
A Primer on Linker Scripts and
Command Files

George Mock

Texas Instruments

Embedded Systems Conference

August 2019

Who is George Mock

• Software Developer

• Texas Instruments

• 32 years

• All of them spent working on …
– C/C++ Compilers

– Assemblers

– Linkers

– Related tools

– Directly and indirectly

• Moderate the C/C++ part of TI’s customer forum

2

Agenda

• Gentle Introduction

• GCC
– Basics

– Examples

• TI
– Basics: Differences vs GCC

– Examples

• References

3

Introduce Linker Scripts

• Compiler turns source files into object files

• Linker takes object files and libraries and produces final executable

• How does linker know where memory is? Where does code and data go in
memory?

• Linker Script!

• Two terms for the same thing
– GCC: Linker Script

– TI: Linker Command File

4

Linker Scripts Are Everywhere

C:\dir>ld --verbose
…
/* Default linker script, for normal executables */
…
SECTIONS
{
…

/* ??? Why is .gcc_exc here? */
*(.gcc_exc)

What is a Linker Script?

• Text file, just like any other source file

• Another filename in the linker invocation
– GCC: Usually specify with –T option

– TI: Usually no option is used

• May contain anything linker accepts on the command line
– Options

– Filenames

– Not covered in this presentation

• Tells linker layout of memory

• How to combine code and data together

• Where to put it in memory

6

Problem Statement

• You already have a linker script or command file

• It came with the development system you started on

• You need to change it to match your final system

• This presentation explains the linker script you have now, so you can change it

• It does not explain everything

7

Agenda

• Gentle Introduction

• GCC
– Basics

– Examples

• TI
– Basics: Differences vs GCC

– Examples

• References

8

MEMORY Command

MEMORY
{

/* MCUSS-OCMC RAM RESERVED FOR MCUSS & SOC Boot - 384KB */
MCU_RESVD : ORIGIN = 0x000041C00000, LENGTH = 0x00060000
/* MCUSS-OCMC RAM - 128KB */
OCMCRAM : ORIGIN = 0x000041C60000, LENGTH = 0x00020000
/* MSMC RAM INIT CODE (4 KB) */
BOOTVECTOR : ORIGIN = 0x000070000100, LENGTH = 0x00001000 - 0x100
/* MSMC RAM GENERAL USE */
MSMC_SRAM : ORIGIN = 0x000070001000, LENGTH = 0xEF000

…

• Assigns names to regions of memory

• The names are used later in the script

SECTIONS Command

• Does two things at once
1. Forms output sections from input sections

2. Allocates the output sections to memory

10

SECTIONS
{

.text : { *(.text) } > FLASH /* not explained yet! */
…
}

• Unless otherwise stated, all other examples are inside a SECTIONS command

SECTIONS Command Diagram

os1 os2 os3 os4

M1 Memory Regions

Output Sections

Input Sections

Object Files & Libs.obj .lib.obj .obj .obj... ...

M2 M3

SECTIONS Command Glossary of Terms

• Object File
– Collection of input sections

– May be presented directly, or come from a library

• Input Section
– One section from one object file

– Code or data

– Data: Initialized or uninitialized

• Output Section
– Collection of one or more input sections

– Formed by the SECTIONS command

• Memory Region
– Range of memory specified in the MEMORY command

12

Data Sections: Initialized vs Uninitialized

const int cv = 42; // const initialized variable
int iv = 43; // initialized variable
int uv; // uninitialized variable

Variable Section Type Startup Code Memory

cv initialized nothing RO or RW

iv uninitialized initializes RW

uv uninitialized zero fills RW

• RO: Read only memory, typically flash

• RW: Read write memory, typically RAM

Section Naming Conventions

• Strictly speaking, a section name says nothing about the contents

• By convention, these names imply these contents

14

Name Initialized Contents

.text Yes Executable code

.data Yes Initialized data, changes during execution

.bss No Global variables, zero filled

.rodata Yes Initialized data, always constant

Debug Sections

• Names similar to …
– .debug_something

– .stabs_something

– .comment

– .note

• Not loaded to the target

• Used by the debugger

• Ignore them

• If your linker script mentions them, leave them alone

15

Form Output Sections

• Many shortcuts and wildcards are supported

• This example uses none of them

16

output_section_name :
{

file1.o(.text)
file2.o(.text)
file3.o(.text)

} > FLASH

• Name: output_section_name
– Does not have to begin with a dot “.”

