Introduction to Linker

Prashant Shivhare

W3 TEXAS INSTRUMENTS

Compilation: Source to Binary

- Compilation Process ﬁ

— Source File (.c,.cpp), Preprocessor, Clang shell
Compiler, Assembler, Linker (Harmclang)

Clang C/C ++
e Linker front-end
— Links multiple object files into one final -
executable file. optimizer + backend
» Object files: *.0, *.a, *.0bj
* Executable files: *.out, *.elf M) 2T

Compiler runtime
Tl linker

1l

2

i3 TExAs INSTRUMENTS

TI ARM CLANG Compiler

 tiarmclang
— C/C++ compiler & integrated assembler.
— Invoke linker by default

— Options
- -E . Stop after pre-processing.
. -S . Stop after producing assembly file.
*-C . Stop after producing object file. Do not invoke linker.

» -WI,<opt-list> : Options passed to linker.

e tlarmlink
— Actual TI ARM Linker

— Usually invoked via tiarmclang only so that object library search path & runtime
libraries are implicitly included.

3

W3 TEXAS INSTRUMENTS

TI ARM Linker (tiarmink)

« Entry point
— The address of the first instruction to be run.
— Default entry point: _c_int00
— -e <symbol>: Tells linker to set <symbol> as the entry point.

« Map file
— Include information helpful for debugging.
« Layout of final executable file
» Module summary, symbols, entry point, etc.
» -m=<file name>: Produces the information in map file named <file name>.

4

W3 TEXAS INSTRUMENTS

Linker Command File

» Linker options
— -e<symbol>
— --stack_size
— --heap_size

* Symbols

— Can define symbols that can be used in
source files.

— Resolved at link time

* Directives

— SECTIONS : Control the input & output
sections

— MEMORY : Defines the target memory

--stack_size=16384
--heap_size=32768

SECTIONS
{

.vectors:{}

.text:
.bss:
.data:

.sysmem: {}

.stack:

}

MEMORY
{

MAF_VECS :
MAF_IRAM :
MAF_DRAM :

palign(8)
{} palign(8)

{} palign(8)
{} palign(8)
.rodata: {}

palign(8)
palign(8)

{} palign(8)

M4F_VECS
M4F_IRAM
M4F_DRAM
M4F_DRAM
M4F_DRAM
M4F_IRAM
M4F_IRAM

ORIGIN ©xeoeeeeee ,
ORIGIN ©xeoeeezee ,
ORIGIN ©xeee3eee0e ,

LENGTH = @xeeeeezee
LENGTH = @x@e02FEee
LENGTH = exeeeleoee

5

W3 TEXAS INSTRUMENTS

Sections

dext
bss
.data
.const
rodata
.Stack

.sysmem

Used for program code.

Used for uninitialized global variables.

Used for initialized non-const global variables.

Used for initialized const objects.
Used for string constants.

Used for the function call stack.

Used for the dynamic memory allocation pool.

6

W3 TEXAS INSTRUMENTS

Executable File

 Permanent storage

— Non-volatile storage
* Flash, eMMC, etc.

— Store anywhere in this type of storage

» Load
— Stage before running.
— Load the executable at the load addresses mostly in temporary storages.
— May load in slow & large memories.

* Run
— After loading, start running following the run addresses.
— May need to copy code in case load & run address differ.
— Run from fast & small memories

7

W3 TEXAS INSTRUMENTS

Sample Program

tiarmclang -mcpu=cortex-m4 -o hello_world.out hello_world.c "-Wl,-emain,-m=hello_world.map"

* Run the above command to produce
hello worldc > ... the .out file.
#include <stdio.h>

» Options
main() { — -mcpu : Target processor
printf("Hello World!!!"); - -0 :Name of the output produced
return @; — -WI : Pass options to linker
* -emain : Set entry point to main
*-m : Produce map file

8

W3 TEXAS INSTRUMENTS

THANK YOU ©

W3 TEXAS INSTRUMENTS

