
Linux Power Management

Author: Texas Instruments®, Sitara™ ARM® Processors

This session covers power management within Linux including DVFS with

CPUFreq, CPUIdle, and PMICs, with a strong emphasis on Suspend/Resume.

May 2014

Contents

• Linux Power Management Framework (50,000 foot view)

• DVFS / Cpufreq

• DCG / CPU Idle

• DeepSleep0 / Suspend and Resume

– IO Pad Configuration

– Debugging steps for low power mode entry

Linux Power Management Framework
Device Drivers

LDM Runtime PM PM QoS

CPUIdle

Governor

CPUFreq (DVFS)

Policy

Generic

OMAP Specific

CPUFreq
driver

CPUIdle
driverLDM suspend hooks

- begin/end
- prepare/finish
- enter

tputDev lat.

OMAP PM layer

MPU latFreq

pdata

platform_device

PM runtime hooks
- suspend
- resume
- idle

omap_device, omap_hwmod

omap_device

omap_hwmod

omap_device

omap_hwmod

omap_device

omap_hwmod

omap_device

omap_hwmod

omap_device

omap_hwmod

omap_device

omap_hwmod

omap_device

omap_hwmod

omap_device

omap_hwmod

omap_device

omap_hwmod

clock fwk clockdomain powerdomain regulator

Voltage Control

OMAP HW PMIC

OPP

PM Core
- suspend and idle entry
- SRAM idle
-- WFIWFI

Courtesy of Kevin Hilman

Dynamic Voltage and Frequency Scaling

• Relies upon the cpufreq framework in Linux

• Cpufreq provides support to change frequency and voltage of MPU

– This can help to save processor power dynamically according to load

– Remember, processor power is proportional to frequency and square of the

voltage

• Cpufreq governor decides frequency at which processor should run• Cpufreq governor decides frequency at which processor should run

– Performance: CPU statically set to highest possible frequency

– Powersave: CPU statically set to lowest possible frequency

– Userspace: controlled by user via ‘scaling_setspeed’

– Ondemand: Sets CPU freq dynamically based on load

– Conservative: Like ondemand, but slower to respond (better for battery

powered environment)

CPUFreq User Space Examples

• View all available governors:
root@am335x-evm# cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_governors

ondemand userspace performance conservative powersave

• View current governor:

root@am335x-evm # cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor
ondemand

• View and Change Frequency (OPP):

– First, set cpufreq governor to userspace

– View current frequency:
root@am335x-evm# cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq

720000

– View current voltage:

root@am335x-evm# cat /sys/class/regulator/regulator.3/microvolts

1262500

– View Supported OPPs:

root@am335x-evm# cat
/sys/devices/system/cpu/cpu0/cpufreq/scaling_available_frequencies

275000 500000 600000 720000

– Change Frequency to 500MHz:

root@am335x-evm# echo 500000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed

CPUFreq: OPP Table

• OPP Table is now defined in the device tree. Can be found in the SoC

device tree file:

• All OPPs are defined as frequency/voltage pairs. Only frequency

entries must be unique.

operating-points = <

/* kHz uV */

720000 1285000

600000 1225000

500000 1125000

275000 1125000

>;

entries must be unique.

• Changing all voltages to the same value (without going lower than

default voltage value for that OPP) allows for Dynamic Frequency

Scaling.

• You can freely lower the frequency of any OPP without changing the

voltage

• In 3.12 Kernel all OPPs must have a corresponding opp-modifier table

entry as well.

CPUFreq: OPP Modifier

• OPP Modifier is a new framework introduced in 3.12 kernel to handle

dynamically controlled OPPs (eFused OPPs)

• Each entry in the table is four values:

– Frequency

– Silicon Revision

– Register Offset

– Bit mask– Bit mask

• A value of zero in the mask column will always enable that OPP for the

silicon revision

• Otherwise, the bitmask is compared to the register and enabled based

on that.

• If a frequency entry does not exist explicitly for the SoC revision in use

it will NOT be enabled.

