)));

charx __lines = 0;
vx_size stride = sizeof(vx_line2d_t);
vx_map_id map_id;

vxMapArrayRange(Tines, 0, num_Tlines, &map_id, &stride, (void*x)&__lines,
VX_READ_ONLY, VX_MEMORY_TYPE_HOST, 0);

Then we convert the lines into uniform coordinates:

float Tines_uniformfmax_num_Tines][3];
for(int i = 0; i < num_lines; i++, _ Tines += stride)
{
vx_line2d_t* _line = (vx_line2d_tx)__lines;
float x0 = _Tine->start_x;
float y0 = _line->start_y;
float dx = _line->end_x - _line->start_x;
float dy = _line->end_y - _line->start_y;

Tines_uniform[iJ][0] dy;
Tines_uniform[i][1] -dx;
Tines_uniform[iJ[2] = -x0*dy + yO*dx;

vxUnmapArrayRange(lines, map_id);

Now we calculate the crossing point of each pair of lines and find the
average. Obviously, this algorithm is sensitive to strong outliers, and there
are many ways to make it more robust, but for brevity, we will stick with
the simplest version. The final result is stored in the output vx_array object:

106 OpenVX Programming Guide

vx_coordinates2d_t avg_cross_point = {0.0, 0.0};
int count = 0;
for(int i = 0; 1 < num_lines; i++)
{
for(int j = 0; j < num_lines; j++)
{
float cross_point[3];
find_cross_point(lines_uniform[i], Tines_uniform[j],
cross_point);
if(fabs(cross_point[2]) < FLT_MIN)
{
// filter the vanishing point
continue;
}
float cx

cross_point[0]/cross_point[2];
float cy = cross_point[1]/cross_point[2];

if(ex <0 || cy <O || cx > widthr || cy > heightr)
{
// we know the cross point lies inside an image,
so this is an outlier

continue;

avg_cross_point.x += (int)cx;
avg_cross_point.y += (int)cy;

count++;

avg_cross_point.x /= count;
avg_cross_point.y /= count;

vxAddArraylItems(vanishing_points, 1, &avg_cross_point,
sizeof(avg_cross_point));

return(VX_SUCCESS);
The node validation and registration functions and the function for adding

this node to a graph are similar to the line filtering node. The graph creation
function is almost the same as in the previous section, except for the last

Basic image transformations 107

part where the Hough transform is computed. The line filtering node and
the node for finding the vanishing point are added:

vx_array _lines = vxCreateVirtualArray(graph, VX_TYPE_LINE_2D,
max_num_lines);

vx_scalar num_lines = vxCreateScalar(context, VX_TYPE_SIZE, NULL);

/* run hough transform x/
vx_hough_Tines_p_t hough_params;
hough_params.rho = 1.0f;
hough_params.theta = 3.14f/180;
hough_params.threshold = 100;
hough_params.line_length = 100;
hough_params.line_gap = 10;
hough_params.theta_max = 3.14;
hough_params.theta_min = 0.0;

vxHoughLinesPNode(graph, xbinary, &hough_params, _lines,

num_lines);

userfFilterLinesNode(graph, _Tlines, Tines);
userfFindVanishingPoint(graph, lines, vanishing_points);

return graph;

Note that the array _lines, which we use as an input to the
userFilterLinesNode, is virtual. Nevertheless, the calls to vxMapArrayRange
and vxUnmapArrayRange executed from the user node will be executed suc-
cessfully, as they are called during graph execution. This is guaranteed by
the OpenVX spec; see the subsection “Virtual Data Objects” in the chap-
ter “Graph Concepts”: “No calls to an Map/Unmap or Copy APIs will
succeed given a reference to an object created through a virtual create
function from a graph external perspective. Calls to Map/Unmap or Copy
APIs from within client-defined node that belongs to the same graph as the
virtual object will succeed as they are graph internal.”

The main function is also very similar, and we add the drawing of a circle
at the vanishing point:

// read the coordinates of the vanishing point

vx_coordinates2d_t coordinates;

108 OpenVX Programming Guide

vxCopyArrayRange(vanishing_points, 0, 1, sizeof(coordinates),
&coordinates, VX_READ_ONLY, VX_MEMORY_TYPE_HOST);

// draw the circle around each vanishing point coordinate

vx_image image_final;

draw_circles(context, image_lines, vanishing_points, 1, 10, &color, 3,
&image_final);

vxa_write_image(image_final, Tines_filename);

The results of running “houghLinesEx.c” on “IMG-7875JPG” are
shown in Fig. 6.10.

