Debugging with System Analyzer

Todd Mullanix
TI-RTOS Apps Manager
Oct. 15, 2017

W3 TEXAS INSTRUMENTS

Abstract

“In software engineering, tracing involves a specialized use of logging to
record information about a program's execution.”

This presentation will look at the software log capabilities in TI-RTOS and see how they can
be used in conjunction with System Analyzer in CCS to debug an application. Specifically
we’'ll look at the Execution Graph and Duration Analysis to help to understand an

application’s behavior.

& *Binary File - ExceptionAnalysis B *Duration: Summary =
Source
1 CORTEX_M4 0, task1 sleep time

Wikipedia

til *Execution Graph ¥

-

source

- CORTEX_M4_0.#Hwi
Start
Stop

-CORTEX_M4_0.*OS
#Hwi.GPIO_hwilntFxn()
#Hwi.ti_sysbios_family_arm_msp432_Timer_|
Task.task1()@200001a8
Task.task2()@20000500
Task.ti_sysbios_knl_ldle_loop_ E()@2000976

Blrs i vavua Q- villsg ~=0

{BIOS Scheduler}
- CORTEX_M4_0.task1 sleep time
Running

T
3,778

T T
3,780 3,782 3,784
Time (ms)
>

Wip TEXAS INSTRUMENTS

Agenda

Here’s the high-level view of what we will cover in this presentation:
1. Stopmode Example
2. Debugging with System Analyzer

— Live View

— Execution Graph

— Duration Analysis
3. Logging Concepts

— What is the Log module?

— Logger Comparison

— Diags Mask
4. Debugging with System Analyzer Post Mortem

— Runtime Enabling/Disabling Logging

— Generating a binary file and importing in System Analyzer
5. Appendix

— Advanced Topics

Wip TEXAS INSTRUMENTS
3

Stopmode Example: Introduction

Let’s jump right into using System Analyzer to debug an application. We’'ll call this application
“stopmode” since we’ll use Logger_StopMode as the logging mechanism. We will not focus on the
mechanics of the logging too much now. We’'ll cover it more later.

The stopmode example has two tasks of different priorities. It also has a button callback that
generates an exception. We’'ll use System Analyzer to explain some delays and find the location of
the exception.

The next slides will focus on the following
— Logging Configuration
— Exception Handling Overview
— Application Source Code Description

Wip TEXAS INSTRUMENTS

Stopmode Example: Logging Configuration

Here’s the logging configuration in the app.cfg file. We'll use the LoggingSetup module. This module
makes enabling logging easier and gets users up and running faster. We’ll cover this module and more
advanced capabilities later in this presentation.

var LoggingSetup = xdc.useModule('ti.uia.sysbios.LoggingSetup');

* Include LoggingSetup and have two different Logg;ngs,etup.iyszioswimggin? = true;
. . L Setup. L = 3
log buffers to manage the different areas in the 7| [oeeingectun . mainloseersize < 512;

app”caton_ Also enable Hwi |ogg|ng LoggingSetup.sysbioslLoggerSize = 2048;
* Make sure the kernel has logging enabled. —{ B10s.1logsEnabled = true;

* Include these modules so we can make Log
calls in the application.

var Diags = xdc.useModule('xdc.runtime.Diags");

var Log = xdc.useModule('xdc.runtime.Log");
var UIABenchmark = xdc.useModule('ti.uia.events.UIABenchmark');

Also, make sure the following is NOT a predefined compiler setting (SimpleLink CC2640R2 SDK does this in some examples).

xdc_runtime Log DISABLE ALL

Wip TEXAS INSTRUMENTS

Stopmode Example: Exception Handling [cont.]

When ButtonO is pushed an exception will occur. TI-RTOS has several types of exception
handling options for CortexM devices*:

* TI-RTOS Enhanced Exception Decoding Handler

* TI-RTOS “Minimal” Exception Decoding Handler

* TI-RTOS Spin loop Handler

* User supplied Handler

For a detailed overview, please refer to https://training.ti.com/debugging-common-
application-issues-ti-rtos.

The next slide will show the stopmode application’s exception configuration and source
code.

*Refer to the TI-RTOS Kernel documentation for details about the exception handling for your specific device.

Wip TEXAS INSTRUMENTS

https://training.ti.com/debugging-common-application-issues-ti-rtos
https://training.ti.com/debugging-common-application-issues-ti-rtos
https://training.ti.com/debugging-common-application-issues-ti-rtos
https://training.ti.com/debugging-common-application-issues-ti-rtos
https://training.ti.com/debugging-common-application-issues-ti-rtos
https://training.ti.com/debugging-common-application-issues-ti-rtos
https://training.ti.com/debugging-common-application-issues-ti-rtos
https://training.ti.com/debugging-common-application-issues-ti-rtos
https://training.ti.com/debugging-common-application-issues-ti-rtos
https://training.ti.com/debugging-common-application-issues-ti-rtos
https://training.ti.com/debugging-common-application-issues-ti-rtos
https://training.ti.com/debugging-common-application-issues-ti-rtos

Stopmode Example: Exception Handling

Here at the two pieces needed in the example for the exception handling...

» The source code which is responsible for plugging in {mBHwi.excHandlerFunc = "smyExceptionHandler";
the exception handler function in the app. cfg file.

o ’ Void myExceptionHandler (UInt *excStack, UInt 1r)
And here’s the functioninmain tirtos.c. For now, 1
We’re jUSt going to turn on an LED tO knOW that an GPIO write(Board GPIO LEDO, Board GPIO LED ON) ;
. . , while(!) ;
exception has occurred and spin. We'll add content }

to this function later in the postmortem example.

Wip TEXAS INSTRUMENTS

Stopmode Example: Example Description

Here is the main gist of this very simple application...