CPUFreq: OPP Modifier

• Example from arch/arm/boot/dts/am33xx.dtsi:

mpu_opp_modifier: mpu_opp_modifier {
opp-modifier = <
/* kHz Rev offset mask */
1000000 OPP_REV(2,1) 0 AM33XX_EFUSE_SMA_OPP_NITRO_1GHZ_BIT
800000 OPP_REV(2,1) 0 AM33XX_EFUSE_SMA_OPP_TURBO_800MHZ_BIT
720000 OPP_REV(2,1) 0 AM33XX_EFUSE_SMA_OPP_120_720MHZ_BIT
600000 OPP_REV(2,1) 0 AM33XX_EFUSE_SMA_OPP_100_600MHZ_BIT
300000 (OPP_REV(2,0) | OPP_REV(2,1)) 0 0
1000000 OPP_REV(2,0) 0 0
800000 OPP_REV(2,0) 0 0800000 OPP_REV(2,0) 0 0
720000 (OPP_REV(1,0) | OPP_REV(2,0)) 0 0
600000 (OPP_REV(1,0) | OPP_REV(2,0)) 0 0
500000 (OPP_REV(1,0)) 0 0
275000 (OPP_REV(1,0)) 0 0
>;

};

CPUFreq and OPP Modifier

• Relevant Files:

– drivers/cpufreq/cpufreq-cpu0.c

• Generic CPUFreq driver, now used by all TI SoCs supported by 3.12 kernel

– drivers/power/opp/omap-opp-modifier.c

• Opp-modifier driver for eFuse controlled opp’s

– Documentation/devicetree/bindings/power/opp-modifier.txt

• Device tree binding documentation for opp-modifier

Dynamic Clock Gating: CPUIdle

• CPUIdle lets the system enter low power states during periods of no

activity.

• Like cpufreq, the cpuidle framework consists of two key components:

– A governor that decides the target C-state of the system.

– A driver that causes the transition to the target C-state.

• AM335x supports three different C-states• AM335x supports three different C-states

– MPU WFI

– MPU WFI + Bypass MPU PLL

– MPU WFI + Bypass MPU PLL + DDR Self-Refresh (DDR2 Only)

• Support for AM437x CPUIdle not available in SDK 7.0, but there is a

patch available for WFI and Bypass MPU PLL

CPUIdle

• CPUIdle requires the CM3 firmware to be loaded to work, this is done by

default

• Cpuidle governors available are 'menu' and 'ladder':

– ladder - steps down or up sleep states one at a time depending on the time

spent in the last idle idle period. It works well with a regular timer tick, but not

with dynamic tick.

– menu - selects sleep state based on expected idle time. Works well with – menu - selects sleep state based on expected idle time. Works well with

dynamic tick systems. This is the default.

• By default, no parameters of CPUidle can be changed at runtime but

stats are available under /sys/devices/system/cpu/cpu0/cpuidle/*

CPUIdle

• Relevant Files:

– arch/arm/mach-omap2/cpuidle33xx.c

• AM33xx specific cpuidle driver

– drivers/cpuidle/*

• All generic cpuidle files including governors with core framework defined in cpuidle.c

DeepSleep0: Suspend/Resume

• Suspend-resume

– System transitions to a low power state where processor is idle

– AM33xx has both DeepSleep0 and Standby modes available.

– AM43xx only officially supports DeepSleep0 in SDK 7.0.

• Suspend process is initiated by the user via the standard kernel

interface:

echo mem > /sys/power/state (DS0)

oror

echo standby > /sys/power/state (standby)

• DeepSleep0 wakeup sources supported:

– UART0, Touchscreen, GPIO0, RTC, I2C0

• Possible to use other peripheral interrupts as wake sources with Standby mode

on AM335x, AM437x standby mode still needs additional validation.

• Both platforms require CM3 firmware!

Linux Boot Sequence for CM3

Boot

• Low-level Suspend code is

copied to SRAM

• CM3 Firmware gets loaded

• Bring CM3 out of reset

MPU CM3

Boot

• Do simple initialization• Do simple initialization

• Enter WFI to wait for state

transition request

Linux Suspend Sequence

Userspace

echo mem > /sys/power/state

Kernel PM

• Freeze filesystems, userspace processes

• am33xx_pm_begin: Inform CM3 of

intended low power state

• Suspend all drivers through handlers

Mailbox Interrupt

• Confirm all state data is sane

• Give OK to A8 to move ahead

Driver Suspend

• Drivers pm callbacks are responsible for

MPU CM3

SRAM

• Flush and disable caches

• Put SDRAM into Self-Refresh

• Save EMIF Context and Disable

• Gate MPU Clock

• Execute WFI

PRCM Interrupt

• Enable Wake sources

• Scale CORE voltage down

• Powerdown MPU and CORE Powerdomains

• Disable interconnects

• Bypass PLLs

• Put all clockdomains to sleep

• Drivers pm callbacks are responsible for

• Preparing the device for suspend

• Saving peripheral context

• Setting IO Pad config

• omap_device/omap_hwmod handles

PRCM control.