/AN N\
Binary image with filtered lines and

the vanishing point.

Input image

Figure 6.10 Lines detected with Hough transform.

6.5 Geometricimage transformations

6.5.1 Undistortion implemented with remap

One of the essential geometric transformations of an image in computer
vision is correcting for lens distortion, usually called “undistort.” A typical
effect of lens distortion is that a straight line in a three dimensional space is
not straight in an image generated with a camera. Undistort transformation
maps an image into another image as if the new image is generated with a
perspective transformation, and straight lines in 3D are mapped to straight
lines in the image. Undistort needs information about camera intrinsic pa-
rameters and lens distortion coefticients. OpenVX, being a library focused
on runtime, has no way to compute this data (a process typically referred
to as “camera calibration”). Also, OpenVX contains no any specific model
for lens distortion. Since the undistort transformation, given camera and

Basic image transformations 109

lens parameters, maps pixels only depending on their positions in images,
undistort can be implemented with a remap. So, we first will use OpenCV
offline to create a remap transformation.

The standard way to find lens parameters is calibrating a camera by mak-
ing images of a known pattern like a checkerboard. OpenCV “calibration”
sample is used to obtain camera intrinsic parameters and lens distortion
coefficients. We refer to the OpenCV calibration tutorial [36] for details.
Then we need to calculate the remap corresponding to the undistort map-
ping.

Remap is a very simple image transformation: for each pixel with
coordinates (x4, y4) in the destination image, it specifies floating point co-
ordinates in the source image (xx(xd, ya), ys(x4, yd)), so that the destination
image intensity I; is defined using the source image intensity I as

L ya) = L (%5(xas ya), ys(xd, ya)) - (6.2)

Since xy, y, are floating point and do not necessarily fall into a pixel center,
I; is interpolated from the intensities in the neighboring pixels of the source
image. OpenCV and OpenVX specify several such interpolation methods.

The method for generating a remap transformation given camera pa-
rameters is implemented in the “undistort/undistortOpenCV.cpp” sample.
It reads a file of camera parameters created by an OpenCV calibration pro-
cedure and then writes a file of undistortion remapping data suitable for use
by OpenVX. First, it reads the camera parameters and image dimensions
saved by the OpenCV calibration sample:

FileStorage fs(camera_file, FileStorage::READ);
Mat intrinsic_params, dist_coeffs;
fs["camera_matrix"] >> intrinsic_params;
fs["distortion_coefficients"] >> dist_coeffs;
int width, height;

fs["image_width"] >> width;

fs["image_height"] >> height;

Then we generate undistort remap transformation with

Mat mapl, mapZ2, new_camera;
initUndistortRectifyMap(intrinsic_params, dist_coeffs, Mat(),
intrinsic_params, Size(width, height), CV_32FC2, mapl, map2);

110 OpenVX Programming Guide

The result is stored in mapl, whereas map2 is not used. Now we save the
remap together with source and destination image dimensions required by
OpenVX:

FileStorage fsl(map_fname, FileStorage::WRITE);
fsl << "remap" << mapl;

fsl << "remap_src_width" << width;

fsl << "remap_src_height" << height;

fsl << "remap_dst_width" << width;

fsl << "remap_dst_height" << height;

As a result of executing this sample, we get an xml or yml file with the
remap transformation. Now let us import it into OpenVX.

A remap in OpenVX is encapsulated by a special object vx_remap. It is
very similar to vx_image. Instead of width and height attributes, it has both
source and destination image sizes:

enum vx_remap_attribute_e {
VX_REMAP_SOURCE_WIDTH = VX_ATTRIBUTE_BASE(VX_ID_KHRONOS,
VX_TYPE_REMAP) + 0x0,

VX_REMAP_SOURCE_HEIGHT = VX_ATTRIBUTE_BASE(VX_ID_KHRONOS,
VX_TYPE_REMAP) + 0x1,

VX_REMAP_DESTINATION_WIDTH = VX_ATTRIBUTE_BASE(VX_ID_KHRONOS,
VX_TYPE_REMAP) +
0x2,

VX_REMAP_DESTINATION_HEIGHT = VX_ATTRIBUTE_BASE(VX_ID_KHRONOS,
VX_TYPE_REMAP) +

0x3};

Similar to vx_image, data can be copied to/from a vx_remap object using
the functions vxMapRemapPatch, vanmapRemapPatch,:nld vxCopyRemapPatch. As
of OpenVX version 1.3, the only graph node that uses a remap is created
with vxRemapNode. This node has one image as an input and one image as an
output.