- Taskl is a priority 1 (lowest) task which sleeps for

3 ticks. It uses the UTABenchmark start/stop |

events. We look at these later in System Analyzer.

- Task2 is a priority 2 which burns some CPU to
simulate some real action and then sleeps for
6 ticks.

- When pushed, Button0O causes an exception!

_J Log_print2(Diags USERI,

[Void taskl(UArg arg0, UArg argl)
{

while (1) {
Log_writel (UIABenchmark start, (IArg)"taskl sleep time")
Task _sleep(2);
Loggwritel(UIABenchmarkgstop, (IArg) "taskl sleep time")

1}

[void task2 (UArg arg0, UArg argl)
{

int 1i;

volatile int dummy;

int counter =

while (1) {

"counterl = %d (0x%x)", counter, counter);

counter++;

/* Burn some CPU to simulate some real action */
for(i = 0; 1 < ;o1++) |
dummy *= 1i;
}
Task sleep(?);
}
L}

void gpioButtonFxnO (uint least8 t index)
{

asm(" .word 0x4567£123 "); // undefine instruction!

}

Wip TEXAS INSTRUMENTS

Stopmode Example: Running the Example

The example uses the MSP-EXP432P401R LaunchPad* and following software:
- CCS7.3.0
- SimpleLink MSP432 v1.40.01.00
- XDCtools 3.50.02.20
- Compiler ARM version 16.9.4.LTS

» Please build, load, and run the example.

« After 5 or 10 seconds, hit ButtonO to cause the exception. You should see
Board GPIO LEDO come on.

* Now let’s go use System Analyzer to help determine what happened...

*We'll use a MSP-EXP432P401R LaunchPad as a concrete example, but the concepts and the code is exactly the same
for all devices (minus pontentially the asm call to generate the exception).

Wip TEXAS INSTRUMENTS

Stopmode Example: But first let’s confirm we have Log records

A quick way to make sure there are Log records is to open Tools->ROV->LoggerStopMode-
>Records. You should see records in both areas.

& RTOS Object View (ROV) #

® HeapMem ~ Module Instances Records Raw
® Hwi ~ ti.uialoggers.LoggerStopMode
® [dle Main Logger 50862
® LoggerStopMode SYSBIOS System Logger 50863
® Mailbox 50864
® Queue 50865
@ QueueDescriptor 50866
@® Registry 50867
® Semaphore
50868

@® Startup

A 50869
© Swi 50870
® System
o Tacl 50871

409929634
409930030
409976270
409976697
409977093
409977832
409978193
409978529
409978890
409979379

sequence timestampRaw modName

ti.sysbios.knl.Clock
ti.sysbios.family.arm.m3.Hwi
ti.sysbios.family.arm.m3.Hwi
ti.sysbios.knl.Clock
ti.sysbios.family.arm.m3.Hwi
ti.sysbios.knl.Clock
ti.sysbios.knl.Task
ti.syshios.knl.Clock
ti.sysbios.knl.Task
ti.sysbios.knl.Task

text

LM_tick: tick: 8711

LD_end: hwi: 0x20009348

LM_begin: hwi: 0x20009348, func: 0x2679, preThread: 2, intNum: 24, irp: 0x3b2a
LM_tick: tick: 8712

LD_end: hwi: 0x20009348

LM_begin: ck: 0x200007a4, func: Oxdcel

LD_ready: tsk: 0x200004e0, func: 0x23b5, pri: 2

LM_begin: clk: 0x2000045c, func: Ox4ce1

LD_ready: tsk: 0x20000188, func: 0x1f19, pri: 1

LM_switch: oldtsk: 020009234, oldfunc: 0x5121, newtsk: 0x200004e0, newfunc: 0x23b5

We use the term “Main” for non-kernel code. For example the Log writel () in taskl will
go into the “Main” logger. To be more exact, xdc.runtime.Main is used for all non-XDC

modules.

Wip TEXAS INSTRUMENTS
10

Stopmode Example: Start System Analyzer

File Edit View Project Iools Run

Let’s open the Execution Graph now.... Memory Map
1. Tools->RTOS Analyzer->Execution Analysis. Note: RTOS Analyzer gELgh'p -
may have to initialize the first time.

ARM Advanced Features
Debugger Options >

2 . S e I ect [Sta ” ® Analysis Configuration Save Memory

Execution Analysis Configuration

Load Memory

RTOS Context Switch events are collected from target and displayed in the Execution Graph

In a multi-core system, the Concurrency Analysis Feature can be selected to analyze parallel execution. Memory
41 ROV Classi
Cares Instrumented Application Timestamp Freq,. (MHz) Cycles per tick Transport =)) -
ICORTEX_M4 0] yes stopmode_MSP_EXP432P40TRout 48 1 Stop-Mode JTAG Runtime Object Vie
i System Analyzer
[[] Custom UIA Configuration file: Create UIA Config File . .
fl RTOS Analyzer > [Execution Analysis
—— i Hardware Trace Analyzer B Load Analysis
k& Graph y B Printf and Error Logs
Which Analysis Features to Wi BT §
ask Profile
Analysis Feature WhicNores Which Views to Open Instrumentation Status Tips] Image Analyzer
[Bxecution Graph : 0 - Graph Good 1 . Open File >
[] Concurren o ; Graph] Profile > . .
[printf Logs : User Configurations >
] <P Losd i 2 EnergyTrace™ . .
[Task Load of BE Execution Analysis >
[] Task Profiler G
[Duration ;
[Count Analysis of M
[Context Aware Profile CORTEX M4 0

+ Data Collection

D |9 @

Please note: RTOS Analyzer is closely related to System Analyzer. For this presentation, we might use the term
System Analyzer in a generic manner to mean either System Analyzer or RTOS Analyzer.

Wip TEXAS INSTRUMENTS
11

Stopmode Example: Live Session View

System Analyzer should display the Log records in the “Live Session” window.