Gated MPU Clock

+

WFI

Linux Resume Sequence

SRAM

• Enable EMIF clock and restore context

• Bring SDRAM out of Self Refresh

• Enable Caches

• Jump back to kernel

Wake Interrupt

• Restore MPU and CORE Powerdomain state

• Wakeup Clockdomains except MPU

• Power up PLLs

• Enable interconnects

• Wake MPU Clockdomain

• Return to WFI

Boot ROM

• Check IPC reg 0 and jump to resume

address

MPU CM3

• Jump back to kernel

Kernel PM

• Unfreeze space and filesystems

• Resume normal operation

Driver Resume

• Drivers pm callbacks are responsible for

• Restore Default IO Pad Config

• Restore context

• Prepare device for operation

Suspend/Resume Latency

• Suspend/Resume Latencies (DeepSleep0 on AM335x EVM)

– Unoptimized suspend latency is ~150ms

– Unoptimized resume latency is ~300ms

• Most latency comes from drivers, if speed is needed remove what you

don’t need

• Standby mode (PER domain ON) can allow for better latency because • Standby mode (PER domain ON) can allow for better latency because

context is not lost.

• Software instrumentation can be added in drivers/base/power/main.c, in

the dpm_suspend() and dpm_resume() calls to see how many devices

there are, and the contribution of each to the overall latency.

– Practice usually shows that most of the delay is caused by a small number

of devices, so optimization is possible depending on the use case.

Suspend/Resume

• Relevant Files

– arch/arm/mach-omap2/pm33xx.c

• AM33XX and AM43XX pm init code, most suspend/resume functionality

– arch/arm/mach-omap2/sleep33xx.S and arch/arm/mach-

omap2/sleep43xx.S

• Assembly code that performs final steps just prior to WFI instruction

– kernel/power/suspend.c

• Core kernel suspend/resume code. Starts with pm_suspend function.• Core kernel suspend/resume code. Starts with pm_suspend function.

– drivers/base/power/main.c

• Core driver suspend logic is here dpm_suspend and dpm_resume

– drivers/*

• Every driver with suspend/resume handlers!

– arch/arm/mach-omap2/omap_hwmod.c and arch/arm/mach-

omap2/omap_device.c

• Low level handling of omap modules, where CLKCTRLs are controlled from.

IO Pad Configuration

• Allows for different IO Pad configuration (Pad control registers in control

module) during runtime and suspend

• In general, significant power can be saved by performing for a board,

but the configuration is specific to that board.

• Handled in the board device tree now with pinctrl driver.

• All devices are responsible for their own pins and have both a default • All devices are responsible for their own pins and have both a default

and sleep state.

• If a sleep state is defined a default state must also be defined so

runtime state can be restored during resume.

• Driver is responsible for switching state in its suspend and resume
handlers using pinctrl_pm_select_sleep_state and

pinctrl_pm_select_default_state

IO Pad Configuration

• Example (am33xx.dtsi):
davinci_mdio_default: davinci_mdio_default {

pinctrl-single,pins = <

/* MDIO */

0x148 (PIN_INPUT_PULLUP | SLEWCTRL_FAST | MUX_MODE0)

0x14c (PIN_OUTPUT_PULLUP | MUX_MODE0)

>;

};

davinci_mdio_sleep: davinci_mdio_sleep {

pinctrl-single,pins = <pinctrl-single,pins = <

/* MDIO reset value */

0x148 (PIN_INPUT_PULLDOWN | MUX_MODE7)

0x14c (PIN_INPUT_PULLDOWN | MUX_MODE7)

>;

};

…

…

&davinci_mdio {

pinctrl-names = "default", "sleep";

pinctrl-0 = <&davinci_mdio_default>;

pinctrl-1 = <&davinci_mdio_sleep>;

};

Working Suspend/Resume Cycle

• Results in the following prints on the console.
root@am335x-evm:~# echo mem > /sys/power/state

[37.219927] PM: Syncing filesystems ... done.

[37.229145] Freezing user space processes ... (elapsed 0.001 seconds) done.

[37.238027] Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done.