The image undistort transformation based on OpenVX is implemented
in “undistort/undistort-remap.c.” This sample uses the library “vxa” [31]
(https://github.com/relrotciv/vxa) to read an input image from a jpeg
file:

vx_image input_image;
if(vxa_read_image(image_filename, context, &input_image) != 1)
{

https://github.com/relrotciv/vxa

Basic image transformations 111

Virtual
| ChannelR || image |

Virtual
! ChannelR | image —r—

Output
image

Virtual
A GhanneliRudl image r———

Figure 6.11 A remap transformation graph.

printf("Error reading image 1\n");

return(-1);

We use the same library to read a remap from a file created by OpenCV.
The function that reads remap also returns us the width and height of the

output image:

int width, height;

vX_remap remap;

if(vxa_import_opencv_remap(remap_filename, "remap", context, &remap,
&width, &height) != 1)

printf("Error reading remapl\n");

return(-1);

Then we create an output color image using the dimensions provided to us

by the remap:

vx_image output_image = vxCreatelmage(context, width, height,
VX_DF_IMAGE_RGB) ;

Now that all the data are in OpenVX, let us create a graph (see the
makeRemapGraph function). Our graph is shown in Fig. 6.11. Since a remap
node only accepts greyscale images, as usual, we will use virtual images to
process remaps individually on each channel. A smart OpenVX implemen-
tation can figure this out and process all three channels together, saving

112 OpenVX Programming Guide

on memory data transfer. The makeRemapGraph function starts by creating a
graph object and the helper virtual images:

const int numu8 = 2;
vx_image virtu8[numu8][3];
int i, j;

vx_graph graph = vxCreateGraph(context);

for(i = 0; 1 < numu8; i++)
for (j = 0; j < 3; j++)
virtu8[iJ[j] = vxCreateVirtuallImage(graph, 0, O,
VX_DF_IMAGE_U8);

Then we extract each channel from an input image and setup a remap node
with a bilinear interpolation:

enum vx_channel_e channels[] = {VX_CHANNEL_R, VX_CHANNEL_G,
VX_CHANNEL_B};
for(i = 0; i < 3; i++)
{
vxChannelExtractNode(graph, input_image, channels[i],
virtu8[01[il);
vxRemapNode(graph, virtu8[0J[i], remap, VX_INTERPOLATION_BILINEAR,
virtu8[11Li1);
}

Now we combine all the remapped images into a single-color image and
release the virtual images:

vxChannelCombineNode(graph, virtu8[1][0], virtu8[1][1], virtu8[1][2],
NULL, output_image);

for (i = 0; i < numu8; i++)
for(j = 0; j < 3; j++)
vxReleaseImage(&virtu8[illjl);

The graph is set up, and we only need to run the graph processing and save
the results to a file using the “vxa” library:

if((status = vxVerifyGraph(graph)))
{
printf("Graph verification failed, error code %d, %d\n",
(int)status, (int)VX_ERROR_NOT_SUFFICIENT);

Basic image transformations 113

}
else if (vxProcessGraph(graph))
printf("Error processing graph\n");
else if (vxa_write_image(output_image, output_filename) != 1)
printf("Problem writing the output image\n");
vxReleaseContext(&context);

Examples input and output images for two different cameras are shown
in Figs. 6.12 and 6.13. Note that the GoPro undistorted image shows a
small part of the original image. This is a common effect of the undistort
function on a wide angle camera with a relatively strong distortion.