B *Live Session ki *Fxecution Graph

Type Time Error Master Message Event EventClass Data1 Data2 SegNo
50 4794717625 CORTEX_M4_0 LM_switch: oldtsk: 0x20009080, oldfunc: 0x5379, newtsk: 0x200004e0, newfunc: 0x23cd CtxChg TSK task2()@200004e0 12170
51 4794726708 CORTEX_ M4 0 counter1 = 815 (0x32f) printf Unknown 4074
52 4795110645 CORTEX M4 0 LD block: tsk: 0x200004e0, func: 0x23cd Task LD block Unknown task2()@200004e0 12171
53 4795117937 CORTEX_M4_0 LM _sleep: tsk: 0x200004e0, func: 0x23cd, timeout: 6 Task_ LM _sleep Unknown task2()@200004e0 12172
54 4795125708 CORTEX_M4_0 LM_switch: oldtsk: 0x200004e0, oldfunc: 0x23cd, newtsk: 0x20000188, newfunc: 0x1f31 CtxChg TSK task1()@20000188 12173
55 fil 4795134895 CORTEX_M4_0 Stop: task1 sleep time Stop task1 sleep time 4075
56 i 4795141104 CORTEX_M4_0 Start: task1 sleep time Start task1 sleep time 4076
57 4795149666 CORTEX_M4_0 LD_block: tsk: 0x20000188, func: 0x1f31 Task_LD_block Unknown task1(@20000188 12174
58 4795156958 CORTEX_M4_0 LM_sleep: tsk: 0x20000188, func: 0x1f31, timeout: 3 Task_LM_sleep Unknown task1(@20000188 12175
59 4795164729 CORTEX M4 0 LM switch: oldtsk: 0x20000188, oldfunc: 0x1f31, newtsk: 0x20009080, newfunc: 0x5379 CtxChg TSK ti syshios knl Idle loop EQ@20009080 12176

|60 4795201041 CORTEX_M4_0 LM _begin: hwi: 0x20000168, func: 0x35¢cd, preThread: 2, intNum: 51, irp: 0x3d2a Start HWI GPIO_hwilntFxn() 12177'

Look at the last record and we see that the GPTO hwiIntFxn () was the last thing running.
When we look at the GPIO callback function, it makes sense we crashed.

void gpioButtonFxnO(uint least8 t index)
{

asm(" .word 0x4567f123 "™); // undefine instruction!

Wip TEXAS INSTRUMENTS
12

Stopmod

e Example: Execution Graph

You can see that task2 runs before taskl when they are lined up (every 6 ticks)

since it is higher priority.

B *Live Session ti *Execution Graph
“ CORTEX M4 0.#Hwi
_CORTEX_M4 0.*0S
#Hwi.20009594
#Hwi.GPIO_hwilntFxn()
Task.task1()@20000188
Task.task2()@200004e0
Task.ti_sysbios_knl_ldle_loop_ E)@2000
{BIOS Scheduler}
{Unknown}
~data loss
-CORTEX_M4_0.task1 sleep time

Runnin q

T T T T T T
4,124 4,125 4,126 4127 4,128 4,129 4,130

Time (ms)

Note: Swi logging is not included to reduce the number of records. If it was
enabled, you see the Clock tick Swi run after the Timer Hwi (instead of Idle task).

Please refer to the appendix to see how to get an execution graph over a longer

period.

Wip TEXAS INSTRUMENTS
13

Stopmode Example: Duration Summary

You can select Duration View the drop-down

B *Live Session L *Fxecution Graph

Type Time Error Master Message Event EventClass Datal Data2 SeqNo Logger
72 8549014604 CORTEX_M4_0 LM_begin: hwi: 0x20009348, func: 0x2679, preThread: 2, intNum: 24, irp: 0x3b2a Start HWI ti_sysbios_family_arm_msp432_Timer_periodicStub_E() 1764 SYSBIOS System Logger
73 8549023479 CORTEX_M4 0 LM_tick: tick: 8720 Clock LM _tick Unknown 1765 SYSBIOS System Logger
74 8549031729 CORTEX_M4 0 LD _end: hwi: 0x20009348 Stop HWI ti_sysbios_family_arm_msp432_Timer_periodicStub_ E() 1766 SYSBIOS System Logger

Remember the UIABenchmark events in Task1...

Void taskl(UArg arg0, UARrg argl)

{
while (1) {
Logiwritel(UIABenchmarkistart, (IArg) "taskl sleep time");
Task sleep(3);
Logiﬁritel(UIABenchmarkistop, (TArg) "taskl sleep time");
}
}

This is measuring the Task_sleep duration. You can see the max/min/avg in the Duration Summary.

B8 *Binary File - ExceptionAnalysis B *Duration: Summary
Source Count Min Max Average Total Percent

1 CORTEX_M4_0, task1 sleep time 7 2540604 3330813 2,992,003.0 20,944,021 100.0

Why are the Min and Max so different?

Wip TEXAS INSTRUMENTS

—Spvese vE| AL vl -

14

Stopmode Example: Duration Summary [cont.]

Remember Task1 is lower priority than Task2. Taskl sleeps for 3 ticks and Task2 sleeps for 6
ticks. So every 6 ticks, both tasks will wake up. Since Task2 is higher priority, it will run first.
Therefore Task1’s execution is delayed. This can easily be seen in the Execution Graph.

#Hwi ti_sysbios_family_arm_msp432_Timer g ,
Task task1()@200001a8

Task task2()@20000500
Task.ti_sysbios_knl_ldle_loop_E)@200097 6(um =
{BIOS Scheduler}
IRTEX_M4 0.task1 sleep time

)
'%,7%16(‘.

