
Spotlight on: Automating testing with DSS Test Server 
 

Introduction: 

Automated testing has always been a critical component of the software development process. For users 

of Code Composer Studio (CCS), automated testing of their applications can be accomplished by 

using Debug Server Scripting (DSS). DSS is a set of cross platform Java APIs to the Code Composer 

Studio (CCS) debugger. This allows scripting through Java or scripting languages such as JavaScript. 

DSS comes with a variety of example scripts to help users get started. While most of these examples are 

simple self-contained scripts to demonstrate specific DSS functionality, some are more comprehensive 

examples that creatively highlight what you can do with DSS. These examples can function as useful “out-

of-the-box” utilities. “loadti” is one of the better known examples, which is used by many customers as a 

convenient “out-of-the-box” command-line loader. Perhaps the least known example is the “DSS Test 

Server”. This article hopes to bring more attention to this seldom used (but perhaps most intriguing) 

example.   

What is the DSS Test Server? 

The DSS Test Server was created as a raw “proof-of-concept” example for a customer who needed the 

ability to have a script be able to interface to an existing CCS debugger instance. The customer relied on 

configuring and launching the CCS debugger once, leaving it running indefinitely, while scripts would 

subsequently be run - each attaching to the existing debugger instance and performing the series of 

debug actions needed to carry out a particular test. Each script would finish execution, but leave the 

debugger up and running after completion for the later scripts to connect to. In DSS, the default 

supported behavior is to have each script launch a new debugger instance each time, perform all the 

desired debug actions, and terminate the debugger instance when the script completes execution. This 

would not satisfy the customer requirement so a new solution was developed with collaboration by 

several SDTO, BU, and field applications folks. That solution is how the DSS Test Server example was 

born. 

 

 



Okay… interesting background… but still… what exactly is it? 

The example worked by having a main (DSS Test Server) script create a CCS debugger instance and start 

a debug session for each available CPU in its own Java thread. Each thread would then listen for 

commands on an open TCP/IP socket. Remote clients (via client script) can communicate to the active 

debug session by connecting to the socket and sending supported debug commands that are handled by 

the server script. The “remote” client machine can be the same as the host machine that is running the 

main server script (“localhost”). Once all the commands in the client script are executed, the Test Server 

would then close connection with the client, and then wait for the next set of commands to execute from 

other client scripts. This solution was able to satisfy the customer and enable them to use DSS. 

 

 

 



How else can it help? 

Remote Debug 

While the customer (at the time) was running both client scripts and the main server script from the same 

machine, the DSS Test Server also provided an example of how to have truly remote clients, from a variety 

of locations, establish a connection to the test server and send debug commands to be executed. 

 

An environment can be set up where the DSS Test Server can execute client scripts from multiple users in 

different remote locations. Why is this better than having remote users simply use CCS/DSS with 

a remote LAN debug probe connected to the target? The first issue would be the need for an external LAN 

debug probe in the first place, which can run a few hundred dollars for an XDS220 to a more than a 

thousand for an XDS560v2. Secondly, not all evaluation kits support an external debug probe setup. And 

finally, there are the added complexities of such a LAN debug probe setup. Even though a SimpleLink 

LaunchPad can support external debug probes, it is simply much easier (and cheaper) to just plug the 



LaunchPad directly to the computer with the included USB cable and use the default on-board XDS110 

debug probe. Then there is the issue of connecting to an existing running instance of the CCS debugger, 

which a direct use of CCS/DSS with a LAN emulator does not help with. Another benefit of the DSS Test 

Server is that the remote client machines do not require an installation of CCS/DSS to simply send 

commands to the Test Server (easy setup!). 

Simplified and Optimized Test Environment 

Other customers adopted the DSS Test Server for their Test Framework. The default DSS approach of 

self-contained DSS scripts resulted in large number of complex scripts to cover many use cases. There 

was quite a bit of overhead in re-configuring and re-launching the debugger each time. Using the DSS Test 

Server helped alleviate some of these issue. The Test Server (along with the CCS debugger) only needs to 

be relaunched in cases where the connection changes, hence this overhead is mostly gone. Client scripts 

no longer need to configure and launch the debugger each time, but instead can connect to a running test 

server and immediately access the target right away. Creating a new client script to access the target is 

much simpler, without the need for any DSS knowledge. 

While the customer Test Framework currently runs the client scripts on the same machine as the test 

server, another benefit for remote debug environments is the simplified setup due to the lack of 

dependencies on CCS/DSS by the remote client machine (as mentioned in the previous section). 

Summary 

The DSS Test Server has been part of a suite of DSS examples found in CCS for years. Often overlooked, it 

has gotten praise from the people who have taken the time to explore its capabilities and integrate it into 

their test environments. While people are encouraged to take this fairly “raw” example and 

modify/enhance it to fit their needs, it can also be used “as-is” right “out-of-the-box”.  Check it out! 

References: 

DSS Test Server: http://software-dl.ti.com/ccs/esd/documents/dss_test-server.html 

 


