A Primer on Linker Scripts and
Command Files

George Mock

Texas Instruments

Embedded Systems Conference
August 2019

Wip TEXAS INSTRUMENTS

Who is George Mock

Software Developer

Texas Instruments

32 years

All of them spent working on ...
— C/C++ Compilers
— Assemblers
— Linkers
— Related tools
— Directly and indirectly

Moderate the C/C++ part of TI's customer forum

2

W3 TEXAS INSTRUMENTS

Agenda

Gentle Introduction

« GCC

— Basics
— Examples

Tl

— Basics: Differences vs GCC
— Examples

References

3

W3 TEXAS INSTRUMENTS

Introduce Linker Scripts

Compiler turns source files into object files

Linker takes object files and libraries and produces final executable

How does linker know where memory is? Where does code and data go in
memory?

Linker Script!

Two terms for the same thing
— GCC: Linker Script
— TI: Linker Command File

4

W3 TEXAS INSTRUMENTS

Linker Scripts Are Everywhere

C:\dir>1d --verbose

SECTIONS
{

/* 22? Why is
* (.gcc_exc)

.gcc_exc here?

/* Default linker script, for normal executables */

*/

W3 TEXAS INSTRUMENTS

What is a Linker Script?

Text file, just like any other source file

Another filename in the linker invocation
— GCC: Usually specify with —T option
— TI: Usually no option is used

May contain anything linker accepts on the command line
— Options

— Filenames

— Not covered in this presentation

Tells linker layout of memory

How to combine code and data together

Where to put it in memory

6

W3 TEXAS INSTRUMENTS

Problem Statement

* You already have a linker script or command file

It came with the development system you started on

You need to change it to match your final system

This presentation explains the linker script you have now, so you can change it

It does not explain everything

7

W3 TEXAS INSTRUMENTS

Agenda

Gentle Introduction
- GCC

— Basics
— Examples

Tl

— Basics: Differences vs GCC
— Examples

References

8

Wip TEXAS INSTRUMENTS

MEMORY Command

{

MEMORY

/* MCUSS-OCMC RAM RESERVED FOR MCUSS &
MCU RESVD : ORIGIN = 0x000041C00000,
/* MCUSS-OCMC RAM - 128KB

OCMCRAM : ORIGIN = 0x000041C60000,
/* MSMC RAM INIT CODE (4 KB)
BOOTVECTOR : ORIGIN = 0x000070000100,
/* MSMC RAM GENERAL USE */

MSMC_SRAM : ORIGIN = 0x000070001000,

SOC Boot

LENGTH

LENGTH

LENGTH

LENGTH

- 384KB 2
0x00060000
*/
0x00020000
*/

0x00001000 - 0x100

O0xEF000

» Assigns names to regions of memory

 The names are used later in the script

W3 TEXAS INSTRUMENTS

SECTIONS Command

* Does two things at once
1. Forms output sections from input sections
2. Allocates the output sections to memory

SECTIONS

{
.text : { *(.text) } > FLASH /* not explained yet! */

}

» Unless otherwise stated, all other examples are inside a SECTIONS command

10

Wip TEXAS INSTRUMENTS

SECTIONS Command Diagram

[obj| [.obj| [obj| .. [obj| . [b]| Object Files & Libs

] Input Sections
os1 0s2 0s3 os4 Output Sections
M1 M2 M3 Memory Regions

W3 TEXAS INSTRUMENTS

SECTIONS Command Glossary of Terms

Object File
— Collection of input sections
— May be presented directly, or come from a library

Input Section

— One section from one object file
— Code or data

— Data: Initialized or uninitialized

Output Section
— Collection of one or more input sections
— Formed by the SECTIONS command

Memory Region
— Range of memory specified in the MEMORY command

12

W3 TEXAS INSTRUMENTS

Data Sections: Initialized vs Uninitialized

const int cv = 42; // const initialized variable
int iv = 43; // initialized wvariable
int uv; // uninitialized wvariable
initialized nothing RO or RW
v uninitialized initializes RW
uv uninitialized zero fills RW

* RO: Read only memory, typically flash
« RW: Read write memory, typically RAM

Wip TEXAS INSTRUMENTS

Section Naming Conventions

« Strictly speaking, a section name says nothing about the contents
« By convention, these names imply these contents

text Yes Executable code

.data Yes Initialized data, changes during execution
.bss No Global variables, zero filled

.rodata Yes Initialized data, always constant

14

Wip TEXAS INSTRUMENTS

Debug Sections

 Names similar to ...
— .debug_something
— .stabs_something
— .comment
— .note

Not loaded to the target

Used by the debugger

Ignore them

If your linker script mentions them, leave them alone

15

W3 TEXAS INSTRUMENTS

Form Output Sections

* Many shortcuts and wildcards are supported

This example uses none of them

output section name :