%.TGB.JGO\ 3768960 3,769,460 3,769,960 3,770,460 3,770,960 3,771,460 /(‘?\!\Lﬁﬁo 3,772,460 3,772,960 3,773,460 3773960
Time (us)

Taskl is delayed so the duration is longer Task2 was delayed so the duration is shorter

Let’s look under the covers to see how we got all of this...

Wip TEXAS INSTRUMENTS
15

Logging Concepts: Introduction

TI-RTOS includes a Log module to aid in the generation of software log records. The goals
of the Log module are

Minimal runtime intrusion on the application (e.g. no ASCIlI management on the target).
Usable by middleware software

Able to compile out the Log API calls

Can easily disable/enable logging during runtime

Can be used in runtime and post mortem analysis

Portable across all devices

When a Log API (e.g. Log_printN or Log_writeN) is called, a Log record is generated.
Please note the Log record is relatively small (e.g. 20-64 bytes). It is up to a host tool to
decode the binary data. The next slide will show this in more detail.

Wip TEXAS INSTRUMENTS
16

Logging Concepts: Log Records

Let’s look at the result of a couple Log API calls.
Log print2 (Diags USER1, "counterl = 3%d (0x%x)", counter, counter);

Log writel (UIABenchmark start, (IArg)"taskl sleep time");

These calls will generate two Log records_in the internal
LoggerStopMode buffer.

0 Memory Browser
Hvm ey Far

0x20009190

Then here are the decoded records in CCS

B *Live Session ¢ B RTOS Object View (ROV) x20009190 <Memory Rendering 6>
T... Time Error Master Message Event 32-Bit I St)'le e

1 418583 CORTEX_M4_0 counter! = 1110808130 (0x42359642) printf 8x202809198 | 58208000 BBRRAETC

2 k& 427520 CORTEX_M4_0 Start: task1 sleep time Start ©Xx200089198 | 6000000 BOBLBELRE

Ox200891A0 | 20013F0 42359642
Bx200891A8 | 42359642 600e0eee

And ROV E5146461 66665635
Bx200091E06 | 50140401 e6R05029
B *Live Session BB RTOS Object View (ROV) # 3){2@9@9138 @3@3@3@3 3@2@3@38
@ dle A Module Instances Records Raw ©x200091C0o | 00001408 46800282
® Load v tiuialoggers.LoggerStopMode sequence timestampRaw modName text
® LoggerStopMode Load Logger 0 20092 xdc.runtime.Main counter1 = 1110808130 (0x42359642)
® LoggerStreamer2 v Main Logger 1 20521 xdcruntime.Main Start: task1 sleep time
® Mailbox 0
® Queue 1
® QueueDescriptor SYSBIOS System Logger

Wip TEXAS INSTRUMENTS
17

Logging Concepts: Loggers

The Log module allows the application to select the underlying logger. There are several different
types of loggers in TI-RTOS. This allows a software engineer to pick the one most optimal for their
environment (comparison on the next slide).

Log APIs
Logger X

A logger is plugged a module via the common$.logger field in the .cfg file. For example
Defaults.common$.logger = LoggerStopMode.create (loggerStopModeParams) ;

Task.common$.logger = LoggerMin.create (loggerMinParams) ;

These lines plug in a LoggerMin instance for the Task module and all other modules will use the
LoggerStopMode logger. Note: unless explicitly set, modules inherit from Defaults.

Note: LoggingSetup creates and assigns loggers automatically for you.

W3 TEXAS INSTRUMENTS
18

Logging Concepts: Logger Comparison

Here's a comparison of the most commonly used loggers in the UIA product (or in the kernel/ti/uia
directories in the SimpleLink SDK).

LoggerStopmode
LoggerMin

Loggerldle
LoggerStreamer2
LoggerRunMode

(JTAG)

LoggerRunMode
(Ethernet)

Log records are stored in internal RAM buffer(s)

Log records are stored in an internal RAM bulffer.
Similar to LoggerStopmode but less features.

Log records are sent over UART or USBin the
SYS/BIOS lIdle Task.

Log records are stored in a buffer supplied by the
application.

Log Records are uploaded over real-time JTAG.
Available on C64+ and C66x targets only.

Events uploaded through ServiceMgr user-
pluggable transport function.

JTAG is connected and can halt the target.

JTAG is connected and can halt the target.
Post mortem analysis.

No JTAG and/or prefer not to stop the
target.

Application wants to “own” the
management of the Log record buffers.

JTAG connected and cannot stop the
target.

Multi-core devices

For more details, please refer to the spruh43X.pdf document in the UIA or SimpleLink products.

Wip TEXAS INSTRUMENTS
19

Logging Concepts: Diags Mask

Too many log records is a common problem when logging. All Log calls have a “Diags” mask
associated with it. For example:

Q

Log print2 (Diags USER1, "counterl = %d (0x%x)", counter, counter);

The use of the Diags mask allows the Log call to be
- Compiled in or out
- Enabled/disabled during runtime

For example in the .cfg file, you can tell the TI-RTOS Task module to include the USER1 and not
include USER2 Log calls.

Task.common$.diags USER1 = xdc.module ("xdc.runtime.Diags") .ALWAYS ON;
Task.common$.diags USER2 = xdc.module ("xdc.runtime.Diags") .ALWAYS OFF;

For the Task module, USER1 is used for high-level records (e.g. context switch) while USER?2 is
used for more detailed events (e.g. when a task calls Task_exit).

You can refer to the TI-RTOS cdoc for each modules usage of the Diags mask. The Diags module
is also discussed here: http://rtsc.eclipse.org/cdoc-tip/xdc/runtime/Diags.html

Wip TEXAS INSTRUMENTS
20

Logging Concepts: Pre-Defined Events

The application can use pre-defined events also. For example the application uses
UIABenchmark_start/UIABenchmark_stop events.

As we saw earlier, Duration Analysis will use these events to form all the stats.

