“y"IEEKAHS
INSTRUMENTS

Version 1.12

Augl7, 2016

Copyright © Texas Instruments Incorporated

{'P TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to
discontinue any product or service without notice, and advise customers to obtain the latest version of
relevant information to verify, before placing orders, that information being relied on is current and
complete. All products are sold subject to the terms and conditions of sale supplied at the time of order
acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

Tl warrants performance of its products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the
extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is
not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using Tl components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards ought to be provided by the customer so as to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. Tl does not warrant or
represent that any license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right of Tl covering or relating to any combination, machine, or
process in which such products or services might be or are used. TI's publication of information
regarding any third party’s products or services does not constitute TI's approval, license, warranty or
endorsement thereof.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations and notices.
Representation or reproduction of this information with alteration voids all warranties provided for an
associated Tl product or service is an unfair and deceptive business practice, and Tl is neither
responsible nor liable for any such use.

Resale of TI's products or services with statements different from or beyond the parameters stated by
TI for that product or service voids all express and any implied warranties for the associated TI product
or service, is an unfair and deceptive business practice, and Tl is not responsible nor liable for any such
use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products.
www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm

B Texas
INSTRUMENTS

Preface

Read This First

About This Manual

This User's Manual serves as a software programmer’s handbook for working with the TI
FEE Driver. It provides necessary information regarding how to effectively install, build and
use Tl FEE Driver in user systems and applications.

It also provides details regarding the Tl FEE Driver functionality, the requirements it places
on the hardware and software environment where it can be deployed, how to customize/
configure it etc. It also provides supplementary information regarding steps to be followed
for proper installation/ un-installation of the Tl FEE Driver.

Abbreviations

1-1. Table of Abbreviations

Abbreviation

Description

TI FEE Driver

This is Tl coined name for the product.

FEE

Flash EEPROM Emulation

{'P TEXAS
INSTRUMENTS

Revision History

Version Date Revision History
1.0 09/25/2012 Initial version
11 11/12/2012
12 03/12/2013 Add more info for datasets
13 04/19/2013 Add section Reset Behavior
1.4 06/04/2013 Add new configuration parameters. Add software
revision history.
15 07/05/2013 Software revision updated.
1.6 12/04/2013 ReadSync API added. Format APl modified.
New Configuration Tag Added.
1.7 05/23/2014 Software Revision History updated.
18 06/02/2014 Documentation corrections
1.9 01/21/2015 Update software revision table. New APl added for
supporting manual Suspend/Resume of erasing of
sector
1.10 02/13/2015 Update software revision table.
1.11 02/22/2016 Update software revision table. Update
documentation related to FEE errors.
1.12 06/29/2016 Update software revision table. Update
documentation. Replace CRC with checksum.
Added text for unconfigured blocks to copy
parameter.
Software Revision History
Version Date Revision History
00.01.00 08/31/2012 Initial version
00.01.01 10/29/2012 Changes for implementing Error Recovery
00.01.02 11/30/2012 Misra Fixes, Memory segmentation changes
00.01.03 01/14/2013 Changes as requested by Vector. If there is
an immediate erase/invalidate block request

B Texas
INSTRUMENTS

before writing of a block, API should return
the job status as JOB_OK.

00.01.04 02/12/2013 Integration issues fix. Fixed issues regarding
integration of FEE with NvM.

00.01.05 03/04/2013 Added Deleting a block feature

00.01.06 03/11/2013 Added feature: copying of unconfigured
blocks.

00.01.07 03/15/2013 Added feature: Number of 8 bytes writes,
fixed issue with copy blocks.

00.01.08 04/05/2013 Added feature: CRC check for unconfigured
blocks, Main function modified to complete
writes as fast as possible, Added Non polling
mode support.

00.01.09 04/19/2013 Warning removal, Added feature comparison
of data during write.

00.01.10 06/11/2013 Fixed issue with erase sector. Also fixed
issue with 2 EEPROM’s where if one
EEPROM is locked with error condition, other
EEPROM will not get locked.

00.01.11 07/05/2013 Warning removal. Fixed issue with
Fee_manager API, if number of Virtual
Sectors are more than 2.

01.13.00 12/04/2013 Format API modified.

Read Sync API added.

MISRA C fixes.

WriteSync API corrected.

New Configuration Tag Added.

01.13.01 05/23/2014 Data Abort issue fixed.

Unexpected Job Result issue fixed.

01.14.00 05/23/2014 Unexpected Job Result issue fixed.

01.15.00 06/01/2014 Support for new devices
TMS570LC4357/RM57x added.

01.16.00 07/15/2014 Misra warnings removal.

01.16.01 09/12/2014 Manual Suspend/Resume of erasing of
sector added.

01.17.00 10/15/2014 RAM Optimization changes.

01.17.01 10/30/2014 Support for new devices

TMS570LS07xx, TMS570LS09xX,

{'P TEXAS
INSTRUMENTS

TMS570LS05xx, RM44Lx added.

01.17.02

02/13/2015

FLEE errata fix for SPNZ215A. Applicable for
TMS570LS04xx, RM42x, TMS570LC43xx,
RM57x, TMS570LS07xx, TMS570LS09xx,
TMS570LS05xx, RM44Lx devices.

1.18.00

10/12/2015

If morethan one data set is config

ured, then a valid block may get invalidated if
multiple valid blocks are present in FEE
memory.Applicable when driver used in
Autosar context.

1.18.01

11/17/2015

In TI_Feelnternal_FeeManager, do not
change the state to IDLE,after completing the
copy operation. Applicable when driver used
in Autosar context.

1.18.02

02/05/2016

Bugfix for “If sector copy operation is
interrupted, during next initialization, FEE
does not read the block offset address
correctly"”

1.18.03

06/30/2016

CRC wording changed Checksum since
driver uses checksum algorithm.

1.19.00

08/08/2016

If FEE used a partially erased sector, FEE
can read from unimplemented memory
location. Code changes done to not to use a
partially erased sector. Option “Check
EEPROM Address Range” is removed from
HALCoGen GUI. Address range will always
be checked during read/write.

1.19.01

08/12/2016

Synchronous Write API updated to not to
copy the block which is already copied.
Format API modified to erase all configured
sectors, if multiple sectors are combined to
form a larger virtual sector.
Tl_Feelnternal_FeeManager modified to
update block copy status of unconfigured
blocks correctly.
T1_Feelnternal_UpdateBlockOffsetArray
modified to update write addresses correctly,
if FEE did not find a valid write address.
Tl_Feelnternal_WriteDataF021 APl updated
for LE MCU'’s for updating correct ECC.

‘w’? TEXAS

INSTRUMENTS
Contents
Read This FirSt ..o 3
(70T 01 (=T 1 PSR P TR PR PR 7
Table Of tADIES ..o 9
TaDIE OF fIQUIES ..ot nreas 10
(@4 g T=T 01 =] Ot SR PUR PP 11
TI FEE Driver INtroQUCTIONooiiiiiiceeee et 11
1.1 OVBIVIBW . .ttt s 12
1.1.1 Functions supported in the TI FEE DIiVer.......ccccoceiievieveece e, 12
1.1.2 Other COMPONENTS......c.ccceiieiiciesie e nne e 13
1.1.3 Development Platform..........ooiiiiiii e 13
(O g F=T 01 (=] SRRSO 14
TI FEE Driver DeSIgN OVEIVIEWccccccuviieiieiieeiesieesie e sieenaesseessaesaessessseessessesssesssesses 14
OVEBIVIBW ...ttt ettt e e e e e e e e e et ettt e e e e e e e e e eeesbanaeeeeeaeeeeennnnnn 14
2.1 Flash EEPROM Emulation Methodologycccoeeeeiiiiiiiiiiiiiiieeeeeeeeiiies 15
2.1.1 Virtual Sector Organization............ccuveveeieenieeieseeseesie e e se e 15
21.2 Data BIock Organizationcocooveiiieiieneee e 19
2.1.3 Supported COMMANGASccooiveiiiiiesiee e se e nneas 21
2.1.4 SEAUS COUESoeevieiiiieiie e bbb 21
215 JOD RESUIL ... 21
(O g F= T 01 1T A TSRO PRSP 22
FIlE LIST .ot 22
(@ =T 0} (=] PSS 24
4.1 Error Recovery Implementationuuuiiinieeieieeciieeee e 24
4.2 Single and Double bit Error CorreCtionsoooeveeeiviiiiiiieeeeeeeeeeiiiinnn 25
G T V=70 0 [o Y0\, F= o o 11 o S 25
4.4 BUIId PrOCEAUIEeeiii et 26
4.5 Symbolic Constants and Enumerated Data typesccceeeeevveevvvnnnnnnnn. 27
4.6 Data SITUCIUIES.... .t e et e e e e e e e aa e e eeeennns 30
4.7.1 Operating FrEQUENCYccveiiiieiieie st 30
4.7.2 NUMDET Of BIOCKS ..ot e 30
4.7.3 Number of Virtual SECIOIS........ccoviiiiic s 31
4.7.4 Number of Virtual Sectors for EEPL ..., 31