{
filel.o(.text)
file2.0(.text)
file3.o(.text)

} > FLASH

Name: output section name

“ N

— Does not have to begin with a dot “.
Contains three input sections named . text from those specific object files

Allocated to the FLASH memory region

16

Wip TEXAS INSTRUMENTS

Form Output Sections

* The previous example does not scale to a system with many files
» This example uses one shortcut

output section name :
{

* (.text)
} > FLASH

« Same as the previous example, except ...
« Contains the . text input section from all the object files

17

Wip TEXAS INSTRUMENTS

Form Output Sections

* The previous example is correct, but not typical

This example is typical ...

text
{

*(.text)
} > FLASH

Same as the previous example, except ...

The name of the output section changed from output section name to
.text

Even though the names are the same, do not overlook the distinction between
input sections and the output section which contains them

18

Wip TEXAS INSTRUMENTS

Form Output Sections — Tl only

* Tl linker command files support a further shortcut

.text > FLASH

» No different from the previous example

19

W3 TEXAS INSTRUMENTS

SECTIONS Command Program Counter

« Within SECTIONS, a PC is maintained
Thus, a MEMORY command is not strictly necessary

This is a complete linker script

SECTIONS
{
. = 0x10000; /* Set PC = 0x10000 */
.text : { *(.text) }
. = 0x8000000; /* Set PC = 0x8000000 * /
.data : { *(.data) }
.bss : { *(.bss) } /* .bss starts at 0x8000000 + sizeof(.data) */
}

Typical of scripts for hosted systems

Most (probably all) scripts for embedded systems use the MEMORY command

20

W3 TEXAS INSTRUMENTS

REGION_ALIAS

» Defines another name for a memory region

REGION ALIAS (“NEW REGION NAME”, EXISTING REGION NAME) ;

» Supports separate specification of MEMORY and SECTIONS commands

REGION ALIAS ("REGION TEXT", DDR 0);
REGION ALIAS ("REGION BSS", MSMC SRAM H);
REGION ALIAS ("REGION DATA", DDR 0);

 Written outside of MEMORY and SECTIONS commands

21

Wip TEXAS INSTRUMENTS

REGION_ALIAS Example

MEMORY {
DDR 0 (RWX) : ORIGIN = 0x80000000, LENGTH = 0x10000000

}

REGION ALIAS ("REGION_ TEXT", DDR 0);

SECTIONS {

.text @ {

} > REGION_ TEXT

 HW expert writes MEMORY and REGION_ALIAS
« SW expert writes SECTIONS in terms of REGION_ALIAS

W3 TEXAS INSTRUMENTS

Agenda

Gentle Introduction
- GCC

— Basics
— Examples

Tl

— Basics: Differences vs GCC
— Examples

References

23

Wip TEXAS INSTRUMENTS

Example 1: .rodata

.rodata : {
*(.rodata)
* (.rodata*) /* explained next slide */

} > REGION TEXT AT> REGION TEXT

Output section named . rodata

Contains all input sections named . rodata

Explaining * (. rodata*) requires an entire slide

Allocated to REGION TEXT
— This instance of AT> has no effect

— More detail to come

Wip TEXAS INSTRUMENTS

Sections per Entity and Garbage Collection

 Compile with -ffunction-sections -fdata-sections

Link with -W1, --gc-sections

Each function and global data item in separate input section

Input section is named after the entity
— Examples: . text.function name, .rodata.const_array name

Garbage collects (removes) functions never called and data items never used
— If nothing gets garbage collected, total program size is bigger

* (.rodata%*) /* explained THIS slide */

Collects all the input sections that start with the name . rodata

— Such as .rodata. const_array name

25

Wip TEXAS INSTRUMENTS

Specific Allocation of One Input Section

special output section : {
*(.rodata.const array name)
} > SPECIAL MEMORY REGION

 Output section named special output section
- Contains one input section named .rodata.const_array name
* Allocated to SPECIAL MEMORY REGION

W3 TEXAS INSTRUMENTS

Example 2: .data

.data : ALIGN(8) {

__data start = .;
*(.data)
(.data)
. = ALIGN (8);
__data end = .;
} > REGION DATA AT> REGION TEXT

___data load = LOADADDR (.data);

* Output section named .data

» Contains all input sections named .data, and start with .data

« Explain all the rest in the next few slides

Wip TEXAS INSTRUMENTS

Different Load and Run Address

} > REGION DATA AT> REGION TEXT

All output sections have two allocations: run and load
— GCC docs use the terms VMA (run) and LMA (load)
— VMA: Virtual Memory Address
— LMA: Load Memory Address