How to use these pre-defined events is detailed in spruh43X.pdf in the UIA or SimpleLink
products. More information is in the cdoc for each of the events also.

[RTSC Package Documen’

< C' | @ file//C:ttifsimplelink_msp432_sdk_1_40_00_28/docs/tirtos/uia/docs/cdoc/index.html % 02

% Apps 4 Rabobank America -

all packages
all modules
[=REAd

5 @ uia

= 8 events

DvtTypes
TUIACtX
IUIAEvent
UIAApPCEX
urL

Downloads School Test Results Tools/Env Travel Dev Trees Data Sheets Forums

#include <ti/uia/events/UIABenchmark.h>
Functions common to all target modules

UIABenchmark Module getMask, UIABenchmark Module hasMask, UIABenchmark Module heap, UIABenchmark Module id, UIABenchmark Module setMask,
UIABenchmark_Module_startupDone

Constants

extern const Log_Event ULABenchmark_start;

extern const Log_Event UIABenchmark_startInstance;

extern const Log Event UIABenchmark stop;

extern const Log_Event UIABenchmark_stopInstance;

UIAChanCtx
UIAErT
UIAEvt
UIAFrameCtx
UIAHWICtX
UIAMessage
UIAProfile
UIARoundtrip
UIASnapshot
UIASstatistic
UIASWICHX

00O OOIOIOOOOOEO®POO0S®

DETAILS
The UIABenchmark module defines events that allow tooling to analyze the performance of the software (processing time, latency, etc.)

The generation of UIABenchmark events is controlled by a module's diagnostics mask, which is described in detail in xdc.runtime.Diags.
UIABenchmark events are generated only when the Diags.ANALYSIS bit is set in the module's diagnostics mask.

The following configuration script demonstrates how the application might control the logging of ANALYSIS events embedded in the Mod module
at configuration time. In this case, the configuration script arranges for the Log statements within modules to always generate ANALYSIS events.
Without these configuration statements, no ANALYSIS events would be generated by any modules.

EXAMPLES
Example 1: This is part of the XDC configuration file for the application:

Wip TEXAS INSTRUMENTS
21

Logging Concepts: LoggingSetup

As stated before, the most common logging features can be
set via LoggingSetup. LoggingSetup does many of the
actions under the covers. For example

- Creates the requested logger instances
- Sets up module’s common$. logger.
- Sets up module’s common$.diags XYZ

To the right is the graphical view of LoggingSetup
configurations.

& "app.cfg &2

LoggingSetup - UIA Logging Configuration <
The LoggingSetup module is used to aid in configuring 5Y5/BIOS logging using UIA and System Analyz
the process of configuring an application to use UIA events, and configures SY5/BIOS modules to captu
Execution so that it can be displayed by Systemn Analyzer. It also automates the creation of infrastructure
enable the capture and upload of the events over a user-specified transport. Both JTAG and Mon-JTAG tr

Add LoggingSetup to my configuration

~ Built-in Software Instrumentation

RTOS Execution Analysis More Info...

Task Context (Always on) []Swi Context Hwi Context [] Semaphores
["1RTOS Load Analysis Meore Info...
[] Task Profiler Meore Info...

[] Context-Aware Function Profiler More Info...

+ User-written Software Instrumentation

Enable modules for use in instrumenting your application code, Please click on the provided tutorial |
software.

Error, Warning, Info and Print Events (e.g. Log_print2) Tutorial...
[] Duration Analysis (Benchmarking) Tuterial..
[[] Statistical Analysis (Counting and Graphing) Tutorial...

[Snapshot Events (2.9 to log memory blocks, dynamic strings) Tutorial...

Run-time Control of Event Logging Tutorial...

~ Loggers

LoggingSetup generates any loggers required by the below setting automatically. If you wish to creat
assign them manually. More info..

LoggerStopMode (JTAG only) ~

Please note, for some of the transport types you may need to add additional modules to your project

~ Logger Buffer Sizes

This section allows you to configure how much memory you wish to allocate on the target for use in
Buffer Sizes (MAUSs)
RTOSLoad Events [512

RTOS Execution Events | 2048

User-written Log Events | 512

22

Post Mortem Example: Overview

We are going to have the same basic application, but show how the Log records can be written to
non-volatile memory that can be retrieved and analyzed later. In the postmortem example, we'll
write the Log records to flash in the exception handler via the NVS module.

We are use LoggerMin instead of LoggerStopMode. LoggerMin has an API that can be used to
retrieve all the Log records. Also it only manages a single buffer. Having one buffer simplifies the
application code when writing the records to flash memory.

In this example, we’ll set the Main logging to be disabled at boot, but can be enabled later by
pushing Buttonl.

Wip TEXAS INSTRUMENTS
23

Post Mortem Example: LoggerMin

Instead of using LoggingSetup, we’re going to manual configure the loggers. This glves us more control on exact
configuration we want. ;

First remove (or comment out) all LoggingSetup
lines in the .cfg

Make sure the kernel has logging enabled*.

Include these modules so we can make Log
calls in the application*.

Create a LoggerMin logger and plug into all the
modules. The minus 16 is described later.

LoggingSetup.sysbTl
LoggingSetup. loadLoggln
LogglngSet
etup.sysbioslLoggerSize =

—{:BIOS.logsEnabled = true;

ggerSize = 512;

2048;

var Diags = xdc.useModule('xdc.runtime.Diags');

_{:Var Log = xdc.useModule('xdc.runtime.Log");

—

Enable Main. Task and Hwi modules to log records. _|

For Main, we're allowing runtime control.

These are needed to support runtime control
of enabling/disabling logging.