{i’ TEXAS

INSTRUMENTS
4.7.5 Number of Non Configured blocks to COPY.......cccovvvvviieiiieiicc e 31
4.7.6 Number of Eight byte WIIteS........cccov i 32
4.7.7 BIOCK OVEIHEAd.c.eiiiiiieece e e 32
4.7.8 Page OVErHEAdccco it 32
4.7.9 Virtual Sector OVerHeEadccccovviiiiiiiiee e 32
4.7.10 Virtual SECtOr PAge SIZeccccoiiiiiiiiiese e 33
o 0 o R B ¢\ V=T o [o = GRS P PRSPPI 33
4.7.12 Enable ECC COIMECHONccoiiiiieiie ettt 33
4.7.13 Error Correction Handling(Not available for Configuration)................ 33
4.7.14 BIloCk Write COUNLEI SAVEcceiiiiiiieiieie e 34
4.7.15 Enable CheCKSUMcociiiiiiicice e e 34
4.7.16 Number Of EEPS ... 34
A4.7.17 Data SeIECE DILS......cceiiiiieciei et 35
4.7.18 Check BANK7 address RaNgE........ccocevieiiniiiieie e 35
4.7.19 TI FEE Virtual Sector Configurationccccccooveveiienienesie e, 35
4.7.20 TI FEE Block Configuration...........ccccceveiieiiiie e 38
4.8 API ClasSifiCatiONceuuviiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeee ettt e eeeeeeeeeeeeeeeeees 41
4.8.1 INIEANZATION ... s 41
4.8.2 Data OPEratiONS.......ccouiiiiiieerie sttt e 42
4.8.3 INFOIMALION ... e e 42
4.8.4 INternal OPEratiONS..........cccviieiiee e 43
4.8.5 Error Information and Recovery Operationsccccoeeevvevveviesvenennn 43
4.8.6 Suspend/Resume Erase SECOr.......ccccooeiiiiiiiiieiiie s 43
4.9 Fee Operation FIOW.........oooiiiiiiiiiie e 44
4.10 AP SPECITICALIONuuiiie e e e e e e 45
4.10.1 TI FEE Driver FUNCHONScooiiiiiieie et e 45
4.11 Privilege MOOE GCCESSccevviiiuiiiiieeeeeeeeiiiiae e e e e e 53
4.12 Power Fail BENAVIONccuuiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeee et 53
4.13 Known Issues / Not supported features...........oooevveeeiiiiiiiieeeeeeeeeeiiiinn 54
4.14 Example Configurationsciiiieeeeiiieiiiiiiee e e e e e e e e s 54
4.14.1 Four Virtual Sectors on four physical sectors — Single EEPROM 54
4.14.2 Two Virtual Sectors on four physical sectors— Single EEPROM....... 55
4.14.3 Two Virtual Sectors for each EEPROM on four physical sectors —
TWO EEPROM ...ttt 56

Jw’? TEXAS

INSTRUMENTS

Table of tables
1-1. Table of ADDIeviationsS ... 3
REVISTON HISTOTY ...ttt ettt beenbeeneenreas 4
Software ReVISION HiSTOMYiiiiicc et 4
2.1 Virtual Sector Header STateS.........ccociiiiiiiiicreee e 17
2.2 Virtual Sector Header backup StateS........ccooviiiieiiniiiieeee e 17
2-3. Data Block Header Field DefinitioNsS ... 20
2-4. Data BIOCK SEAESccooiiiiiiieecee e 20
3-1. TIFEE Driver File LiSt. .o 22
3-2. TI FEE HALCOGEN™ Fil@ LISt ..ciiiiiiiiiiieeieie e 23
4-1. TI FEE Driver Symbolic CONStaNtS......cccccevieiiieieee e 29
4-2. TI FEE Driver Initialization APIS ..o 41
4-3. TI FEE Driver Data Operation APIS ... 42
4-4. Tl FEE Driver INformation APIS ..o 42
4-5. TI FEE Driver Internal Operation APIS......ccccv i 43
4-6. TI FEE Driver Error Info and Recovery APIS ... 43
4-7. Tl FEE Driver Suspend/Resume Erase sector APl.......ccccccovviiiiiiieniiiennn, 43

{i? TEXAS

INSTRUMENTS
Table of figures
FIGURE 1 VIRTUAL SECTOR ORGANIZATION ..ueuitteneneeeeneaaeaenseaeaanseaesnsasesnseaeaensnaens 16
FIGURE 2 VIRTUAL SECTOR HEADERvuiuititiitiieeet e ees st eaneesenenssnensnsanesnssnensnsanens 17
FIGURE 3 DATA BLOCK STRUGCTUREttt ettt et e et eee et e eea e ee e eeaeaneaeeanseaeaensaaenns 19
FIGURE 4 DATA BLOCK HEADER -> LOGICAL STRUCTURE ...uvuiritinirienenenseneneneenenensenens 19
FIGURE 5 FLOW CHART OF A TYPICAL FEE OPERATION . ..vivieitieiii e eeaeaeaaaas 44

10

B Texas
INSTRUMENTS

Chapter 1

Tl FEE Driver Introduction

This chapter introduces the Tl FEE Driver to the user by providing a brief overview of the
purpose and construction of the TI FEE Driver along with hardware and software environment
specifics in the context of TI FEE Driver deployment.

11

{'i TEXAS
INSTRUMENTS

1.1 Overview

111

This section describes the functional scope of the Tl FEE Driver and its feature set. It
introduces the Tl FEE Driver to the user along with the functional decomposition and run-time
specifics regarding deployment of TI FEE Driver in user’s application.

Many applications require storing small quantities of system related data (e.g., calibration
values, device configuration) in a non-volatile memory, so that it can be used, modified or
reused even after power cycling the system. EEPROMSs are primarily used for this purpose.
EEPROMSs have the ability to erase and write individual bytes of memory many times over and
the programmed locations retain the data over a long period even when the system is powered
down.

The objective of TI FEE Driver is to provide a set of software functions intended to use a Sector
of on-chip Flash memory as the emulated EEPROM. These software functions are
transparently used by the application program for writing, reading and modifying the data.

¢ Alist of functions supported by the TI FEE Driver can be found below. The primary function
responsible for Fee management is the Tl_Feelnternal_FeeManager function. This function
shall operate asynchronously and with little or no user intervention after configuration,
maintaining the Fee structures in Flash memory. This function will be called by
Tl_Fee_MainFunction on a cyclic basis when no other pending Fee operations are pending
so that it can perform internal operations.

Functions supported in the Tl FEE Driver

The Tl FEE Driver provides the following functional services:

Initialization:

o TI_Fee_Init

Operations:

. Tl_Fee_WriteAsync

. Tl_Fee_ WriteSync

o TI_Fee_Read

. Tl_Fee_ReadSync

. Tl_Fee_EraselmmediateBlock
) TI_Fee_lInvalidateBlock
. Tl_Fee_Shutdown

. Tl_Fee_Cancel

. TI_Fee_Format
Information:

. Tl_Fee_GetStatus

) TI_Fee_GetJobResult

. Tl_Fee_GetVersioninfo

12

a0500301
Highlight

a0500301
Highlight

‘w’? TEXAS

INSTRUMENTS

112

Internal Operations:

Tl_Fee_MainFunction

Tl_Feelnternal_FeeManager

Error Information and Recovery:

Tl _FeeErrorCode

TI_Fee_ErrorRecovery

Suspend/Resume Erase of Sector:

Tl_Fee_SuspendResumeErase

Other Components

The Tl FEE Driver requires the following components for complete deployment.

1.

Tl Fee Configuration Files :

The user needs to generate the following two configuration files using HALCoGen to
deploy and use Tl FEE Driver.

a. ti_fee cfg.h
b. ti_fee_cfg.c

These two files define which Flash sectors to be used for EEPROM
emulation, define Data Blocks ,Block Size and other configuration parameters.

HALCoGen also generates device specific files that defines the memory
mapping for the Flash FEE bank.

Flash API library :

The TI FEE Driver uses the Flash API library for performing program/erase
operations. The apprioprate Flash API library depending on the type of Flash
technology has to be included in the application to deploy and use the Tl FEE Driver.
For TMS570 devices, F021 library version should be 02.00.00 or greater.

1.1.3 Development Platform

The Tl FEE Driver was developed and validated on a system with the following operating
system and software installed

Operating System : Win7
Codegeneration tools : TMS570 Code Generation tools 5.0.0

13

{'? TEXAS

INSTRUMENTS
Chapter 2
Tl FEE Driver Design
Overview
Overview

This chapter describes the implementation method followed for Flash EEPROM emulation in
the Tl FEE Driver.

14

‘w’? TEXAS

INSTRUMENTS

2.1 Flash EEPROM Emulation Methodology

The EEPROM Emulation Flash bank is divided into two or more Virtual Sectors. Each Virtual
Sector is further partitioned into several Data Blocks. A minimum of two Virtual Sectors are
required for Flash EEPROM emulation.

The initialization routine (TI_Fee_Init) identifies which Virtual Sector to be used and marks it as
Active. The data is written to the first empty location in the Active Virtual Sector. If there is
insufficient space in the current Virtual Sector to update the data, it switches over to the next
Virtual Sector and copies all the valid data from the other Data Blocks in the current Virtual
Sector to the new one. After copying all the valid data, the current Virtual Sector is marked as
ready for erase and the new one is marked as Active Virtual Sector. Any new data is now
written into the new Active Virtual Sector and the Virtual Sector which is marked as ready for
erase will be erased in background.

Virtual Sectors and Data Blocks have certain space allocated to maintain the status information
which is described in more detail in the following sections.

2.1.1 Virtual Sector Organization

The Virtual Sector is the basic organizational unit used to partition the EEPROM Emulation
Flash Bank. This structure can contain one or more contiguous Flash Sectors contained
within one Flash Bank. A minimum of 2 Virtual Sectors are required to support the Tl FEE
Driver.

The internal structure of the Virtual Sector contains a Virtual Sector Header, a static Data
Structure and the remaining space is used for Data Blocks.