Default: run == load
Specify different load address with AT> syntax

Typical use case: load in flash, run in RAM

A copy from flash to RAM must occur early in execution, usually as part of
system startup

W3 TEXAS INSTRUMENTS

Symbols for Run and Load Addresses

.data : ALIGN(8) {

__data load = LOADADDR
__data _start = .;
*(.data)

(.data)

. = ALIGN(8);

__data end = .;

} > REGION DATA AT> REGION TEXT

(.data) ;

» These symbols are used to implement the copy from load to run

* Copy length: data end - data start

W3 TEXAS INSTRUMENTS

Alignment

.data : ALIGN(8) {
___data load = LOADADDR (.data);
__data start = .;
*(.data)
(.data)
. = ALIGN(8);
__data end = .;
} > REGION DATA AT> REGION TEXT

« First ALIGN (8) aligns output section to an 8 byte boundary

« Last ALIGN (8) insures output section length is a multiple of 8 bytes

— If a gap is created, it is filled with 0

Wip TEXAS INSTRUMENTS

Example 3: .text

ctext @ { * Output section named . text
CREATE OBJECT SYMBOLS . . .
% (.text) - » Contains all input sections hamed
* (. text.*) .text, and start with . text
- = ALIGN(0x8); « Plus other input sections
KEEP (*(.ctors))
. = ALIGN (0x8); » Despite use of AT>, run and load
SEEE (T (oeters)) allocation is the same REGION_TEXT
. = ALIGN (0x8) ;]) .
__init array start = .; * This script consistently uses AT> for
KEEP (*(.init_array*)) every allocation
__init array end = .;
*(.init)
(.finix)

} > REGION TEXT AT> REGION TEXT

31

Wip TEXAS INSTRUMENTS

Symbols for Input Files

.text
CREATE_QBJECT_SYMBOLS
*(.text)

(.text.)

. = ALIGN (0x8) ;
KEEP (*(.ctors))
. = ALIGN (0x8) ;
KEEP (* (.dtors))
. = ALIGN (0x8) ;

__1nit array start = .;
KEEP (*(.init array*))
__init array end = .;
*(.1init)
*(.fini¥)

} > REGION TEXT AT> REGION TEXT

Creates a symbol for each input file
Named after the file

Program probably does not use these
symbols, but | did not verify that

Does not increase code size

Increases the number of symbols,
which may slow load time and
debugging

32

W3 TEXAS INSTRUMENTS

C++ Sections

.text : « KEEP disables garbage collection of
CREATE OBJECT SYMBOLS these input sections
* (. text) _
% (.text.*) * These sections are related to
. = ALIGN (0x8) ; constructors and destructors for C++
KEEP (*(.ctors)) objects with global or static scope
. = ALIGN (0x8) ;)
KEEP (*(.dtors)) - Startup code constructs these objects
. = ALIGN (0x8) ; before main starts

init array start = .; .

KEEP (*(.init array*)) » Cleanup code destructs these objects
__init array end = .; after main ends
*(.init)
* (. fini*)

} > REGION TEXT AT> REGION TEXT

33

Wip TEXAS INSTRUMENTS

C++ Startup Symbols

.text : { - .init array contains pointers to

CREATE_OBJECT_SYMBOLS functions called during startup

*(.text

* E .text). %) * These symbols mark the start and end
= ALIGN (0x8) ; of .init array

KEEP (*(.ctors))
= ALIGN (0x8) ;

KEEP (*(.dtors))
= ALIGN (0x8) ;

__init array start = .;

EEP (*(.init array*))
__init array end = .;
*(.init)

(.fini)

} > REGION TEXT AT> REGION TEXT

34

W3 TEXAS INSTRUMENTS

More Startup Code

.text : * More code related to startup
SEEEiZE—OBJECT—SYMBOLS * Not explained in this presentation
.text)
(.text.)
= ALIGN (0x8) ;
KEEP (*(.ctors))
= ALIGN (0x8) ;
KEEP (*(.dtors))
= ALIGN (0x8) ;

__1nit array start = .;
KEEP (*(.init array*))
__init array end = .;
*(.init)
(.fini)

} > REGION TEXT AT> REGION TEXT

35

W3 TEXAS INSTRUMENTS

Odd Syntax

.text : « Why the inconsistent use of the trailing
CREATE OBJECT SYMBOLS asterisk?
* (.text)
x (.text.*) * | suspect it's wrong, but did not
= ALIGN (0x8) ; investigate
KEEP (*(.ctors))
= ALIGN (0x8) ;
KEEP (*(.dtors))
= ALIGN (0x8) ;