* Same as the stopmode example

L Main.common$.diags ANALYSIS

var UIABenchmark = xdc.useModule("'

LoggerMin.bufSize = 2048 - 16;

ti.uia.events.UIABenchmark');

[var LoggerMin = xdc.useModule('ti.uia.loggers.LoggerMin');

var loggerMin@Params = new LoggerMin.Params();
loggerMin@Params.instance.name = "loggerMine";

halHwi.common$.diags_USER1
halHwi.common$.diags USER2
Task.common$.diags_USERL
Main.common$.diags USERL

Diags
Diags
Diags.
Diags.
Diags.

[Text.islLoaded = true;

//Text.isLoaded = false;
Defaults.common$.namedModule = true;
//Defaults.common$.namedModule = false;

| Defaults.common$.logger = LoggerMin.create(loggerMin@Params);
[war Main = wdc.useModule('xdc.runtime.Main');

LALWAYS ON;

CALWAYS ON;

ALWAYS_ON;
RUNTIME_OFF;
RUNTIME_OFF;

Wip TEXAS INSTRUMENTS

24

Post Mortem Example: Enabling Logging

Below is the code that will enable the Diags USER1 and Diags ANALYSIS diags mask for the
application (e.g. the Log_print2 in Task2 and Log_writel in Task1l).

/o
* ======== gpioButtonFxnl ========
* Turn logging on
*/

void gpicoButtonFxnl (uint leastf_t index)

{
GPIC write(Board GPIO LED1, Board GPIC LED ON);

/* Enable the applications USER1 and ANALYSIS bitmasks */

Diags_setMask(”xi:.:;::;me.xa;n—L_"};

}
This is possible because we used Diags.RUNTIME OFF in the previous slide.

Using this approach allows you to programmatically enable/disable logging. This can reduce the
amount of Log records generated.

The downside is that each Log API will have an additional i f check. When you use
Diags.ALWAYS ON, the generated Log code is more optimized.

Wip TEXAS INSTRUMENTS
25

Post Mortem Example: NVS module

The SimpleLink SDKs include a NVS (Non-Volatile Storage) driver. We'll use this
module to store the Log records into flash on the MSP432.

The APIs used are
- NVS_erase (): to clear out data from a previous run
- NVS write ():to store the Log records into flash

Depending on your device, you may need to store the Log records via a different
mechanism. Basically, you need to place the Log records somewhere that can be
easily retrieved. Note: the writing of the Log records to flash in our example is
occurring in the exception handler, so interrupts are disabled.

The NVS module manages a 4096 block of flash by default in the MSP432
examples in the SimpleLink SDK. We'll use the default.

The NVS module is detailed in
<SimpleLink install dir>/docs/tidrivers/doxygen/html/index.html

Wip TEXAS INSTRUMENTS
26

Post Mortem Example: Exception Handler

The exception handler in the postMortem example is expanded to read

the Log records and write them to non-volatile memory.

» Buffer to hold the read Log records

* Open NVS module and erase the contents of the flash.

» Get the contents of the LoggerMin and place them in a buffer.

* Add the UlAPackect_Hdr onto the front of the buffer. It's 16 bytes
long. This is why we made the Log buffer size 2048 — 16 in the
app.cfg file.

* Write the Log Records to Flash

#define LOGBUFFERSIZE 2048
#define UIAPACKETOFFSET 16
char buffer[LOGBUFFERSIZE] ;

Void myExceptionHandler (UInt *excStack, UInt 1r)
{

size t copiedLen;

NVS Handle nvsHandle;

NVS Attrs regionAttrs;

Bool rc;

GPIOiwrite(BoardﬁGPIOiLEDO, Board GPTIO LED ON) ;

nvsHandle = NVS open(Board NVS0, NULL);
NVS_getAttrs(nvsHandle, ®ionAttrs) ;
NVS erase(nvsHandle, 0, regionAttrs.regionSize);

/* LoggerMin is a singleton, so we can use NULL here */

rc = ti uia loggers LoggerMin getContents (NULL, &(buffer[UIAPACKETOFFSET]),
LOGBUFFERSIZE - UIAPACKETOFFSET,
&copiedLen) ;

if (rc == TRUE) {

|
UIAPacket setEventLengthFast((UIAPacket Hdr *)buffer,
copiedLen + UIAPACKETOFFSET) ;
UIAPacket setSequenceCounts((UIAPacket Hdr *)buffer, 1, 0);
UIAPacket setLoggerInstanceld((UIAPacket Hdr *)buffer,)
UTAPacket_ setLoggerModuleld ((UTAPacket Hdr *)buffer,
LoggerMin Module id()):
UIAPacket setSenderAdrs((UIAPacket Hdr *)buffer, 0);
UIAPacket setDestAdrs((UIAPacket Hdr *)buffer, UIAPacket HOST);
L

if (copiedLen != 0) {
NVS write(nvsHandle, 0, buffer, copiedLen + UIAPACKETOFFSET, 0);
}
}

while(l) ;

W3 TEXAS INSTRUMENTS
27

Post Mortem Example: Running the Example

» Please build, load, and run the postmortem example.
* You can halt the target now and look in ROV to see that the Main logs are not being
recorded . B RTOS Object View (ROV) 12

@ ClockFreqs ~ | Module Records Raw

o Dlargz sequence timestampRaw modName text

: E;:L i 6430 91368085 ti.sysbios.family.arm.m3.Hwi LD_end: hwi: 0x20009864

@ GateMutex 6431 91369130 ti.sysbios.knl.Task LM _switch: oldtsk: 0x20009750, oldfunc: 0x5331, newtsk: 0x200001a8, newfunc: Oxledd
@ HeapMem 6432 91369853 ti.sys knl.Task LM_sleep: tsk: 0x200001a8, func: Ox1edd, timeout: 3

® Hwi 6483 91370205 ti.sys knl.Task LM_switch: oldtsk: 0x200001a8, oldfunc: Ox1edd, newtsk: 0x20009750, newfunc: 0x5331
® ldle 6484 91414581 ti.sysbios.family.arm.m3.Hwi LM_begin: hwi: 0x20009864, func: 0x24f9, preThread: 2, intNum: 24, irp: 0x3a5a

@ LoggerMin 6485 91415147 ti.sysbios.family.arm.m3.Hwi LD_end: hwi: 0x20009864

® Mailbox 6486 91461644 ti.sysbios.family.arm.m3.Hwi LM_begin: hwi: 0x20009864, func: 0x24f9, preThread: 2, intNum: 24, irp: 0x3a5a

* Resume the target and press Buttonl (and confirm Board GPIO LED1 comes on) and
then halt the target. Now you’ll see the Main Log records.