15

a0500301
Highlight

a0500301
Highlight

a0500301
Highlight

a0500301
Highlight

a0500301
Highlight

a0500301
Highlight

a0500301
Highlight

{'i TEXAS
INSTRUMENTS

Virtual Sector Organization

Virtual Sector Header PN
Block 3 Block 5 DS4 ... Block n
Block n
Block 3 Block 3 Block 5 DS3 Block 0 Block 1 DS2 Block 3
Block 2
Virtual
Sector
Block 5 DS4 Block X 0
Block X
Block X
Block X Block n
Block X
Block 3 Block 5 DS3 Block 2 Block n il

-

« r'd Virtual Sector Header T +

Block n Block5 DS3 ... Block 3

Block 1 DS2 —

Block 2

Block n Block 5 DS4 Block 5 DS3

Virtual
Sector
Block X 1

Block X

Block X

Block X

Block X

Block X

Figure 1 Virtual Sector Organization

16

B Texas
INSTRUMENTS

2.1.1.1 Virtual Sector Header total 8 32-bit words

The Virtual Sector Header consists of two 64bit words (16 bytes) that start at the first
address of a Virtual Sector Structure. The state of the Virtual Sector Structure is
maintained in the Virtual Sector Header.

64 bit Virtual Sector Status Word

32 bit backup 8 bits Reserved Erase Count Version Number
Status (20 bits) (4 Bits)

Figure 2 Virtual Sector Header

The Status Word is the first 64 bit word of the Virtual Sector Header and is used to
indicate the current state of the Virtual Sector.

The following table indicates the various states a Virtual Sector can be in.

State Value

Invalid Virtual Sector OXFFFFFFFFFFFFFFFF
Empty Virtual Sector 0x0000FFFFFFFFFFFF
Copy Virtual Sector 0x00000000FFFFFFFF
Active Virtual Sector 0x000000000000FFFF
Ready for Erase 0x0000000000000000

2.1 Virtual Sector Header States

Invalid Virtual Sector: This Virtual Sector is either in process of being erased or has not
yet been initialized.

Empty Virtual Sector: This indicates the Virtual Sector has been erased and can be
used to store data.

Copy Virtual Sector: This indicates that the Data Block Structure is being moved from a
full Virtual Sector to this one to allow for moving of the Active Virtual Sector.

Active Virtual Sector: This Virtual Sector is the active one.

Ready for Erase: This Virtual Sector’'s Data Block Structure has been correctly
replicated to a new Virtual Sector and is now ready to be erased and initialized for re-use.

State Value
Copy Virtual Sector OXFFFFFFFF
Active Virtual Sector 0x00000000

2.2 Virtual Sector Header backup States

If the normal Virtual sector header is corrupted, then the backup status will be used to
know the Virtual Sector state.

Virtual Sector Information Record is the second 64 bit word in the Virtual Sector header. It
is used to record information needed by the Virtual Sector management algorithm. Currently
the first 4 bits are used to indicate the current version of the Virtual Sector and the next 20
bits are used to indicate the number of times the Virtual Sector has been erased. The erase

17

a0500301
Highlight

{'i TEXAS
INSTRUMENTS

count is incremented each time the Virtual Sector is erased. The remaining bits are reserved
for future use.

After Virtual Sector header, the next 8 bytes are used to know erase status of the Virtual
Sector. It says, if the erase was started/completed/ready for erase. Next 8 bytes are
reserved.

0x 0000FFFFFFFFFFFF — Erase of other Virtual Sector started
0x 00000000FFFFFFFF — Erase of other Virtual Sector completed
0x000000000000FFFF — Current Virtual Sector is ready for Erase.

18

a0324020
Highlight

a0324020
Highlight

‘w’? TEXAS

INSTRUMENTS

2.1.2 Data Block Organization block header is 6 32-bit words

The Data Block is used to define where the data within a Virtual Sector is mapped. One
or more variables can be within a Data Block based on the user definition. The smallest
amount of data that can be stored within the Data Block is 64 bits. If the Data size
exceeds 64 bits, the Data Packets are added in 64 bit increments. The Data Block
Structure is limited to the size of the Virtual Sector it resides in.

Note: The size of all the Data Blocks cannot exceed the Virtual Sector length.

When a Data Packet write exceeds the available space of the current Virtual Sector, the
Data Block structure is duplicated in the next Virtual Sector to be made active.

Data Block Structure

Block5 Dataset2 Block5 Dataset6 Blockl Dataset2 Block3 Datasetl
Header Header Header Header
Block4 Dataset4 Block2 Dataset2 Blockl Dataset8 Block2 Dataset3
Header Header Header Header
Figure 3 Data Block Structure
2.1.2.1 DataBlock Header

The Data Block Header is 24 bytes in length and is used to indicate the status information
of valid data within a Virtual Sector.

Block Number (16 bits) Block size(16 bits)

Block W/E Cycle count - optional (32 bits) / reserved if saving not enabled

Checksum - optional (32 bits) / reserved if saving not enabled

Address of previous Valid Block(32 bits)

Block Status (64 bits)

Figure 4 Data Block Header -> Logical Structure

A Standard Data Block Header has the following fields

19

a0500301
Highlight

a0500301
Highlight

{'? TEXAS

INSTRUMENTS
Bit(s) Field Description
191-176 Block Number This is used to indicate the block number.
175-160 Block size Indicates size of block
159-128 | W/E counter Indicates write/erase counter for a block
127-96 Checksum Indicates Checksum of block
95-64 Address Address of the previous valid block
63-0 Status of the Thesg 64 bits !ndicate the Stgtus of the Block. The
Block following Table lists all the possible combinations for the
Block Status.
2-3. Data Block Header Field Definitions
State Value
Start Program Block 0xFFFFFFFFFFFFO000
Valid Block O0xFFFFFFFF00000000
Invalid Block OxFFFF000000000000

2122

2-4. Data Block States

Block Status is used to ensure that data integrity is maintained even if the Block (data) update
process is interrupted by an uncontrolled event such as a power supply failure or reset.

Empty Block: New Data can be written to this Block.

Start Program Block: This indicates that the Data Block is in the progress of being
programmed with data.

Valid Block: This indicates that the Data Block is fully programmed and contains Valid Data.

Data Set Concept

Each block can have different data sets. Data which are closely related can be clubbed as
data sets of a block. Data sets of the block cannot exceed 2 power data select bits. Use
case of a dataset is : consider a car stereo which needs to display different languages based
on customer input. Projects will configure Block number = 1 for language selection and use
data sets for selecting different options for language Ex: 4-English, 5-German, 6-Russian,7-
French etc.(Here the block has 4 data sets. Data select bits should be > = 2 =>2 power 2=4.).

Data Set concept comes from Autosar. In Autosar, the layer above FEE is NVRAM Manager.
NVRAM manager defines three types of blocks, Native, Redundant and DataSet blocks.

A Native block is one which has single Non Volatile Block.
A Redundant block is one which has two Non Volatile Blocks.

A Data Set Block is the one in which the NVRAM Manager will decide the number of copies of
the same block to be present in Non Volatile Block.

If projects are not using FEE in Autosar context, data sets can be ignored(Always configure
TI_FEE_DATASELECT_BITS = 0).

20

a0500301
Highlight

a0500301
Highlight

B Texas
INSTRUMENTS

2.1.3 Supported Commands

The following list describes the supported commands.

WriteAsync: This command shall program a Flash Data block asynchronously.
WriteSync: This command shall program a Flash Data block synchronously.

Read: This command shall copy a continuous Flash Data block asynchronously.
ReadSync: This command shall copy a continuous Flash Data block synchronously.
Eraselmmediate: This command shall mark the block as invalid in Data Block header.
InvalidateBlock: This command shall mark the block as invalid in Data Block header.

oukrwnE

2.1.4 Status Codes
This indicates the status of the Fee module. It can be in one of the following states
1. UNINIT: The Fee Module has not been initialized.
2. IDLE: The Fee Module is currently idle.
3. BUSY: The Fee Module is currently busy.
4. BUSY_INTERNAL: The Fee Module is currently busy with internal management
operations.

2.1.5 Job Result

This indicates the result of the last job. The job result can be any one of the following states

1. JOB_OK: The last job has finished successfully

2. JOB_PENDING: The last job is waiting for execution or is currently

being executed.

3. JOB_CANCELLED: The last job has been cancelled.

4. JOB_FAILED: The last read/erase/write job failed.

5. JOB_INCONSISTENT: The requested block is inconsistent, it may

contain corrupted data.

6. JOB_INVALID: The requested block has been invalidated. The

requested read operation cannot be performed.

21

a0500301
Highlight

a0500301
Highlight

{'i TEXAS
INSTRUMENTS

Chapter 3

File List

This chapter provides the list of files generated from HALCoGen for Tl FEE Driver.

File Name Destination directory
ti_fee.h Include
til_fee_types.h Include
ti_fee utils.c Source
ti_fee eraselmmediateblock.c Source
ti_fee format.c Source
ti_fee Info.c Source
ti_fee_invalidateblock.c Source
ti_fee cancel.c Source
ti_fee read.c Source
ti_fee_readsync.c Source
ti_fee_shutdown.c Source
ti_fee_ini.c Source
ti_fee_main.c Source
ti_fee_writeasync.c Source
ti_fee_writesync.c Source
fee_interface.h Include

3-1. TI FEE Driver File List

22

B Texas
INSTRUMENTS

Files generated using HALCoGen™ are listed below

File Name Destination directory
Device_types.h Include
Device _header.h Include
ti_fee_ cfg.h Include
ti_fee_cfg.c Source
Device_ TMS570LSxx.h/ Include

Device_ RMxx.h
Device_TMS570LSxx.c/ Source

Device RMxx.c

3-2. TI FEE HALCoGen™ File List
Note: xx indicates device part number

E.g.: If the target device chosen is TMS570LS31, then the device specific
files generated are Device_ TMS570LS31.h and Device_ TMS570LS31.c

23

{'i TEXAS
INSTRUMENTS

Chapter 4

Integration Guide

This chapter describes the steps for using the TI FEE Driver. This chapter also discusses the Tl
FEE Driver run-time interfaces that comprise the API classification, usage scenarios and the
API specification. The entire source code to implement the TI FEE Driver is included in the
delivered product.