To generate remap xml files, use the “undistortOpenCV.cpp” on the
“*camera.xml” files in the data folder. Assuming that the full path to the
data folder is in \$BOOK_SAMPLES_DATA, run

$./undistortOpenCV $BOOK_SAMPLES_DATA/canon-camera.xml
$BOOK_SAMPLES_DATA/canon-test.jpg output.jpg
$BOOK_SAMPLES_DATA/canon-remap.xml

$./undistortOpenCV $BOOK_SAMPLES_DATA/gopro-camera.xml
$BOOK_SAMPLES_DATA/gopro-test.png output.jpg
$BOOK_SAMPLES_DATA/gopro-remap.xml

Run the “undistort.c” sample to reproduce the results in Figs. 6.12 and
6.13:

$./undistort $BOOK_SAMPLES_DATA/canon-remap.xml
$BOOK_SAMPLES_DATA/canon-test.jpg output.jpg
$./undistort $BOOK_SAMPLES_DATA/gopro-remap.xml
$BOOK_SAMPLES_DATA/gopro-test.png output.jpg

Input image Output image

Figure 6.12 Undistortimage transformation: input and output. Undistort image trans-
formation: input and output, Canon EOS 100D, Sigma 18 mm.

114 OpenVX Programming Guide

Input image Output image

Figure 6.13 Undistort image transformation: input and output. Undistort image trans-
formation: input and output, GoPro HERO 3+, video 1080 p.

6.5.2 Perspective transformations

OpenVX supports two most commonly used image transformations in
computer vision, affine and perspective. An affine transformation is given
by a 2 x 3 matrix, which defines a pixel coordinate mapping from the out-
put image to the input. Specifically:

xo =M 1x+My1y+ Ms,

Yo = M 2x + My oy + M2, 3. (6.3)

Here (x¢, y0) and x, y are the coordinates of a pixel in the input and out-
put images, respectively, and M is an affine matrix. An example of affine
transformation has been given in Chapter 2, where it was used to rotate
an image 90 degrees. So in this chapter, we focus on the perspective trans-
formation. The API for both functions is very similar, and everything we
learn here can be applied to the affine transformation too.

The homography or perspective transformation is defined by a 3 x 3
matrix that defines a mapping of pixel coordinates:

Xy=Miix+M1y+Ms,
Yu=Miox+ Mooy + M3, (6.4)
2y =M 3x+ Mo sy + M 3.

Here x,y are pixel coordinates in the output image, and x,, y,, 2, are
uniform pixel coordinates in the input image. The normal input pixel co-
ordinates are given by

xo = xM/ZI/h

Yo = Yu/Zu- (6:5)

Basic image transformations 115

The OpenVX function that creates a perspective transformation graph
node is specified as follows:

vx_node vxWarpPerspectiveNode(vx_graph graph, vx_image input, vx_matrix
matrix, vx_enum type, vx_image output);

The algorithm implemented in this node computes the intensity in each
output image pixel by mapping it to an input image using Eqs. (6.4)—(6.5).
Since there usually is no one-to-one mapping between input and out-
put pixels, the output pixel intensity is computed by interpolating the
neighboring pixels intensity. The specific interpolation method is given
by the “type” parameter. If the output pixel is mapped outside of the in-
put image boundaries, then the border mode is used to compute the input
pixel intensity. The perspective node supports BORDER_MODE_UNDEFINED and
BORDER_MODE_CONSTANT. Note that the output image dimensions do not nec-
essarily have to be equal to the input image dimensions. This puts a not
too obvious restriction on the output image: its dimensions cannot be in-
ferred from the input image dimensions, so the output image cannot be
a virtual image without specified width and height. The same is true for
the affine transformation. The dimensions of the output image for both
vxWarpAffineNode and vxWarpPerspectiveNode must always be specified.

To illustrate the OpenVX perspective transformation, we will use the
previously developed example of using the Hough transform to detect
road lanes. Section 6.4.2 describes finding the vanishing point as a cross-
ing of parallel lanes. We will extend this sample to generate a bird’s eye
view from a single image. The bird’s eye view sample is implemented in
“birds-eye/birdsEyeView.c,” which is created by modifying “filter/hough-
LinesEx.c.” The result of the algorithm is shown in Fig. 6.14. To reproduce
these results, run

./birdsEyeView $BOOK_SAMPLES_DATA/IMG-7875.JPG output.jpg

Since a road is flat, a change in camera position can be simulated with
a perspective transformation (see [26]). So, we need to come up with a
perspective transformation that sends the vanishing point to infinity, and
this will make the road lines parallel to each other. Since a perspective
transformation depends on the vanishing point, it will have to be generated
during graph execution time, so we will need a user node for that. We will
discuss how to do this a little later; for now, let us see how we can apply
the perspective transformation to an image.