• Contains three input sections named .text from those specific object files

• Allocated to the FLASH memory region

Form Output Sections

• The previous example does not scale to a system with many files

• This example uses one shortcut

17

output_section_name :
{

*(.text)
} > FLASH

• Same as the previous example, except …

• Contains the .text input section from all the object files

Form Output Sections

• The previous example is correct, but not typical

• This example is typical …

18

.text :
{

*(.text)
} > FLASH

• Same as the previous example, except …

• The name of the output section changed from output_section_name to
.text

• Even though the names are the same, do not overlook the distinction between
input sections and the output section which contains them

Form Output Sections – TI only

• TI linker command files support a further shortcut

19

.text > FLASH

• No different from the previous example

SECTIONS Command Program Counter

• Within SECTIONS, a PC is maintained

• Thus, a MEMORY command is not strictly necessary

• This is a complete linker script

20

SECTIONS
{

. = 0x10000; /* Set PC = 0x10000 */

.text : { *(.text) }

. = 0x8000000; /* Set PC = 0x8000000 */

.data : { *(.data) }

.bss : { *(.bss) } /* .bss starts at 0x8000000 + sizeof(.data) */
}

• Typical of scripts for hosted systems

• Most (probably all) scripts for embedded systems use the MEMORY command

REGION_ALIAS

• Defines another name for a memory region

21

REGION_ALIAS(“NEW_REGION_NAME”, EXISTING_REGION_NAME);

• Supports separate specification of MEMORY and SECTIONS commands

REGION_ALIAS("REGION_TEXT", DDR_0);
REGION_ALIAS("REGION_BSS", MSMC_SRAM_H);
REGION_ALIAS("REGION_DATA", DDR_0);
…

• Written outside of MEMORY and SECTIONS commands

REGION_ALIAS Example

MEMORY {
DDR_0 (RWX) : ORIGIN = 0x80000000, LENGTH = 0x10000000
…

}

REGION_ALIAS("REGION_TEXT", DDR_0);
…

SECTIONS {
…

.text : {
…

} > REGION_TEXT

• HW expert writes MEMORY and REGION_ALIAS

• SW expert writes SECTIONS in terms of REGION_ALIAS

Agenda

• Gentle Introduction

• GCC
– Basics

– Examples

• TI
– Basics: Differences vs GCC

– Examples

• References

23

Example 1: .rodata

.rodata : {
*(.rodata)
(.rodata) /* explained next slide */

} > REGION_TEXT AT> REGION_TEXT

• Output section named .rodata

• Contains all input sections named .rodata

• Explaining *(.rodata*) requires an entire slide

• Allocated to REGION_TEXT
– This instance of AT> has no effect

– More detail to come

Sections per Entity and Garbage Collection

• Compile with -ffunction-sections -fdata-sections

• Link with -Wl,--gc-sections

• Each function and global data item in separate input section

• Input section is named after the entity
– Examples: .text.function_name, .rodata.const_array_name

• Garbage collects (removes) functions never called and data items never used
– If nothing gets garbage collected, total program size is bigger

25

(.rodata) /* explained THIS slide */

• Collects all the input sections that start with the name .rodata
– Such as .rodata.const_array_name

Specific Allocation of One Input Section

special_output_section : {
*(.rodata.const_array_name)

} > SPECIAL_MEMORY_REGION

• Output section named special_output_section

• Contains one input section named .rodata.const_array_name

• Allocated to SPECIAL_MEMORY_REGION

Example 2: .data

.data : ALIGN(8) {
__data_load__ = LOADADDR (.data);
__data_start__ = .;
*(.data)
(.data)
. = ALIGN(8);
__data_end__ = .;

} > REGION_DATA AT> REGION_TEXT

• Output section named .data

• Contains all input sections named .data, and start with .data

• Explain all the rest in the next few slides

Different Load and Run Address

} > REGION_DATA AT> REGION_TEXT

• All output sections have two allocations: run and load
– GCC docs use the terms VMA (run) and LMA (load)