4.1 Error Recovery Implementation

Projects should implement error recovery mechanism to recover from serious errors.
They should call the API TI_FeeErrorCode() periodically to check if there are any severe
errors(Error_SetupStateMachine, Error_NoActiveVS, Error_CopyButNoActiveVs,
Error_EraseVS). If error is any of the above type, then API TI_Fee_ErrorRecovery() should
be called with proper parameters.

If the error is of type Error_CopyButNoActiveVS, then the application has to provide
info on which of the VS needs to be corrected in u8VirtualSector.For error of type
Error_CopyButNoActiveVS, TI_Fee_u32ActCpyVS will provide info on which VS is Copy. In
this case, the second argument for the TI_Fee_ErrorRecovery should be the copy Virtual
Sector number. Error recovery APl will mark the Virtual Sector as Active.

If the error is of type Error_NoFreeVS, then the application has to provide info on which
of the Virtual Sector needs to be erased in u8VirtualSector. TI_Fee_u32ActCpyVS will provide
info on which Virtual Sector is active.

If the error is of type Error_SetupStateMachine, recheck configuration. Configure
RWAIT, EWAIT and operating frequency correctly.

If the error is of type Error_EraseVS, this means either erasing or a blank check of
Virtual Sector failed. Call error recovery function to perform erase again. Check the variables
Tl_Fee_u8ErrEraseVS will indicate which virtual sector failed the erase

Application can access the variable “TI_Fee_u32ActCpyVS” to know details about the Virtual
Sector’s.

Prototype for the API's are:
Tl_Fee_ErrorCodeType Tl_FeeErrorCode(uint8 uSEEPIndex);
void Tl_Fee_ErrorRecovery(Tl_Fee_ErrorCodeType ErrorCode, uint8 u8VirtualSector);

If two EEPROM'’s are configured, then TI_FeeErrorCode has to be called cyclically with
different index.

Ex: TI_FeeErrorCode(0) and Tl_FeeErrorCode(1)

If Error is of type Error_CopyButNoActiveVS and TI_Fee_u32ActCpyVS = 0x0001, this
means VS 1 is COPY sector.

Projects has to mark the sector 1 as ACTIVE, so

24

‘w’? TEXAS

INSTRUMENTS

4.2

4.3

Call TI_Fee_ErrorRecovery(Error_TwoActiveVs, 1);
Virtual sector 1 will be marked as ACTIVE.

Virtual sector numbers start from 1.

Single and Double bit Error Corrections

Hercules devices provide a mechanism to detect single and double bit errors. FEE enables the
SECDED. If there are any double bit error’s during read, they will be flagged as
BLOCK_INCONSISTENT after read operation is completed, provided
TI_FEE_FLASH_ERROR_CORRECTION_ENABLE is enabled.

Memory Mapping

Following macros can be used for reallocating code, constants and variables.
e FEE_START_SEC_CONST_UNSPECIFIED

e FEE_STOP_SEC_CONST_UNSPECIFIED

e FEE_START_SEC_CODE

e FEE_STOP_SEC_CODE

e FEE_START_SEC_VAR_INIT_UNSPECIFIED

e FEE_STOP_SEC_VAR_INIT_UNSPECIFIED

25

{'i TEXAS
INSTRUMENTS

4.4 Build Procedure

The build procedure mentions how one ought to go about building the TI FEE Driver into their
systems and applications.

1. The driver files generated from HALCoGen should be included in the application.

2. The files listed in Table 3.3 (Fee configuration files and device specific files) generated using
HALCoGen™ should be included in the application. The configuration files (ti_fee_cfg.h &
ti_fee_cfg.c) define which Flash sectors to be used for EEPROM emulation, define Data
Blocks, Block Size and other configuration parameters whereas the device specific files define
the memory mapping for the Flash FEE bank.

3. Flash APl library : The Tl FEE Driver uses the Flash API library for performing program/erase
operations. Include appropriate FO21 library and include files of F021. FO21 version should be
02.00.00 or greater. For TMS570LCxx devices, use F021 library v02.01.01 or greater.

26

B Texas
INSTRUMENTS

4.5 Symbolic Constants and Enumerated Data types

This section summarizes the symbolic constants specified as either #define macros and/or
enumerated C data types. Described alongside the macro or enumeration is the semantics or
interpretation of the same in terms of what value it stands for and what it means.

Group or Enumeration Class

Symbolic Constant Name

Description or Evaluation

Tl_Fee_StatusType

Tl FEE_OK

Function returned no error

TI FEE_ERROR

Function returned an error

VirtualSectorStatesType

VsState Invalid =1

Virtual Sector is Invalid

VsState Empty =2

Virtual Sector is Empty

VsState Copy =3

Virtual Sector is Copy

VsState Active =4

Virtual Sector is Active

VsState_ReadyForErase =5

Virtual Sector is Ready for
Erase

Block_StartProg=1

Write/Erase/Invalid operation is
in progress on this Block

Tl_Fee_ ErrorCodeType

B|ock5tatesType Block Valid=2 Block is Valid
Block Invalid=3 Block is Invalid
Error_Nil=0 No Error.

Error_TwoActiveVS=1

There are two active Virtual
sectors. This error will not
happen with modified design.

Error_TwoCopyVS=2

There are two copy Virtual
sectors. This error will not
happen with modified design.

Error_SetupStateMachine=3

Either HCLK or EWAIT are not
configured correctly or there is
OTP error.

Error_CopyButNoActiveVS=4

There is a copy Virtual sector
but no Active sector or ready
for erase sector.

Error_NoActiveVS=5

FEE was not able to
find/create an active Virtual
Sector.

Error_Blocklinvalid=6

Invalid Block passed as input.

Error_NullDataPtr=7

Null Data ptr passed as input.

Error_NoFreeVS=8

No more Free Virtual Sector
present to write data. This

27

{'i TEXAS
INSTRUMENTS

error will not happen with
modified design.

Error_InvalidVirtualSectorPara
meter=9

This is deprecated.

Error_ExceedSectorOnBank=1
0

Error EraseVS=11

Blank check failed after erase.

Error_BlockOffsetGtBlockSize
=12

Block Offset is not valid.

Error_LengthParam=13

Length Parameter is not valid.

Error FeeUninit=14

FEE if not initialized.

Error_Suspend=15

This is deprecated.

Error_InvalidBlockindex=16

Block index is invalid.

Error NoErase=17

This is deprecated.

Error CurrentAddress=18

Address of block is not valid.

Error_Exceed No_Of DataSet
s=19

Data sets not configured
correctly.

Tl_FeeModuleStatusType

UNINIT FEE Module is Uninitialized
IDLE FEE Module is Idle
BUSY FEE Module is Busy

BUSY_INTERNAL

FEE Module is performing
internal operations

Tl _Fee_StatusWordType_ UN

Erase If setto ‘1’ indicates Erase
operation is in progress
ReadSync If setto‘l’ indicates

Synchronous Read operation
is in progress

ProgramFailed

If setto ‘1’ indicates there was
an error during write operation.
This is now deprecated.

Read If setto ‘1’ indicates Read
operation is in progress

Writesync If setto ‘1’ indicates Sync
Write operation is in progress

WriteAsync If setto ‘1’ indicates Async

Write operation is in progress

Eraselmmediate

If setto‘l’ indicates Erase

28

B Texas
INSTRUMENTS

immediate operation is in
progress

InvalidateBlock

If setto ‘1’ indicates Invalidate
operation is in progress

Copy If setto ‘1’ indicates Copy
operation is in progress

Initialized If setto ‘1’ indicates FEE is
initialized. This is now
deprecated.

SingleBitError If setto ‘1’ indicates there was

a single bit error during read
operation. This is now
deprecated.

TI FEE_SW_MAJOR VERSION

#define Macro which indicates the Major version of the FEE

TI FEE_SW_MINOR VERSION

#define Macro which indicates the Minor version of the FEE

TI FEE_SW_PATCH_VERSION

#define Macro which indicates the Patch version of the FEE

4-1. Tl FEE Driver Symbolic Constants

29

{'i TEXAS
INSTRUMENTS

4.6 Data Structures

This section summarizes the entire user visible data structure elements pertaining to the Tl FEE
Driver run-time interfaces.

4.7 TI FEE Parameter Configuration

This section describes the parameters which are used to configure the Tl FEE driver.

4.7.1 Operating Frequency

Description Device operating frequency in MHz.

Generated configuration TI_FEE_OPERATING_FREQUENCY is set to the value
assigned to FeeFrequency.

FeeFrequency is equivalent to the HCLK frequency in the
TMS570/RMxx clock tree.

It is recommended to copy the value of HCLK obtained by
configuring the TMS570/RMxx clock tree during MCU
configuration to this parameter.

Default Value 160.0

Parameter Range Device dependent parameter. Refer to the device
datasheet to know the range.

Parameter Type float

Target File ti fee cfg.h

4.7.2 Number of Blocks

Description Defines the number of Data Blocks used for EEPROM
emulation. This is sum of all the blocks configured on
EEP1 and EEP2.

Generated configuration TI_FEE_NUMBER_OF_BLOCKS is set to the defined
value.

Default Value 0x1

Parameter Range 0x1 to OXFFFE

Parameter Type uint16

Target File ti fee cfg.h

Note: In HALCoGen GUI, only 16 blocks can be configured. If projects want to have
more blocks, manually edit ti_fee_cfg.h and ti_fee_cfg.c files. In ti_fee_ cfg.c file, add
blocks under /* USER CODE BEGIN */ and /* USER CODE END */ inside
Fee_BlockConfiguration[] so that they are not overwritten by HALCoGen.

30

B Texas
INSTRUMENTS

4.7.3 Number of Virtual Sectors

Description

Defines the number of Virtual Sectors used for FEE.

Generated configuration

TI_FEE_NUMBER_OF_VIRTUAL_SECTORS is set to the
defined value.