F RTOS Object View (ROV) 52

@® ClockFregs A | Module Records Raw
’ E‘agf sequence timestampRaw modName text
@ Event
@ GateHwi 27054 354936895 ti.sysbios.family.arm.m3.Hwi LM_begin: hwi: 0x20009864, func: 0x24f9, preThread: 2, intNum: 24, irp: 0x3a5a
ateHw
® GateMute 27055 354937461 ti.sysbios.family.arm.m3.Hwi LD_end: hwi: 0x20009864
ateMutex
3 5 27056 334938632 fiohiocknl Tack | itch & 750, oldfunc: 0x5331, newtsk: 0x20000500, newfunc: 0x22e5
@® HeapMem
® Hwi 27057 354939069 xdc.runtime.Main counterl = 1257 (Ox4e9)
=g 27058 354956565 ti.sysbios.knl. Task LM _sleep: tsk: 0x20000500, func: 0x22e5, timeout: 6

« After 5 or 10 seconds, hit ButtonO to cause the exception. You should see
Board GPIO LEDO come on.

Wip TEXAS INSTRUMENTS
28

Post Mortem Example: Saving Log Records to a Filein CCS

Now the Log records are in flash, you can retrieve them and save

. . 0 Memory Browser)@'@'Qﬁ’@“f‘ﬁ == =
them to a binary file. B
. . 0x3 emory Rendering 3> #
For this case, simply attach CCS and look at the flash merrm,r.hart/nm‘/gz;tt.@;.;gme v
NVS manages. Select the “Save Memory” and specify the 0xe6e38060 flashsuf A

])) g . [IA=ELLT] oxe0e06168 0x27680180 8xP08OFFFF
destination file name (must be systemAnalyzerData.bin!). Then hit exeeesse1e exesaeacai exese7ea7 oxao006000 0x0017061F
. i . ! ©x0003B020 ©x200001A8 Bx0000327D ©x0000000E 0X00000000

“Next>" and Spec|fy the address and size (be|ow is the size of the ©x@083B038 @x@8208C22 BXB57E7B2 8X0PAEAA88 OXBDL6@D1F
) 6x0003B040 ©x280OB1AS 6x@60E327D @x200095D0 6XB0BE6309

NVS flash reg|0n)_ 0x00035050 0x08200C23 0X@5094EGF £x00000000 0x00LE001F

nnn

& Save Memory O & Save Memory] X

Save Memory Save Memory

Select a file to save the memory data Enter the information for the memory block to be saved

File: IC:\Training\ExceptiannaIysis\systemAnaIyzerData.bin Ilewse...] Format: Raw Data

File Type: Tl Raw Data ~ Target

Note that Hex and ELF files are not supported by this tool. Start AddeS:I 0x3B000 I
Length:

(®) Specify the number of memory words to read:

(O Specify the data black dimension in number of memory words:

Type-size: 8 bits v

[swap
@ < Back Next > Finish Cancel @ < Back Next > Gl

Wip TEXAS INSTRUMENTS

Post Mortem Example: Creating a .usmxml file...do only once!

System Analyzer needs to know about the application since the debugger may not be
attached when looking at the binary file. This step needs to be done once. To make it easier,
make sure the debugger knows that the postMortem application is loaded.

*# Debug =
v ¥ postMortem MSP_EXP432P401R tirtos_ccs_singlej[Code Composer Studio - Device Debugging]
~ o® Texas Instruments XDS110 USB Debug Probe/CORTEX_M4_0 (Suspended)
= CPU _wfi() at driverlib.c:1,738 0x020026C2
= PCM_gotolPMO() at driverlib.c:6,811 0x020054B4

Open Tools->System Analyzer->Open File->Open Binary file and

1 CI iC k th e C usto m U IA CO nfi g & Analysis Configuration O X
' Open Binary File Configuration
2. Select the “Create UIA Config File” button. Psply oy dat from slecte flde:
N eXt Sl id e - Folder Name: | C:\workspace\sizeDiff\dvt\systemAnalyzerData
Cores Instrumented Application Timestamp Freq. (MHz) Cycles per tick Transport
CORTEX_M4 0
ustom UIA Configuration file: | ICreale UIA Config File

Wip TEXAS INSTRUMENTS
30

Post Mortem Example: Creating a .usmxml file...do only once! [cont.]

Now save this to a file (e.g. C:\training\ExceptionAnalysis\DefaultSession.usmxml).

BiRiE e
Name Type Address Status
é.‘*‘.. EventTransport MNone NokEventVamsport
4. Control & Status.. None No Control Transport
B CORTEX_M4.0 Endpo.. 0 OK

Save Cancel

This file contains information about the application (.e.g. .out file location, .xml file locations, etc.).