– VMA: Virtual Memory Address

– LMA: Load Memory Address

• Default: run == load

• Specify different load address with AT> syntax

• Typical use case: load in flash, run in RAM

• A copy from flash to RAM must occur early in execution, usually as part of
system startup

Symbols for Run and Load Addresses

.data : ALIGN(8) {
__data_load__ = LOADADDR (.data);
__data_start__ = .;
*(.data)
(.data)
. = ALIGN(8);
__data_end__ = .;

} > REGION_DATA AT> REGION_TEXT

• These symbols are used to implement the copy from load to run

• Copy length: __data_end__ - __data_start__

Alignment

.data : ALIGN(8) {
__data_load__ = LOADADDR (.data);
__data_start__ = .;
*(.data)
(.data)
. = ALIGN(8);
__data_end__ = .;

} > REGION_DATA AT> REGION_TEXT

• First ALIGN(8) aligns output section to an 8 byte boundary

• Last ALIGN(8) insures output section length is a multiple of 8 bytes
– If a gap is created, it is filled with 0

Example 3: .text

• Output section named .text

• Contains all input sections named
.text, and start with .text

• Plus other input sections

• Despite use of AT>, run and load
allocation is the same REGION_TEXT

• This script consistently uses AT> for
every allocation

31

.text : {
CREATE_OBJECT_SYMBOLS
*(.text)
(.text.)
. = ALIGN(0x8);
KEEP (*(.ctors))
. = ALIGN(0x8);
KEEP (*(.dtors))
. = ALIGN(0x8);
__init_array_start = .;
KEEP (*(.init_array*))
__init_array_end = .;
*(.init)
(.fini)

} > REGION_TEXT AT> REGION_TEXT

Symbols for Input Files

• Creates a symbol for each input file

• Named after the file

• Program probably does not use these
symbols, but I did not verify that

• Does not increase code size

• Increases the number of symbols,
which may slow load time and
debugging

32

.text : {
CREATE_OBJECT_SYMBOLS
*(.text)
(.text.)
. = ALIGN(0x8);
KEEP (*(.ctors))
. = ALIGN(0x8);
KEEP (*(.dtors))
. = ALIGN(0x8);
__init_array_start = .;
KEEP (*(.init_array*))
__init_array_end = .;
*(.init)
(.fini)

} > REGION_TEXT AT> REGION_TEXT

C++ Sections

• KEEP disables garbage collection of
these input sections

• These sections are related to
constructors and destructors for C++
objects with global or static scope

• Startup code constructs these objects
before main starts

• Cleanup code destructs these objects
after main ends

33

.text : {
CREATE_OBJECT_SYMBOLS
*(.text)
(.text.)
. = ALIGN(0x8);
KEEP (*(.ctors))
. = ALIGN(0x8);
KEEP (*(.dtors))
. = ALIGN(0x8);
__init_array_start = .;
KEEP (*(.init_array*))
__init_array_end = .;
*(.init)
(.fini)

} > REGION_TEXT AT> REGION_TEXT

C++ Startup Symbols

• .init_array contains pointers to
functions called during startup

• These symbols mark the start and end
of .init_array

34

.text : {
CREATE_OBJECT_SYMBOLS
*(.text)
(.text.)
. = ALIGN(0x8);
KEEP (*(.ctors))
. = ALIGN(0x8);
KEEP (*(.dtors))
. = ALIGN(0x8);
__init_array_start = .;
KEEP (*(.init_array*))
__init_array_end = .;
*(.init)
(.fini)

} > REGION_TEXT AT> REGION_TEXT

More Startup Code

• More code related to startup

• Not explained in this presentation

35

.text : {
CREATE_OBJECT_SYMBOLS
*(.text)
(.text.)
. = ALIGN(0x8);
KEEP (*(.ctors))
. = ALIGN(0x8);
KEEP (*(.dtors))
. = ALIGN(0x8);
__init_array_start = .;
KEEP (*(.init_array*))
__init_array_end = .;
*(.init)
(.fini)

} > REGION_TEXT AT> REGION_TEXT

Odd Syntax

• Why the inconsistent use of the trailing
asterisk?