116 OpenVX Programming Guide

Input image Bird’s eye view

Figure 6.14 Results of the bird’s eye view perspective transformation.

6.5.2.1 Applying a perspective transformation

The perspective transformation node is added to an OpenVX graph in
the graph creation function “makeBirdsEyeViewGraph,” which is almost
the same as “the makeHoughLinesGraph” from “houghLinesEx.c”” The
scheme of the graph we will discuss in this section is shown in Fig. 6.15.

/ OpenVX Graph \

Line Line ‘ Line

Hough lines ‘ Array | User node: ‘ Array | User node: Array User node:
graph jser node: Find the Compute
I Filter lines ‘ vanishing perspsctlve
OpenvX ‘ point. | transformation

Virtual Virtual
Input _| image R Perspective image R Output.
e transform o
| O |
Virtual Virtual ChannelCombine
ChannelExtract to image G [Perspective image G to RGB |
RGB transform
OperVX eV -
Virtual - Virtual
imageB > Perspective image B

transform
_ et -/

Figure 6.15 OpenVX graph for generating bird’s eye view.

After adding the node that calculates a position of the vanishing point
“userFindVanishingPoint,” we add the user node that returns a perspective

transformation:

userFindVanishingPoint(graph, lines, vanishing_points);
userComputeBirdsEyeTransform(graph, vanishing_points, input,

perspective);

Basic image transformations 117

Then we apply the perspective transformation to the input image. Since
“vxWarpPerspectiveNode” works with grayscale images only, we split the
input image into three channels, process each of them, and then combine
them back into the output image:

/* Create the same processing subgraph for each channel =/
enum vx_channel_e channels[] = {VX_CHANNEL_R, VX_CHANNEL_G,
VX_CHANNEL_B};

for(int i = 0; 1 < 3; i++)

{
/* First, extract input and Togo R, G, and B channels to individual
virtual images =/

vxChannelExtractNode(graph, input, channels[i], virt_u8[il);

vx_node warp_node = vxWarpPerspectiveNode(graph, virt_u8[i],
perspective, VX_INTERPOLATION_BILINEAR, virt_u8[i + 31);
ERROR_CHECK_OBJECT (warp_node);

// set the border mode to constant with zero value
vx_border_t border_mode;

border_mode.mode = VX_BORDER_CONSTANT;
border_mode.constant_value.U8 = 0;
vxSetNodeAttribute(warp_node, VX_NODE_BORDER, &border_mode,

sizeof(border_mode));

}
vxChannelCombineNode(graph, virt_u8[3], virt_u8[4], virt_u8[5], NULL,
birds_eye);

Note that the matrix generated by the userComputeBirdsEyeTransform node
is an input to the vxWarpPerspectiveNode. Since no object metadata change
here, graph reverification will not be triggered for each graph execution.
There will be a substantial amount of pixels in the output image that
will be mapped outside of the input image boundaries. We want them to
be black, and so we set the border mode to vVX_BORDER_CONSTANT with the
pixel value equal to 0. Also, note that we use virtual images, so that an
OpenVX implementation can execute this operation in a more optimal
way, for example, running the perspective transformation on a color image
in one pass. Since the vxWarpPerspectiveNode cannot figure out the size of
the output image from the input image, the virtual images have to be ini-

118 OpenVX Programming Guide

tialized with specific values for width and height; see the beginning of the
makeBirdsEeriewGraphiInplenlentatﬂ)nZ

vx_uint32 width, height;
vxQueryImage(input, VX_IMAGE_WIDTH, &width, sizeof(vx_uint32));
vxQueryImage(input, VX_IMAGE_HEIGHT, &height, sizeof(vx_uint32));

/% create virtual images =%/
const int numu8 = 6;

vx_image virt_u8[numu8l;

for(int i = 0; 1 < numu8; i++)
{
virt_u8[i] = vxCreateVirtualImage(graph, width, height,
VX_DF_IMAGE_U8);

Now let us see how we can create a perspective transformation during
graph execution time.