__1nit array start .7
KEEP (*(.init_arraéj))

init array end =

*(.ini
* (. fin
P> REGION_ XT AT> REGION_TEXT

36

W3 TEXAS INSTRUMENTS

More Symbols for .text

Defined outside of output section, thus
uses the SECTIONS command PC

Marks the end of . text

PROVIDE is similar to weak
— With regard to the named symbol

— Can be overridden by a definition in the
program

— If never referenced, not created

Different variants of the symbol name
etext have appeared over the years

— So provide all of them

.text

} > REGION TEXT AT> REGION TEXT

PROVIDE (_ etext = .);
PROVIDE (etext = .);
PROVIDE (etext = .);

37

W3 TEXAS INSTRUMENTS

Agenda

Gentle Introduction

« GCC

— Basics
— Examples

Ti

— Basics: Differences vs GCC
— Examples

References

38

Wip TEXAS INSTRUMENTS

Terminology: GCC vs TI

Linker script Linker command file
MEMORY command MEMORY directive
SECTIONS command SECTIONS directive
Memory region Memory range

39

Wip TEXAS INSTRUMENTS

Other Differences

« SECTIONS command PC (program counter)
— GCC: yes
— Tl: no
« REGION_ALIAS
— GCC: yes
— TI: no
» C preprocessor statements like #include, #define, etc.

— GCC: no
— TI: yes

40

W3 TEXAS INSTRUMENTS

Syntax Difference Regarding Colon

» GCC requires this colon

N

.text(:){ /* input sections here */ } > FLASH

e

Tl does not

.text { /* input sections here */ } > FLASH

41

W3 TEXAS INSTRUMENTS

Tl Shortcut Repeated

.text > FLASH

» Output section named . text
» Contains all the input sections named . text
 Allocated to FLASH

W3 TEXAS INSTRUMENTS

Agenda

Gentle Introduction

« GCC

— Basics
— Examples

Ti

— Basics: Differences vs GCC
— Examples

References

43

Wip TEXAS INSTRUMENTS

First Output Section in a Memory Range

#define BASE 0x00200000 e .intvecs is the first output section
allocated to FLASH
MEMORY { _ _
FLASH : o = BASE, 1 = OxFFD4 * All other output sections are in any
order
} . -
 Allocations to a specific address are
SECTIONS ({ always done before allocations to a
/* only one to use BASE */ named memory range
.intvecs > BASE
.text > FLASH

.const > FLASH

44

Wip TEXAS INSTRUMENTS

Allocate to Multiple Memory Ranges

.text > FLASHO | FLASHI

» Output section named . text
» Contains all the input sections named . text
 Allocated to the first memory range which can completely contain it

W3 TEXAS INSTRUMENTS

Split an Output Section Across Multiple Memory Ranges

.text >> RAMMO | RAMLO | RAMLI1

Note >> instead of >

Output section .text is split across those memory ranges

Split occurs on input section boundaries
— Thus a split never occurs in the middle of a function, array, etc.

Memory ranges are used in that order

W3 TEXAS INSTRUMENTS

Group Output Sections Together

» Use Case: Some output sections need to be together in order
« A first attempt might be

/* This does NOT work */
output section 1 > RAM
output section 2 > RAM
output section 3 > RAM

« All those sections go in RAM, but in any order
— Other output sections can come in between them

 Use GROUP instead

47

W3 TEXAS INSTRUMENTS

Group Output Sections Together

GROUP : > CTOMRAM
{
PUTBUFFER
PUTWRITEIDX
GETREADIDX

Output sections are PUTBUFFER,
PUTWRITEIDX, and GETREADIDX

Allocated to CTOMRAM memory range
in that order

Colon is optional

Memory range name may be written
after the closing brace instead

Violates the unwritten convention that
section names are written in all lower
case

48

W3 TEXAS INSTRUMENTS

Agenda

Gentle Introduction

« GCC

— Basics
— Examples

Tl

— Basics: Differences vs GCC
— Examples

References

49

Wip TEXAS INSTRUMENTS

References

» This presentation is based on this article
http://software-dl.ti.com/ccs/esd/documents/sdto_cgt Linker-Command-File-
Primer.html (link)

« GCC Linker Manual
https://sourceware.org/binutils/docs/Id/ (link)

 All manuals for TI Compilers, Assemblers, Linkers, etc.
http://www.ti.com/tool/TI-CGT#technicaldocuments (link)

50

Wip TEXAS INSTRUMENTS

Questions?

W3 TEXAS INSTRUMENTS