[37.247270] Suspending console(s) (use no_console_suspend to debug)

[37.276634] PM: suspend of devices complete after 21.721 msecs

[37.277679] PM: late suspend of devices complete after 1.013 msecs

[37.278959] PM: noirq suspend of devices complete after 1.248 msecs[37.278959] PM: noirq suspend of devices complete after 1.248 msecs

[37.279101] PM: Successfully put all powerdomains to target state

[37.279101] PM: Wakeup source UART

[37.295638] PM: noirq resume of devices complete after 16.451 msecs

[37.296527] PM: early resume of devices complete after 0.689 msecs

[37.297477] net eth0: initializing cpsw version 1.12 (0)

[37.300505] net eth0: phy found : id is : 0x7c0f1

[37.465140] PM: resume of devices complete after 168.566 msecs

[37.526079] Restarting tasks ... done.

[39.298392] libphy: 4a101000.mdio:00 - Link is Up - 100/Full

Bad Suspend/Resume Cycle

• Suspend can be intentionally broken by activating a clock in PER domain

root@am335x-evm:~# devmem2 0x44e00044 w 0x2

• Resulting cycle looks like:
root@am335x-evm:~# echo mem > /sys/power/state

[132.618493] PM: Syncing filesystems ... done.

[132.628861] Freezing user space processes ... (elapsed 0.001 seconds) done.

[132.637859] Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done.

[132.647116] Suspending console(s) (use no_console_suspend to debug)

[132.669458] PM: suspend of devices complete after 14.680 msecs[132.669458] PM: suspend of devices complete after 14.680 msecs

[132.670411] PM: late suspend of devices complete after 0.923 msecs

[132.671670] PM: noirq suspend of devices complete after 1.228 msecs

[132.671808] PM: Could not transition all powerdomains to target state

[132.671808] PM: Wakeup source UART

[132.688225] PM: noirq resume of devices complete after 16.331 msecs

[132.689110] PM: early resume of devices complete after 0.687 msecs

[132.689938] net eth0: initializing cpsw version 1.12 (0)

[132.692895] net eth0: phy found : id is : 0x7c0f1

[132.855116] PM: resume of devices complete after 165.962 msecs

[132.916424] Restarting tasks ... done.

-sh: echo: write error: Operation not permitted

Suspend Failures

• Suspend is a system wide action: Each component is responsible for

suspending itself. Changes in many different places can break suspend

or resume.

• Test suspend ALL THE TIME during development. Develop it along

with everything else.

• Most customer failures will come from different or new drivers and • Most customer failures will come from different or new drivers and

configuration that is removed.

• The board will typically fail in one of three ways:

1. Suspend pass through with reported failure (as in previous example)

2. Hang with a kernel panic

3. Complete hang with no messages and no recovery

Debugging Suspend Resume

First Steps:

• Use a minimal rootfs and a minimal config, disable every possible

driver (including mmc, use a ramdisk), then slowly add things back in.

• echo no > /sys/module/printk/parameters/console_suspend

allows for additional console output during the suspend and resume

sequences, may catch errors reported while UART is off.sequences, may catch errors reported while UART is off.

– TRADEOFF: No more UART wake while this is active, must use other

sources

• pr_info is your friend, use it everywhere in the suspend/resume

sequence and in driver pm handlers, even if just to place markers to

indicate where in the suspend sequence the system is.

Debugging Suspend Resume

• JTAG can be very helpful and will sometimes be the only option.

• Being connected to Cortex A during WFI instruction will cause

problems with suspend.

• Solution: Debuggers cause fewer problems when connecting to CM3. A

break-point during ds0 entry function can allow for some exploration.

• CM3 Memory Map can access L4_WKUP peripherals, including PRCM • CM3 Memory Map can access L4_WKUP peripherals, including PRCM

and Control Module

• However, remember some hwmods are turned off by CM3, so place

breakpoint after disable_x_hwmod functions or make sure to check

CM3 code for which modules are turned off!

Debugging Suspend Resume

• In the case of reported power domain transition failure, it’s most likely

that all clocks are not off in the peripheral power domain.

• General things to check:

1. Check the IDLEST bits in CM_PER_<MODULE>_CLKCTRL registers. Modules are

idled when IDLEST bits transition to 0x3.

2. CM_PER_<MODULE>_CLKCTRL of some of the modules also has a STANDBY bit.

Modules enter STANDBY when this bit transitions to 0x1.