6.5.2.2 Generating a perspective transformation

We want to create a perspective transformation that sends the vanishing
point to infinity. This can be done by considering the mapping

H=KRK™', (6.6)
where
fo 0 «
K=|f 0 ¢ (6.7)
0 0 1

is the intrinsic camera matrix, and R is a rotation around x axis,

1 0 0
R=10 cos(¢p) sin(¢) |. (6.8)
0 —sin(¢) cos(p)

The rotation angle ¢ is chosen so that the vanishing point maps to infinity.
Also, we need to keep the part of the road in front of the camera in the
view; otherwise, our output will be a black image. So, we will add an
additional pan and zoom transformation given by the matrix Z:

Hﬁnal =ZH.

Basic image transformations 119

(6.9)

Note that throughout this section, we will use the direct perspective

transformation that maps an input image to an output image. OpenVX

uses an inverse matrix that maps an output image to an input, and we will

address this only in the end when we will generate the output vx_matrix

object.

This algorithm is implemented in the birdseye_transform_calc_function.

It has two input parameters: a vx_array with one element corresponding to
the vanishing point and the input image, which is only needed to pass the
required size of the output image. The output parameter is the perspec-

tive transformation in a vx_matrix object. First, we get the input/output

parameters and image width/height:

vx_status VX_CALLBACK birdseye_transform_calc_function(vx_node node,

const vx_reference * refs, vx_uint32 num)

vx_array points = (vx_array)refs[0];
vx_image image = (vx_image)refs[1];

vx_matrix perspective = (vx_matrix)refs[2];

// get image height
vx_uint32 image_width, image_height;

ERROR_CHECK_STATUS (vxQueryImage(image,

sizeof(image_width)));

ERROR_CHECK_STATUS(vxQueryImage(image,

sizeof(image_height)));

VX_IMAGE_WIDTH, &image_width,

VX_IMAGE_HEIGHT, &image_height,

Then we initialize the intrinsics matrix and calculate its inverse (needed in

(6.6)):

// intrinsic parameters
float _K[9] = {

8.4026236186715255e+02+scale_factor, 0.,
3.7724917600845038e+02*scale_factor,
0., 8.3752885759166338e+02*scale_factor,
4.6712164335800873e+02xscale_factor,

0., 0., 1.

// calculate intrinsics inverse
float _Kinv[9];

120 OpenVX Programming Guide

calc_inverse_3x3matrix(_K, _Kinv);

scale_factor = 4 is used here and further because several operations, in-
cluding camera calibration and vanishing point detection, were done on
an image resized down 4 times each dimension. calc_inverse_3x3matrix is
implemented using the LAPACK library. Then we obtain the coordinates
of the vanishing point from the input vx_array argument:

// obtain the vanishing point
const int num_points = 1;
vx_coordinates2d_t* _points = 0;
vx_size stride = sizeof(vx_coordinates2d_t);
vx_map_id map_id;
vxMapArrayRange(points, 0, num_points, &map_id, &stride,
(void*x)&_points,
VX_READ_ONLY, VX_MEMORY_TYPE_HOST, 0);

Now we find the corresponding uniform coordinates of the vanishing point
using the inverse intrinsic matrix:

// generate the vanishing point in uniform coordinates

float pv[] = {_points[0].x*scale_factor,
_points[0].y*scale_factor};

float pvul2];

calc_homography(_Kinv, pv, pvu);

float yv = pvull]l;

We are ready to find the angle ¢ from (6.8). Note that we do all matrix
operations with floating point arrays, and we will use vx_matrix only for the
output:

// generate a homography that sends the vanishing point to infinity
float phi = atan(1l/yv);
float _rotate[9] = {
1.0f, 0.0f, 0.0f,
0.0f, -cos(phi), -sin(phi),
0.0f, sin(phi), -cos(phi)
b

Once we know the rotation matrix, we are ready to generate a perspective
transformation that sends the vanishing point to infinity:

// generate birds eye view homography
float _temp[9], _perspectivel[9];

Basic image transformations 121

mult_3x3matrices(_K, _rotate, _temp);
mult_3x3matrices(_temp, _Kinv, _perspective);