Default Value

0x2

Parameter Range

Min : 0x2 Max : Ox4(Depending on the device, max value
can change. For TMS570LC4357, max value can be 32)

Parameter Type

uint16

Target File

ti_fee cfg.h

4.7.4 Number of Virtual Sectors for EEP1

Description

Defines the number of Virtual Sectors used for EEP1.

Generated configuration

TI_FEE_NUMBER_OF_VIRTUAL_SECTORS EEP1is
set to the defined value.

Default Value

0x0

Parameter Range

Min : 0x0 Max :
(TI._ FEE_NUMBER OF VIRTUAL SECTORS-0x02)

Parameter Type

uintl6

Target File

ti_fee cfg.h

Note: TI_FEE_NUMBER_OF VIRTUAL_SECTORS_EEP1 should be configured as
zero if TI_FEE_NUMBER_OF_EEPS = 1.

4.7.5 Number of Non Configured blocks to copy

Description

Maximum number of non configured blocks to copy. If set
to a value other than zero, then the non configured valid
blocks in Flash will be copied to new virtual sector during
virtual sector swap.

Generated configuration

TI_FEE_NUMBER_OF_UNCONFIGUREDBLOCKSTOCO
PY is set to 0 if no non configured valid blocks are to be
copied during Virtual Sector swap.

Default Value 0
Parameter Range 0-OXFFFE
Parameter Type uint1l6
Target File ti fee cfg.h

Note: This parameter is used when a project starts with, let's say 10 blocks and during

development they reduce the blocks to 8. However, if they still want the remaining
blocks to be present inside Flash(assume project has already written 10 blocks into Flash),
they will have to configure this parameter to more than 2.

This parameter can also be used to run two different instances of FEE driver, one owned by
boot loader and the other owned by application.

31

*9 TEXAS
INSTRUMENTS

4.7.6 Number of Eight byte writes

Description

Defines the number of 8 byte writes to be done in main
function call. If configured to 2, main function writes 16
bytes per call.

Generated configuration

TI_ FEE_NUMBER_OF_EIGHTBYTEWRITES is set
required value.

Default Value 1
Parameter Range 1-255
Parameter Type uint8
Target File ti_fee cfg.h

4.7.7 Block OverHead

Description

Indicates the number of bytes used for Block Header.

Generated configuration

TlI_FEE_BLOCK_OVERHEAD is set to the value assigned
to FeeBlockOverhead.

Default Value 0x18
Parameter Range Fixed to Ox18.
Parameter Type uint8

Target file ti_fee cfg.h

4.7.8 Page OverHead

Description

Indicates the Page Overhead in bytes.

Generated configuration

TlI_FEE_PAGE_OVERHEAD is set to the value assigned
to FeePageOverhead. (0x0)

Default Value 0x0
Parameter Range Fixed to 0x0.
Parameter Type uint8

Target File ti fee cfg.h

4.7.9 Virtual Sector OverHead

Description

Indicates the number of bytes used for Virtual Sector
Header.

Generated configuration

TI_FEE_VIRTUAL_SECTOR_OVERHEAD is set to the
value assigned to FeeVirtualSectorOverhead (0x10).

Default Value

0x10

Parameter Range

Fixed to 0x10.

Parameter Type

uint8

Target File

ti fee cfg.h

32

‘w’? TEXAS

INSTRUMENTS

4.7.10 Virtual Sector Page Size

Description

Indicates the virtual page size in bytes.

Generated configuration

TlI_FEE_VIRTUAL_ PAGE_SIZE is set to the value
assigned to FeeVirtualPageSize. (0x8)

Default Value 0x8
Parameter Range Fixed to 0x8.
Parameter Type uint8

Target File ti_fee cfg.h

4.7.11 Driver Index

Description Instance ID of FEE module. Should always be 0x0.

Generated configuration TI_FEE_INDEX is set to the value assigned to Feelndex.
(0x0)

Default Value 0x0

Parameter Range Fixed to 0xO0.

Parameter Type uint8

Target File ti_fee cfg.h

4.7.12 Enable ECC Correction

Description

Indicates if error correction is enabled.

Generated configuration

TI_FEE_FLASH_ERROR_CORRECTION_ENABLE
Is setto STD_ON if Error Correction is enabled else it is
setto STD_OFF.

Default Value STD OFF
Parameter Range STD ON/STD OFF
Parameter Type Boolean

Target File ti_fee cfg.h

4.7.13 Error Correction Handling(Not available for Configuration)

Description

Indicates desired action to be taken on detection of bit
errors.

Generated configuration

TI_FEE_FLASH_ERROR_CORRECTION_HANDLING is
set to the value assigned to
FeeFlashErrCorrHandlingType. Only Ti_Fee_None is
supported.

Default Value

Tl Fee None

Parameter Range

Tl Fee None or Tl Fee Fix

Parameter Type

define TI_Fee_None OU
define Tl Fee Fix 1U

Target File

ti_fee cfg.h

33

‘"} TEXAS

INSTRUMENTS

4.7.14

4.7.15

4.7.16

Block Write Counter Save

Description

Pre-processor switch to enable the block write counter.
STD_ON: Block Write counter is enabled.
STD_OFF:Block Write counter is disabled

Generated configuration

TI_FEE_FLASH_WRITECOUNTER_SAVE is set to
STD_ON if block write counter save is enabled else it is
set to STD_OFF. If enabled, the block write counter is
updated for every write. With this counter, projects can
know how many times a block has been written into Flash.

Default Value

STD_OFF

Parameter Range

STD ON/STD OFF

Parameter Type

Boolean

Target File

ti_fee cfg.h

Enable Checksum

Description

Pre-processor switch to enable the Checksum for blocks.
STD_ON: Checksum for blocks is enabled. STD_OFF:
Checksum disabled

Generated configuration

TI_FEE_FLASH_CHECKSUM_ENABLE Is set to
STD_ON if check is enabled else it is set to STD_OFF. If
enabled, 16bit Checksum of the block is generated.

Default Value

STD_OFF

Parameter Range

STD_ON/STD_OFF

Parameter Type

Boolean

Target File

ti_fee cfg.h

Note: If Checksum is enabled, during writing of a block, Checksum of the data to be written is

calculated and checked against the Checksum of the same block which is already existing in
Flash. If Checksum matches, data is not written. If Checksum is not enabled, then data is
compared byte by byte. If data does not match, write will be initiated.

Number Of EEPs

Description

Number of EEP's configured. 1 - Only one EEP
configured. All Virtual Sectors can be used by this EEP. 2
- Two EEP's configured. Each EEP can use two Virtual
Sectors.

Generated configuration

TI_FEE_NUMBER_OF_EEPS is setto 1 if all virtual
sectors are used by one EEP. If virtual sectors are shared
between two EEPs, it is set to 2. If projects have data
blocks which are frequently updated and also have blocks
which are not frequently updated, then projects can
configure 2 EPPROM'’s and use each EEPROM for
different set of blocks. One EEPROM can have data
blocks which are frequently updated and the other can
have data blocks which are not frequently updated.

Default Value

1

Parameter Range 1/2
Parameter Type uint8
Target File ti_fee cfg.h

34

B Texas
INSTRUMENTS

4.7.17 Data Select bits

Description Number of data sets configured for a block.
Generated configuration Tl FEE _DATASELECT_ BITS is set configured value.
Default Value 0

Parameter Range 0-8

Parameter Type uint8

Target File ti_fee cfg.h

4.7.18 Check BANK7 address Range

Description Pre processor switch to enable EEPROM address
range check during read/write.

Generated configuration TI_FEE_CHECK_BANK7_ACCESS is set configured
value.

Default Value STD_OFF

Parameter Range STD ON/STD OFF

Parameter Type Boolean

Target File ti_fee cfg.h

4.7.19 TI FEE Virtual Sector Configuration

Array Name Tl_FEE_VirtualSectorConfiguration
Description Used to define a Virtual Sector
Array Type Tl_Fee_VirtualSectorConfigType.
This is a structure having the following members.
Members FeeVirtualSectorNumber Virtual Sector's Number.
EEPROM emulation is supported
FeeFlashBank only on Bank 7 for F021 devices..
Starting Sector in the Bank for
FeeStartSector this Virtual Sector.
FeeEndSector E_ndlng Sector in the Bank for this
Virtual Sector.

The configurations described in the following section are repeated for each Virtual Sector.

4.7.19.1 Virtual Sector Number

Description Used to assign a number to the Virtual Sector.

Generated configuration FeeVirtualSectorNumber is set to the value assigned to
the symbolic name for the Virtual Sector.

Default Value 1

Parameter Range Min : Ox1, Max : Ox4

Parameter Type uint16

Target File ti fee cfg.c

35

{'i TEXAS
INSTRUMENTS

4.7.19.2 Flash Bank

Description

Indicates the Flash Bank used by the Virtual Sector. All
the Virtual Sectors should use the same Flash Bank.
EEPROM emulation is supported only on Bank 7 for FO21
devices.

Generated configuration

FeeFlashBank is set to the value assigned to
FeeSectorBank.

Default Value

0x7 for FO21 devices.

Parameter Range

Fixed to Ox7 for FO21 devices.

Parameter Type

uintl6

Target File

ti fee cfg.c

4.7.19.3 Start Sector

Description

Indicates the Flash Sector in the Bank used by the Virtual
Sector as the Start sector.

Generated configuration

FeeStartSector is set to the value assigned to
FeeSectorStart.

Default Value

0x0

Parameter Range

Device specific, can use any Sector of the selected Flash
Bank. Please refer to the device datasheet “Flash Memory
Map” for more details.

Parameter Type

uint8

Target File

ti fee cfg.c

4.7.19.4 End Sector

Description

Indicates the Flash Sector in the Bank used by the Virtual
Sector as the End sector.

Generated configuration

FeeEndSector is set to the value assigned to
FeeSectorEnd.