3. For modules stuck in transition (IDLEST = 0x1), check the SYSCONFIG register for 3. For modules stuck in transition (IDLEST = 0x1), check the SYSCONFIG register for

that module. Ensure IDLEMODE is set to “force idle”, and STANDBYMODE is

“forced standby”, for the following modules: TPTC0/1/2, USB, CPSW, GPMC.

• Note: SYSCONFIG registers are only set to “forced idle” or “forced standby” when

transitioning to DeepSleep states. When active, they will read “no idle” or “smart idle”

4. Other modules IDLEMODE should be set to “smart idle”.

• CLKCTRL = 0x00030000 (no standby) or 0x00070000 (standby)

• CLKSTCTRL = 0x00000001

• Good idea to compare to known working setup.

Debugging Suspend Resume

• What to do for stuck in transition errors?

– Remove the driver, does it suspend now?

• If yes, you probably have an issue directly with the driver.

– Check for pending interrupts or error conditions INSIDE the peripheral

• Bus errors (L3 interconnect in particular) can occur for many reasons, check error

registers within IP as a pending error will prevent transition. Either clear the error

or prevent it from occurring in the first place. AM43xx has omap_l3_noc for this.

– Check PLL registers in the PRCM– Check PLL registers in the PRCM

• On AM43xx, some have a *_GATE_CTRL bit that can force a PLL active which

prevents transition

– Make sure the suspend handler is actually being called

Debugging Suspend Resume

• In the case of hangs with no messages at all:

– Immediately after suspending, measure power. Then try to resume and measure

power again. If it increased, suspend likely worked and the hang happened during

resume.

– Try a loop in arch/arm/mach-omap2/sleepxxxx.S, both pre and post WFI instruction
hang:

b hang

– Connect with JTAG, manually set PC to PC + 4, and then step through.

– Make sure to disconnect before executing WFI on A8!– Make sure to disconnect before executing WFI on A8!

– Certain modules must have clocks controlled by CM3, make sure kernel is not

touching those (CM3 Source: src/pm_services/hwmod_xxxx.c for a list).

– Also, try loops in CM3 code (CM3 Source: src/pm_services/pm_handlers.c, function

a8_lp_ds0_handler), best way is to do:
volatile int stop = 0x12341234;

while (stop);

– Then use JTAG and find the register = 0x12341234 and set to 0 while single stepping

instructions to get past loop and continue execution.

– Also basic printf support in CM3 but currently only readable by looking at memory

address 0x81000 (from CM3).

Debugging Suspend Resume

• Try intentionally breaking suspend as in previous example

– This will prevent PER context loss, which will indicate something is being

saved or restored incorrectly.

• If the code does not make it to a loop before WFI, you are almost

definitely stuck in a driver failure.
– Again, pr_info everywhere!

– Turn on Device Drivers > Generic Driver Options > Driver Core verbose debug – Turn on Device Drivers > Generic Driver Options > Driver Core verbose debug

messages under menuconfig

– Many drivers have a debug configuration built-in. For example : Device Drivers >

MMC/SD/SDIO card support > MMC debugging.

• If you can determine that the hang happened during resume:
– Put a loop after am*3xx_resume_from_deep_sleep in sleepxxxx.S code and connect with JTAG

– When stepping through code, watch where code jumps back to DDR. If the instructions are

wrong/change from suspend to suspend, the DDR is likely being corrupted.

– Check DDR signals, make sure EMIF context is restored properly, and if using VTT regulator,

make sure it is being controlled properly. Both the AM335x-EVMSK and the AM437x-GPEVM

have examples of controlling a VTT DDR3 regulator during suspend.

Other References
• Linux Core Power Management User’s Guide

– http://processors.wiki.ti.com/index.php/Linux_Core_Power_Management_User%27s_Guide

• AM335x CM3 Firmware Code

– http://arago-project.org/git/projects/?p=am33x-cm3.git;a=summary

• AM335x TRM

– http://www.ti.com/litv/pdf/spruh73e

• AM335x Datasheet

– www.ti.com/am335x

• AM335x Sitara Power Management Training (Slides and Labs)

– http://processors.wiki.ti.com/index.php/Sitara_Linux_Training:_Power_Management

• AM335x Linux Release• AM335x Linux Release

– http://www.ti.com/tool/linuxezsdk-sitara

• AM335x Hardware Design Guide

– http://processors.wiki.ti.com/index.php/AM335x_Hardware_Design_Guide