We also have to make sure that the important part of the image is visible
after this transformation. We will use an affine transformation that maps
parallel lines to parallel lines, but we cannot make it a separate node since
if the image is empty after the perspective transformation node, then the
output image will be empty too. For simplicity, we will construct this map-
ping as a pan and zoom transformation, making sure two control points
in the input image map inside the output image. First, we generate the
coordinates of the control points in the input image:

// now map two control points using the perspective matrix,
// to adjust scale and translation

float upper_boundary_factor = 1.2f;

float controll[2] = {pv[0], pv[l]xupper_boundary_factor};
float control2[2] = {pv[0], image_height};

Then we map them to the output image:

float controll_mapped[2], control2_mapped[2];
calc_homography(_perspective, controll, controll_mapped);
calc_homography(_perspective, control2, control2_mapped);

// find y coordinates of the mapped points from the uniform
coordinates

float yl = controll_mapped[1];

float y2 = control2_mapped[1];

Now we generate a pan and zoom transformation that maps these points to
the upper and lower boundaries of the output image and multiply it to the
left from the perspective transformation:

// now define additional translation and scale to have the control
points
// mapped to the upper and lower boundary of the output image
float scale = ((float)y2 - yl)/image_height;
float _panzoom[] = {1.0f, 0.0f, image_widthxscale/2 - pv[0],
0.0f, 1.0f, -yl,
0.0f, 0.0f, scale};

// now create the final perspective transformation by multiplying

// _perspective by _panzoom from the Teft

122 OpenVX Programming Guide

float _perspective_finall[9];

mult_3x3matrices(_panzoom, _perspective, _perspective_final);

We have obtained the required perspective transformation. Note that
OpenVX deals with the inverse transposed homography transformation (see
(6.4)), so we invert and transpose the matrix before importing it:

// now we need to invert and transpose the homography for OpenVX
float _perspective_final_inv[9];
calc_inverse_3x3matrix(_perspective_final, _perspective_final_inv);

transpose(_perspective_final_inv);

vxCopyMatrix(perspective, _perspective_final_inv, VX_WRITE_ONLY,
VX_MEMORY_TYPE_HOST);

return VX_SUCCESS;

The wvalidation of this user node is implemented in the birdseye_
transform_validator function. We check that the output matrix is 3 x 3
floating point and set the corresponding metadata:

// parameter #2 -- check that this is a floating point 3x3 matrix
ERROR_CHECK_STATUS(vxQueryMatrix((vx_matrix)parameters[2],
VX_MATRIX_TYPE, ¶m_type, sizeof(param_type)));
if(param_type != VX_TYPE_FLOAT32)
{
return VX_ERROR_INVALID_TYPE;

vx_size rows, columns;
ERROR_CHECK_STATUS(vxQueryMatrix((vx_matrix)parameters[2],
VX_MATRIX_ROWS, &rows, sizeof(rows)));
if(rows !=3)
{
return VX_ERROR_INVALID_DIMENSION;

ERROR_CHECK_STATUS(vxQueryMatrix((vx_matrix)parameters[2],
VX_MATRIX_COLUMNS, &columns, sizeof(columns)));
if(columns != 3)
{
return VX_ERROR_INVALID_DIMENSION;

Basic image transformations 123

// set output metadata

ERROR_CHECK_STATUS(vxSetMetaFormatAttribute(metas[2], VX_MATRIX_TYPE,
¶m_type, sizeof(param_type)));

ERROR_CHECK_STATUS(vxSetMetaFormatAttribute(metas[2], VX_MATRIX_ROWS,
&rows, sizeof(rows)));

ERROR_CHECK_STATUS(vxSetMetaFormatAttribute(metas[2],
VX_MATRIX_COLUMNS, &columns, sizeof(columns)));

	6 Basic image transformations
	6.1 OpenVX image object
	6.2 Image ﬁltering
	6.2.1 Simple image ﬁltering example
	6.2.2 Custom convolution

	6.3 Regions of interest
	6.3.1 Reading from regions of interest
	6.3.2 Writing to regions of interest

	6.4 Feature extraction
	6.4.1 Hough transform
	6.4.2 Postprocessing hough transform results

	6.5 Geometric image transformations
	6.5.1 Undistortion implemented with remap
	6.5.2 Perspective transformations
	6.5.2.1 Applying a perspective transformation
	6.5.2.2 Generating a perspective transformation