Default Value

0x0

Parameter Range

Device specific, can use any Flash Sector of the selected
Flash Bank. It should be greater than the FEE Start
Sector. Please refer to the device datasheet “Flash
Memory Map” for more details.

Parameter Type

uint8

Target File

ti fee cfg.c

36

a0500301
Highlight

a0500301
Highlight

B Texas
INSTRUMENTS

4.7.19.5 Sample Virtual Sector Configuration

The following code snippet indicates one of the possible configurations for the Virtual Sectors
from the file fee_config.c:

[* Virtual Sector Configuration */
const Tl_FeeVirtualSectorConfigType Tl_FeeVirtualSectorConfiguration[] =

{
/* Virtual Sector 1 */
1, /*Virtual sector number */
7, [*Bank */
0, [/* Start Sector */
0 /* End Sector */
}1
[* Virtual Sector 2 */
{
2, [* Virtual sector number */
7, [*Bank */
1, /* Start Sector */
1 /*End Sector */
}1
k

37

*ﬂ‘ TEXAS
INSTRUMENTS

4.7.20 Tl FEE Block Configuration

Array Name Fee BlockConfiguration
Description Used to define a block
Fee_BlockConfigType.
Array Type This is a structure with the following members.
FeeBlockNumber Indicates Block's Number.
Members FeeBlockSize Defines Block's Size in bytes.

FeelmmediateData

Indicates if the block is used for
immediate data.

FeeNumberOfWriteCycles

Number of write cycles required
for this block .

FeeDevicelndex

Indicates the device index.

FeeNumberofDatasets

Indicates the number of Datasets for
this Block.

FeeEEPNumber

Indicates the number of EEP.

The configurations described in the following section are repeated for each Data Block.

4.7.20.1 BlockNumber

Description

Assigns a number for the Block.

Generated configuration

FeeBlockNumber is set to a numeric value. It is equal to the
BlockNumber.

Default Value 1

Parameter Range Min : Ox1 Max : OXFFFE
Parameter Type uint16

Target File ti_fee cfg.c

4.7.20.2 Block Size

Description

Indicates the size of the Block in bytes.

Generated configuration

FeeBlockSize is set to the value assigned to FeeBlockSize.

Default Value

0x008

Parameter Range

0x1 to OXFFF

Parameter Type

uint16

Target File

ti fee cfg.c

38

‘w’? TEXAS

INSTRUMENTS

4.7.20.3 Immediate Data

Description

Indicates the number of clock cycles required to write to a
flash address location.

Generated configuration

FeeNumberOfWriteCycles is set to the value assigned to
FeeNumberOfWriteCycles.

Default Value

Ox1

Parameter Range

Device or core/flash tech dependent parameter.

Parameter Type

uint32

4.7.20.4 Number of Write Cycles

Target File

ti_fee cfg.c

Description

Indicates if the block is used for immediate data.

Generated configuration

FeelmmediateData is set to the value assigned to
FeelmmediateData.

Default Value FALSE
Parameter Range TRUE / FALSE
Parameter Type Boolean
Target File ti fee cfg.c

4.7.20.5 Device Index

Description

Indicates the device index. This will always be 0.

Generated configuration

FeeDevicelndex is set to the value 0x0.

Default Value 0x0
Parameter Range Fixed to 0x0.
Parameter Type uint8

Target File ti_fee cfg.c

4.7.20.6 Data sets

Description

Indicates the number of Datasets for this particular Block .

Generated configuration

FeeNumberOfDataSets is set to the value assigned to
FeeDataset. It should not be greater than 2 power
TI_FEE_DATASELECT_BITS.

Default Value 0x01
Parameter Range 0x1 to OxFF
Parameter Type uint8
Target File ti_fee cfg.c

39

{'i TEXAS
INSTRUMENTS

4.7.20.7 EEPNumber

Description Number indicating into which EEP does the block go. 0 --
Block will be configured on EEP1. 1 -- Block will be configured
on EEP2.

Generated configuration FeeEEPNumber is set to the value assigned.

Default Value 0x0

Parameter Range 0x00/0x01

Parameter Type uint8

Target File ti fee cfg.c

4.7.20.8 Sample Block Configuration

The following code snippet indicates one of the possible configurations for the Blocks from the
file fee_config.c:

/* Block Configuration */

const Tl_FeeBlockConfigType Tl_Fee_BlockConfiguration[] =

{

/* Block 1 */

{
0x01, /* Block number */
0x004, /* Block size */
0x10, /* Block number of write cycles */
TRUE, /* Block immediate data used */
0, /* Device Index */
1, /* Number of DataSets */
0 /* EEP Number */

3

/* Block 2 */

{
0x02, /* Block number */
0x008, /* Block size */
0x10, /* Block number of write cycles */
TRUE, /* Block immediate data used */
0, /* Device Index */
2, /* Number of DataSets */
0 /* EEP Number */

h

/* Block 3 */
0x03, /* Block number */
0x0004, /* Block size */
0x10, /* Block number of write cycles */
TRUE, /* Block immediate data used */
0, /* Device Index */
3, /* Number of DataSets */
1 /* EEP Number */

h

/* Block 4 */
{

40

‘w’? TEXAS

INSTRUMENTS
0x04, /* Block number */
Ox001A, /*Block size */
0x10, /* Block number of write cycles */
TRUE, /* Block immediate data used */
0, /* Device Index */
4, /* Number of DataSets */
1 /* EEP Number */
b
3

4.8 API Classification

This section introduces the application-programming interface for the TI FEE Driver by grouping
them into logical units. This is intended for the user to get a quick understanding of the Tl FEE
Driver APIs. For detailed descriptions please refer to the API specification section 4.6.

4.8.1 Initialization

The TI FEE Driver APIs that are intended for use in initialization of the FEE module are listed

below.
Name Description
Tl Fee Init Used to initialize the FEE module

4-2. TI FEE Driver Initialization APIs

41

{'i TEXAS
INSTRUMENTS

4.8.2 Data Operations

The Tl FEE Driver APIs that are intended for performing Data operations on Data Blocks are

listed below.

Name Description

Tl_Fee_ WriteAsync Used to initiate an Asynchronous Write
Operation to a Data Block.
TI_Fee_MainFunction function should be
called at regular intervals to finish the
operation

Tl_Fee_ WriteSync Used to perform a Synchronous Write
Operation to a Data Block.

Tl _Fee Read Used to read Data from a Data Block.
Tl_Fee_MainFunction function should be
called at regular intervals to finish the
operation

Tl_Fee_ ReadSync Used to read Data from a Data Block

Synchronously.

Tl_Fee_ EraselmmediateBlock | Used to initiate an Erase Operation of a
Data Block. Tl_Fee_ MainFunction
function should be called at regular
intervals to finish the operation

Tl_Fee_InvalidateBlock Used to initiate an Invalidate Operation
on a Data Block. Tl_Fee_ MainFunction
function should be called at regular
intervals to finish the operation

Tl_Fee_Shutdown This function completes the Async jobs
which are in progress by performing a
bulk Data Write while shutting down the
system synchronously.

Tl Fee Format Used to erase all the configured Virtual
- Sectors.
4-3. Tl FEE Driver Data Operation APIs

4.8.3 Information

The Tl FEE Driver APIs that are intended to get information about the status of the FEE
Module are listed below.

Name Description

Tl Fee GetVersioninfo Used to get the Driver version.

Tl Fee GetStatus Used to get the status of the FEE module.

Tl_Fee_GetJobResult Used to get the job result of a Data
Operation.

4-4. TI| FEE Driver Information APIs

42

a0500301
Highlight

B Texas
INSTRUMENTS

4.8.4 Internal Operations

The Tl FEE Driver APIs that are used to perform internal operations of the FEE Module are

listed below.

Name

Description

Tl_Fee_MainFunction

Used to complete the Data Operations
initiated by any of the Data Operation
functions.

Tl_Feelnternal_FeeManager

Used to perform internal operations
(Copy, Erase Virtual Sector).

4-5. Tl FEE Driver Internal Operation APIs

4.8.5 Error Information and Recovery Operations

The Tl FEE Driver APIs that are used to provide error information and recover from severe

errors.

Name

Description

Tl FeeErrorCode

Function to know the error type.

TI_Fee_ErrorRecovery

Function to recover from severe
errors.

4-6. Tl FEE Driver Error Info and Recovery APIs

4.8.6 Suspend/Resume Erase Sector

The Tl FEE Driver APIs that are used to provide error information and recover from severe

errors.

Name

Description

Tl FeeErrorCode

Function to know the error type.

Tl_Fee_ErrorRecovery

Function to recover from severe
errors.

4-7. Tl FEE Driver Suspend/Resume Erase sector API

43

{'i TEXAS
INSTRUMENTS

4.9 Fee Operation Flow

This section depicts a flow chart for a typical FEE operation.

Initialization To be called only once at the
TI_ Fee_Init() beginning to initialize the TI FEE
(__module.

A 4

TI FEE is in IDLE state after
successful initialization

Call any one of the data

operation functions as required.
A new operation can be initiated
only when the module is in “Idle”

y /\State.
Schedule a Data Operation/

Tl_Fee_ WriteAsync()
TI_Fee_WriteSync()

Tl_Fee EraselmmediateBlock()
TI_Fee_InvalidateBlock() .
TI_Fee_Read() operation.
Tl Fee ReadSync()

\4

To be called at regular
intervals to complete the Data

S S S

- 1
v v,,
Schedule Other Tl Fee MainFu L._._._._._ .

Application Tasks nction()

Tl_Feelnternal_Fee
Manager() 7

A4 . !
TI_Fee_GetStatus() -. _7/

l ‘ Called by TI_Fee_MainFunction()

whenever in “Idle” state to handle

No internal operations.