• I suspect it’s wrong, but did not
investigate

36

.text : {
CREATE_OBJECT_SYMBOLS
*(.text)
(.text.)
. = ALIGN(0x8);
KEEP (*(.ctors))
. = ALIGN(0x8);
KEEP (*(.dtors))
. = ALIGN(0x8);
__init_array_start = .;
KEEP (*(.init_array*))
__init_array_end = .;
*(.init)
(.fini)

} > REGION_TEXT AT> REGION_TEXT

More Symbols for .text

• Defined outside of output section, thus
uses the SECTIONS command PC

• Marks the end of .text

• PROVIDE is similar to weak
– With regard to the named symbol

– Can be overridden by a definition in the
program

– If never referenced, not created

• Different variants of the symbol name
etext have appeared over the years
– So provide all of them

37

.text : {
…
} > REGION_TEXT AT> REGION_TEXT

PROVIDE (__etext = .);
PROVIDE (_etext = .);
PROVIDE (etext = .);

Agenda

• Gentle Introduction

• GCC
– Basics

– Examples

• TI
– Basics: Differences vs GCC

– Examples

• References

38

Terminology: GCC vs TI

39

GCC TI

Linker script Linker command file

MEMORY command MEMORY directive

SECTIONS command SECTIONS directive

Memory region Memory range

Other Differences

• SECTIONS command PC (program counter)
– GCC: yes

– TI: no

• REGION_ALIAS
– GCC: yes

– TI: no

• C preprocessor statements like #include, #define, etc.
– GCC: no

– TI: yes

40

Syntax Difference Regarding Colon

• GCC requires this colon

41

.text : { /* input sections here */ } > FLASH

• TI does not

.text { /* input sections here */ } > FLASH

TI Shortcut Repeated

.text > FLASH

• Output section named .text

• Contains all the input sections named .text

• Allocated to FLASH

Agenda

• Gentle Introduction

• GCC
– Basics

– Examples

• TI
– Basics: Differences vs GCC

– Examples

• References

43

First Output Section in a Memory Range

• .intvecs is the first output section
allocated to FLASH

• All other output sections are in any
order

• Allocations to a specific address are
always done before allocations to a
named memory range

44

#define BASE 0x00200000

MEMORY {
FLASH : o = BASE, l = 0xFFD4

…
}

SECTIONS {
/* only one to use BASE */
.intvecs > BASE
.text > FLASH
.const > FLASH

…
}

Allocate to Multiple Memory Ranges

.text > FLASH0 | FLASH1

• Output section named .text

• Contains all the input sections named .text

• Allocated to the first memory range which can completely contain it

Split an Output Section Across Multiple Memory Ranges

.text >> RAMM0 | RAML0 | RAML1

• Note >> instead of >

• Output section .text is split across those memory ranges

• Split occurs on input section boundaries
– Thus a split never occurs in the middle of a function, array, etc.

• Memory ranges are used in that order

Group Output Sections Together

• Use Case: Some output sections need to be together in order

• A first attempt might be

47

/* This does NOT work */
output_section_1 > RAM
output_section_2 > RAM
output_section_3 > RAM

• All those sections go in RAM, but in any order
– Other output sections can come in between them

• Use GROUP instead

Group Output Sections Together

• Output sections are PUTBUFFER,
PUTWRITEIDX, and GETREADIDX

• Allocated to CTOMRAM memory range
in that order

• Colon is optional

• Memory range name may be written
after the closing brace instead

• Violates the unwritten convention that
section names are written in all lower
case

48

GROUP : > CTOMRAM
{

PUTBUFFER
PUTWRITEIDX
GETREADIDX

}

Agenda

• Gentle Introduction

• GCC
– Basics

– Examples

• TI
– Basics: Differences vs GCC

– Examples

• References

49

References

• This presentation is based on this article
http://software-dl.ti.com/ccs/esd/documents/sdto_cgt_Linker-Command-File-
Primer.html (link)

• GCC Linker Manual
https://sourceware.org/binutils/docs/ld/ (link)

• All manuals for TI Compilers, Assemblers, Linkers, etc.
http://www.ti.com/tool/TI-CGT#technicaldocuments (link)

50

Questions?

51