<void property="outFile">

<string>C:\workspace\sizeDiff\postMortem MSP EXP432P401R tirtos ccs_single\Debug\postMortem MSP EXP432P401R tirtcs ccs single.out</string>
</void>

<void property="rtaFile">

<string>C:/workspace/sizeDiff/postMortem MSP EXP432P401R_tirtos_ccs_single/Debug/configPkg/package/cfg/release pemdf.rta.xml</string>
</vold>

<void property="uiaFile">
<string>C:/workspace/sizeDiff/postMortem MSP EXP432P401R tirtos ccs_single/Debug/configPkg/package/cfg/release xemdf.uia.xml</string>

Wip TEXAS INSTRUMENTS

Post Mortem Example: Opening the Binary File in CCS

In CCS, open Tools->System Analyzer->Open File->Open Binary file. Note: the debugger
does not need to be attached!

Open Binary File Configuration

Display binary data from selected folder.

Enter the folder name where the

. . Folder Name:IC:\training\ExceptiannaIysis ‘ I
systemAnalyzerData.bin is located
. Cores Instrumented Application Timestamp Freq. (MHz) Cycles per tick Trans]
- C“Ck the Custom button iORTEX7M470 yes postMortem_MSP_EXP432P401R tirtos_ccs_single.out 48 1 X

ustom UIA Configuration fll{l Ci\training\ExceptionAnalysis\DefaultSession.usmxm! ‘ ICreate UIA Config File

Enter the .usmxml file

Which Analysis Features to Run:

- H it “Sta rt” Analysis Feature Which Cores Which Views to Open
[] Execution Graph CORTEX_M4_0 Graph
[JcPU Load CORTEX_M4_0 Graph |
[] Concurrency CORTEX_M4_0 Graph .
[Count Analysis CORTEX_M4_0 Summary |
[Printf Logs CORTEX_M4_0 Summary
[Task Load CORTEX_M4_0 Graph ..
L I:‘ Context Aware Profile CORTEX_M4_0 Summary ..
ion CORTEX_M4_0 Summary |
ow you have the Log records and you T e
Now y the Log d dy

can open Execution Graph and
Duration Analysis the same was as before. . .. [=] o

Wip TEXAS INSTRUMENTS

Appendix: Why have multiple loggers?

LoggingSetup by default will create three loggers:
— SYS/BIOS
— CPU Load
— Main (i.e. application)

This is done to guarantee that one area does not flood all the other modules. For example, if
there are lots of kernel Log records, the application Log records will not be over-written.

Wip TEXAS INSTRUMENTS
33

Appendix: Longer periods in execution graph

On memory constrained devices, we generally keep the log buffers small. Of course this
potentially causes wrapping to occur in the loggers since the smaller the buffer, the fewer records
it holds. Here’s a few ways to handle this.

1.

Make the log buffers bigger if you have the memory. For devices like C66xx, we've seen log
buffers set to 1MB!

Use Diags setMask () to enable/disable logging accordingly. So basically only log during
regions you are interested in.

Carefully use the Diags mask to only enable Log records you are interested in.

Disable timestamps in the Log records. This will result in a smaller Log record so more can fit
in a buffer. You'll lose the time reference in the execution graph but you’ll still get the order.
You can also move to 32-bit timestamp instead of 64-bit.

For loggers that are directly read by System Analyzer (e.g. LoggerStopMode), you can just
several breakpoints. Since System Analyzer will read at each breakpoint, you might be able to
avoid buffer wraps.

Wip TEXAS INSTRUMENTS
34

Appendix: Examples Enhancements

The example’s CortexM exception handler function is passed in the exception stack and LR
register. We could have added Log_printN statements in myExceptionHandler () that

would have aided in figuring out the problem also.

/')r
* My exception handler which writes the log buffers to flash memory
*/

Void myExceptionHandlerf(UInt *excStack, UInt 1r)|
{

LoggerStreamer2 Object *obj;
size t recordsize;

size t offset = 0;

NVS Handle nvsHandle;

NVS Attrs regionAttrs;

. n . 3

For examples of decoding the exception stack for CortexM devices, look at the
Hwi excHandlerMin () or Hwi excHandlerMax () functions in

ti\sysbios\family\arm\m3\Hwi.c.

Wip TEXAS INSTRUMENTS
35

Appendix: Examples Enhancements [cont.]

The postMortem example uses a 2048 byte buffer to retrieve the Log records from
LoggerMin. A buffer is needed since the order of the Log records in LoggerMin’s internal
buffer is not know (e.g. a wrap could have occurred). The LoggerMin_getContents() API
manages that and places the Log records into the passed in buffer accordingly.

$define LOGBUFFERSIZE 2048

$define UIAPACKETOFFSET 16

char buffer[LOGBUFFERSIZE] ;
Instead of using a dedicated 2048 byte buffer, the application could have reused a different
buffer. For example we could have reused the stack to the tasks for retrieving the Log
records. You're in the exception handler already...those task are not going to be running

anyway...

Wip TEXAS INSTRUMENTS

Appendix: LoggerStreamer?2

LoggerStreamer2 can be used instead of LoggerMin also for the post mortem case. If you
are interested in the code for this, please ask for it on e2e.ti.com and we’ll send you a copy.

Wip TEXAS INSTRUMENTS
37

Appendix: Bugs®
During the write-up, a few bugs were found.

1. The execution graph does not show the last GPIO Hwi starting icon. | believe it
IS there, but the border is hiding it. Sometimes it barely peeks out!

- CORTEX_M4 0.*OS
#Hwi.GPIO_hwilntFxn()

Hllwsn +i veebiaes Famnihe Aren macn A2 Thmmare

2. If you select “Duration Analysis” in the Tools->System Analyzer, it does not
recognize that UIABenchmarks was enabled in the .cfg. Ignore the warning
and the Duration view still works.

3. LoggerMin graphical configuration is incorrect.
Bug tickets have been opened and will be addressed in a future release.

Wip TEXAS INSTRUMENTS
38

I3 TEXAS
INSTRUMENTS

©Copyright 2017 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly “as-is,” for informational purposes only, and without any warranty.
Use of this material is subject to TI's Terms of Use, viewable at Tl.com