Yes

TI_Fee_GetJobResuIt() Returns the Job result of the last
operation.

Figure 5 Flow chart of a typical FEE operation

44

B Texas
INSTRUMENTS

4.10 API Specification

This section constitutes the detailed reference for the entire API set published to users of the Tl FEE
Driver.

4.10.1 Tl FEE Driver Functions

4.10.1.1 Initilization Function (TI_Fee_lInit)

This function provides functionality for initializing the TI FEE module. This routine must be
called only once at the beginning before commencing any data operation.

Function Name: Tl Fee Init

Syntax: void TI_Fee_|Init (void)

Sync/Async: Synchronous

Parameters(in): None

Return value: None

Description: Function to initialize the Tl Fee module.

4.10.1.2 Async Write Function (TI_Fee_WriteAsync)

This function initiates an Asynchronous Write operation to a Data Block.
Tl_Fee_MainFunction() function should be called at regular intervals to finish the Async Write

operation.
Function Name: Tl Fee WriteAsync
Std_ReturnType Tl_Fee_ WriteAsync(
Syntax: uint16 BlockNumber,
uint8* DataBufferPtr)
Sync/Async: Asynchronous
Number of logical block, also
Parameters (in): BlockNumber denoti_ng start address of that
' block in Flash memory.
DataBufferPtr Pointer to data buffer.

E_OK: The write job was
accepted by the Tl Fee
module

Return value: Std_ReturnType E_NOT_OK: The write job
was not accepted by the TI
Fee module.

Description: Function to initiate an Async Write job.

45

‘"} TEXAS

INSTRUMENTS

4.10.1.3 Sync Write Function (Tl_Fee_WriteSync)
This function provides the functionality to program data to a Block synchronously.

Function Name:

Tl _Fee WriteSync

Std_ReturnType Tl_Fee_WriteSync(

Syntax: uintl6 BlockNumber,
uint8* DataBufferPtr)
Sync/Async: Synchronous

Parameters (in):

BlockNumber

Number of logical
block, also denoting
start address of that
block in Flash
memory.

DataBufferPtr

Pointer to data buffer.

Return value:

Std_ReturnType

E_OK: The write job
was accepted by the
Tl Fee module
E_NOT_OK: The
write job was not
accepted by the TI
Fee module.

Description:

Function to program Data to a Block
synchronously.

4.10.1.4 Read Function (Tl_Fee_Read)

This function provides functionality for reading of data from a Block asynchronously.
T1_Fee_MainFunction() function should be called at regular intervals to finish the Read

operation.

Function Name:

Tl Fee Read

Std_ReturnType Tl_Fee_Read(
uintl6 BlockNumber,

Syntax: uintl6 BlockOffset,
uint8* DataBufferPtr,
uintl6 Length)

Sync/Async: Asynchronous

BlockNumber

Number of logical block, also
denoting start address of that block
in Flash memory.

Parameters (in):

BlockOffset Read address offset inside the
block.

DataBufferPtr Pointer to data buffer.

Length Number of bytes to read.

Return value:

E_OK: The Read job was
accepted by the Tl Fee module

Std_ReturnType

E_NOT_OK: The Read job
was not accepted by the TI
Fee module.

Description:

Function to read data from a Block.

46

B Texas
INSTRUMENTS

4.10.1.5 Erase Function (Tl_Fee_EraselmmediateBlock)

This function provides functionality for Erasing a Data Block asynchronously.
Tl_Fee_MainFunction() function should be called at regular intervals to finish the Erase

operation.

Function Name: Tl Fee EraselmmediateBlock

Svntax: Std_ReturnType Tl_Fee_ EraselmmediateBlock(
y ' uint16 BlockNumber)

Sync/Async: Asynchronous

Number of logical block, also
Parameters (in): BlockNumber denoting start address of that
block in Flash memory.

E_OK: The Erase job was
accepted by the Tl Fee module

Return value: Std_ReturnType E_NOT_OK: The Erase job was
not accepted by the Tl Fee
module.

Description: Function to initiate Erase operation on a Data Block

4.10.1.6 Invalidate Function (TI_Fee_InvalidateBlock).

This function provides functionality for invalidating a Data Block asynchronously.

Tl_Fee_MainFunction() function should be called at regular intervals to finish the Invalidate

Block operation.

Function Name: Tl Fee InvalidateBlock

Std_ReturnType Tl_Fee_InvalidateBlock(
uint16 BlockNumber)

Sync/Async: Asynchronous

Syntax:

Number of logical block, also
Parameters (in): BlockNumber denoting start address of that
block in Flash memory.

E_OK: The Invalidate Block job
was accepted by the Tl Fee
module

E_NOT_OK: The Invalidate
Block job was not accepted by
the Tl Fee module.

Function to initiate an Invalidate operation on a Data
Block

Return value: Std_ReturnType

Description:

47

{'i TEXAS
INSTRUMENTS

4.10.1.7 Shutdown Function (TI_Fee_Shutdown)

This function provides functionality for performing a bulk data write when shutting down the
system synchronously. This function completes the Async jobs which are in progress by
performing a bulk Data Write while shutting down the system synchronously.

Function Name:

Tl Fee Shutdown

Syntax: Std_ReturnType Tl Fee Shutdown()
Sync/Async: Synchronous
Parameters (in): None

Return value:

E_OK: The Async job was

completed

Std_RewrnType "\oT OK: The Async job

was not completed.
Function to perform bulk Data write prior to system
shutdown.

Description:

4.10.1.8 Get Version Info Function (TI_Fee_GetVersionInfo)

This function returns the version information for the Tl Fee module.

Tl Fee specific version numbers MM.mm.rr

. MM — Major Version
° mm — Minor Version
° rr — Revision

Function Name: Tl Fee GetVersioninfo

void TI_Fee_GetVersioninfo(

SHlERE Std_VersioninfoType* VersionInfoPtr)
Sync/Async: Synchronous
Parameters (in): None

Pointer to standard version
information structure
Function to return the version information of the Tl
Fee module.

. VersionInfoPtr
Return value:

Description:

4.10.1.9 Get Status Function (Tl_Fee_GetStatus)

This function returns the status of the TI FEE module.

48

‘w’? TEXAS

INSTRUMENTS
Function Name: Tl _Fee_ GetStatus
Syntax: Tl_FeeModuleStatusType Tl_Fee_GetStatus(uint8
] U8EEPIndex)

Sync/Async: Synchronous

Parameters UBEEPINndex Index for EEP. (0/1)

(in):
UNINIT: TI Fee Module has
not been initialized.
IDLE: TI Fee Module is
currently idle.

Return value: Tl_FeeModuleStatusType BUSY: Tl Fee Module is
currently busy.
BUSY_INTERNAL: TI Fee
Module is currently busy with
internal management
operations

Description: Function gets the status of the Tl Fee module.

4.10.1.10 Get Job Result Function (Tl_Fee_GetJobResult)

This function returns the result of the last job synchronously.

Function Name: Tl Fee GetJobResult

Tl_FeeJobResultType Tl_Fee_GetJobResult(uint8

SR U8EEPIndex)

Sync/Async: Synchronous

Parameters in): u8EEPIndex Index for EEP.(0/1)

JOB_OK: The last job has
finished successfully.

JOB_PENDING: The last job
is waiting for execution or is
currently being executed.

JOB_CANCELLED: The last
job has been cancelled.

JOB_FAILED: The last job

Return value: TI_FeeJobResultType failed.

BLOCK_INCONSISTENT:
The requested block is
inconsistent, it may contain
corrupted data.

BLOCK_INVALID: The
requested block has been
invalidated. The requested
read operation cannot be
performed.

Description: Function gets the job result from the Tl Fee module.

4.10.1.11 Task Function (TI_Fee_MainFunction)

49

{'i TEXAS
INSTRUMENTS

This function handles the Write/Read/Erase/Invalidate asynchronous jobs initiated by
Tl_Fee_ WriteAsync()/TI_Fee_Read()/T|_Fee_EraseBlock()/Tl_Fee_InvalidateBlock()
functions. This function should be called at regular intervals by a scheduler.

This function internally calls another function Tl_Feelnternal_FeeManager whenever there is
no other job pending (“IDLE” State). TI_Feelnternal_FeeManager function handles all the
background tasks/internal operations to manage the TlI FEE module.

Note: The user has to schedule the tasks/data operations such that the TI FEE module is in
“IDLE” state for some time so that the internal operations are handled correctly.

Function Name: Tl Fee MainFunction
Syntax: void TlI_Fee_MainFunction(void)
Sync/Async: Asynchronous
Parameters (in): None
Return value: None
D T Function to handle the requested Async data
escription: ;
operations

4.10.1.12 Manager Function (TI_Feelnternal_FeeManager)

The function Tl_Feelnternal_FeeManager() manages the Flash EEPROM Emulation and is
called when no other job is pending by the TI_Fee_MainFunction function. This function
handles all the background tasks to manage the FEE.

This routine is responsible to

. Determine whether a Virtual Sector Copy operation is in progress. If so, it should
identify all the Valid Data Blocks in the old Virtual Sector and copy them to the new
Virtual Sector.

o Determine if any of the Virtual Sector needs to be erased. If so, it should erase that
particular Virtual Sector.
. This function is only called when the Fee module is in IDLE state. It should set the

Fee module to BUSY_INTERNAL state.

Function Name: Tl _Feelnternal_FeeManager

Syntax: Tl FeeStatusType Tl Feelnternal FeeManager(void)

Sync/Async: Asynchronous

Parameters(in): None

Tl_FeeStatusType TI_FEE_OK: The job

was completed

Return value: Tl FEE_ERROR: The
job was not completed
due to an error.

Description: Function to perform background operations.

4.10.1.13 Format Function (Tl_Fee_Format)

This function provides functionality for erasing all the Virtual Sectors synchronously.

