
Introduction to Linker

Prashant Shivhare

1

Compilation: Source to Binary

• Compilation Process

– Source File (.c,.cpp), Preprocessor,

Compiler, Assembler, Linker

• Linker

– Links multiple object files into one final

executable file.

• Object files: *.o, *.a, *.obj

• Executable files: *.out, *.elf

2

TI ARM CLANG Compiler

• tiarmclang

– C/C++ compiler & integrated assembler.

– Invoke linker by default

– Options

• -E : Stop after pre-processing.

• -S : Stop after producing assembly file.

• -c : Stop after producing object file. Do not invoke linker.

• -Wl,<opt-list> : Options passed to linker.

• tiarmlnk

– Actual TI ARM Linker

– Usually invoked via tiarmclang only so that object library search path & runtime

libraries are implicitly included.
3

TI ARM Linker (tiarmlnk)

• Entry point

– The address of the first instruction to be run.

– Default entry point: _c_int00

– -e <symbol>: Tells linker to set <symbol> as the entry point.

• Map file

– Include information helpful for debugging.

• Layout of final executable file

• Module summary, symbols, entry point, etc.

• -m=<file name>: Produces the information in map file named <file name>.

4

Linker Command File

• Linker options

– -e<symbol>

– --stack_size

– --heap_size

• Symbols

– Can define symbols that can be used in

source files.

– Resolved at link time

• Directives

– SECTIONS : Control the input & output

sections

– MEMORY : Defines the target memory

5

Sections

6

Section Name Use Case

.text Used for program code.

.bss Used for uninitialized global variables.

.data Used for initialized non-const global variables.

.const Used for initialized const objects.

.rodata Used for string constants.

.stack Used for the function call stack.

.sysmem Used for the dynamic memory allocation pool.

Executable File

• Permanent storage

– Non-volatile storage

• Flash, eMMC, etc.

– Store anywhere in this type of storage

• Load

– Stage before running.

– Load the executable at the load addresses mostly in temporary storages.

– May load in slow & large memories.

• Run

– After loading, start running following the run addresses.

– May need to copy code in case load & run address differ.

– Run from fast & small memories
7

Sample Program

• Run the above command to produce

the .out file.

• Options

– -mcpu : Target processor

– -o : Name of the output produced

– -Wl : Pass options to linker

• -emain : Set entry point to main

• -m : Produce map file

8

tiarmclang -mcpu=cortex-m4 -o hello_world.out hello_world.c "-Wl,-emain,-m=hello_world.map"

THANK YOU ☺

9