50

B Texas
INSTRUMENTS

Function Name:

Tl Fee Format

Syntax:

boolean Tl Fee Format(uint32 u32FormatKey)

Sync/Async:

Synchronous

Parameters (in):

u32FormatKey — OXA5A5A5A5/ Ox5A5A5A5A should

be passed as input for formatting the emulated Flash.

Return value:

TRUE/FALSE

Description:

Function formats all the Virtual Sectors.

Note:

Calling this function will result in loss of data. This function should be called only if you want to
reconfigure the Data Blocks/Virtual Sectors or detect a serious error condition.

If u32FormatKey=0xA5A5A5A5, this API will format only configured sectors. However,

Tl_Fee_Init has to be called before.
If u32FormatKey=0x5A5A5A5A, then Tl_Fee_Init API call is not required. However, in
this case complete EEPROM bank will be formatted.

4.10.1.14 Tl_FeeErrorCode

This function provides functionality to identify occurrence of an error.
It returns ‘0" if no error has occurred else it returns an Error code.

Function Name:

Tl FeeErrorCode()

Tl_FeeErrorCodeType Tl_FeeErrorCode(uint8

SR U8EEPIndex)
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in) EEP Index
Parameters (out): None

Return value:

Returns an Error

Tl_FeeErrorCodeType Code

Description:

Returns ‘0’ if no error has occurred else it returns an
Error code.

4.10.1.15 TI_Fee_ErrorRecovery

51

*9 TEXAS
INSTRUMENTS

This function provides functionality to recover from any severe errors.

Function Name:

Tl Fee ErrorRecovery()

void Tl _Fee_ErrorRecovery(Tl_Fee ErrorCodeType

SR ErrorCode, uint8 u8VirtualSector)
Sync/Async: Synchronous
Reentrancy: Non Reentrant

Parameters (in)

Error_TwoActiveVS(Deprecated)

Error_TwoCopyVS(Deprecated)

Error_SetupStateMachine

Error Code Error_NoActiveVS
Error_CopyButNoActiveVS(Deprecated)
Error_NoFreeVS

Error_EraseVS

Virtual Sector Number

Parameters (out):

None

Return value:

None

Description:

Function recovers from any severe errors.

4.10.1.16 Synchronous Read Function (Tl_Fee_ ReadSync)

This function provides functionality for reading of data from a Block synchronously.

4.10.1.

Function Name:

Tl _Fee ReadSync

Std_ReturnType Tl_Fee ReadSync(
uint16 BlockNumber,

Syntax: uintl6 BlockOffset,
uint8* DataBufferPtr,
uintl6 Length)
Sync/Async: Synchronous
BlockNumber Number of logical block, also
denoting start address of that block in
Parameters (in): Flash memory.
' BlockOffset Read address offset inside the block.
DataBufferPtr Pointer to data buffer.
Length Number of bytes to read.

Return value:

E_OK: The Read job was
accepted and completed by the
Tl Fee module

Std_ReturnType E_NOT_OK: The Read job was

not accepted by the Tl Fee
module.

Description:

Function to read data from a Block.

of sector Function (TI_Fee_SuspendResumeErase)

This function provides functionality to suspend/Resume of erasing a sector.

52

B Texas
INSTRUMENTS

Note: This API can be called once after TI_Fee_Init is executed with Suspend_Erase as
function argument. It has to be called again after application has completed all the
initialization sequence with Resume_Erase as function argument. This can be called if
projects do not want TI_Fee_Init API to trigger erasing of virtual sector.

Function Name: Tl_Fee SuspendResumeErase
Syntax: void Tl _Fee_SuspendResumeErase(

' Tl Fee EraseCommandType Command)
Sync/Async: Synchronous
Parameters (in): Command | Suspend_Erase/Resume Erase
Return value: None
Description: Function to suspend/Resume erasing of sector.

4.11 Privilege Mode access
FEE needs following API's to be executed in Privilege mode:
- TI_Fee_Init

- Tl_Feelnternal_WriteDataF021

4.12 Power Fail Behavior
FEE will be able to recover from any kind of resets.

Following are the scenarios where if power fail happens, how FEE behaves:

=>Assume an erase command is issued and F021 starts erasing the sector. Now,
before the sector is completely erased, if there was a power fail, in next
initialization, this sector is added to the erase queue since sector header will not
match with the expected sector header states(Active, Copy, Ready for Erase,
Empty).
Erasing will happen in the background.

=>Similarly, if there was a power fail during writing of Sector header, above step is
performed.

=>If there was a power fail during writing of a block
Block is written in following way
1. Block status is programmed as start program block.
2. Block number and block size are written.
3. Write data of the block.
4. After completion of writing of data, Checksum and address of previous block are
written
5. Block status is marked as Active.

53

*9 TEXAS
INSTRUMENTS

If power fail happens after setpl, then in next initialization, writing of next block is
shifted by 24 bytes. If power fail happens after step2, step3,step4 or step5, then the
writing of next block will happen after current block size+block header.

=>Similarly if power fail happens during copy operation, during the next

initialization, INI API detects that during previous shutdown, copy was
started but did not get completed. Copy operation is initiated in the current
driving cycle. Only blocks which were not copied during previous driving
cycle are copied in current driving cycle.

4.13 Known Issues / Not supported features

Non Polling mode not supported.

Immediate block writing not accepted when FEE is performing copy of blocks /
erase of sectors.

No Jobs accepted during copy of blocks /erase of sectors ongoing. (The write job
which triggered the copy operation will be pending until copy of blocks and erase
of sectors is completed.)

Maximum Blocking time not supported.

4.14 Example Configurations

4.14.1 Four Virtual Sectors on four physical sectors — Single EEPROM

Step 1: Configure FEE Global

FEE Global

Operating Freq
Mo Of EEPS

Data Select Bits

* FEE Block Configuration (Basic Settings)

— FEE Corfigurable Parameters

** FEE Virtual Sector Configuration (For Advanced Users)

— FEE Constant Parameters

Mo Of Unconfigured Blocks To Copy
MNumber of 8 byte writes

| Cyclic Redundancy Check

| Device Emor Detect

| Flash Emor Comection

| Check EEPROM Address Rang

160 = HCLK Block Cverhead 24

1 Page Overhead 0

0D |- Sector Overhead 16
1] Vitual Page Size 2
1 Driver Index 0

| Save Write Courter
Polling Mode
Flash Emor Comection Handle

Step 2: Configure FEE Virtual Sector Configuration

54

B Texas
INSTRUMENTS

FEE Global * FEE Block Configuration (Basic Settings) ** FEE Virtual Sector Configuration (For Advanced Users)

— FEE Wirtual Sector Parameters

FEE VWirtual Sectors Flash Banks and Sectors

MNumber of Virtual Sectors _ - FEE Bank Mumber 7

Wirtual Sectors for EEP1 o Total Mumber of Flash Sectors 4
Maximum Mumber of Virtual Sectors A

— Configure Individual Virtual Sector

Sector Mumber Flash Bank Flash Flash
Start Sector End Sector
Virntual Sector 1 1 7 - 1] - 1] -
Virnual Sector 2 2 7 - 1 - 1 -
Virtual Sector 2 3 7 - e - e =
Virtual Sector 4 4 7 - 2 - 2 -

MOTE -

By default one Flash Sector is assigned to one Vital Sector.

This cornfiguration can be used to club more than one Flash Sector into one Vital Sector.
Do this only when the total block size doesnt fit within one Flash sector.

Please make sure that Virtual Sectors do not overdap.

Please make sure that all Wirtual Sectors are configured to be of the same size.

Step 3: Add blocks in FEE Block Configuration

4.14.2 Two Virtual Sectors on four physical sectors— Single EEPROM
Step 1: Same as in 4.14.1

Step 2: Configure FEE Virtual Sector Configuration

55

*’? TEXAS
INSTRUMENTS

FEE Global * FEE Block Configuration (Basic Settings) ** FEE Virtual Sector Configuration (For Advanced Users)

— FEE Virtual Sector Parameters

FEE Virtual Sectors Flash Banks and Sectors
Mumber of Virtual Sectors & FEE Bank Mumber 7
Wirtual Sectors for EEP1 o Total Mumber of Flash Sectors 4

Madmum Mumber of Virtual Sectors '

— Corfigure Individual Virtual Sector

Sector Mumber Flash Bank Flash Flash
Start Sector End Sector
Virtual Sector 1 1 7 - o |- q -
Virtual Sector 2 2 7 - 2 |- 1 -
Virtual Sector 3 3 7 - 4 |- 4 |-
Virtual Sector 4 4 7 |- 4 |- 4 |-

NOTE -

By default one Flash Sector is assigned to one Vital Sector.

This corfiguration can be used to club more than one Flash Sector into one Vital Sector.
Do this only when the total block size doesnt fit within one Flash sector.

Please make sure that Virtual Sectors do not overdap.

Please make sure that all Virtual Sectors are configured to be of the same size.

Step 3: Same as in 4.14.1

4.14.3 Two Virtual Sectors for each EEPROM on four physical sectors — Two
EEPROM

Step 1: Configure FEE Global as shown below.

FEE Global * FEE Block Configuration (Basic Settings) ** FEE Wirtual Sector Configuration (For Advanced Users)

— FEE Corfigurable Parameters — FEE Constart Parameters
Operating Freq = HCLK Block Owerhead 24
Mo OF EEFPS 2 Page Owverhead 0
Data Select Bits o = Sector Overhead 16
Mo OFf Unconfigured Blocks To Copy o Virtual Page Size =3
Mumber of 8 byte writes 1 Driver Index 0
W | Cyclic Redundancy Check W Save Wite Counter
W Device Emor Detect Polling Mode
| Flash Emor Comection Flash Emor Comection Handle
W Check EEPROM Address Rang

Step 2: Configure FEE Virtual Sector Configuration

56

B Texas
INSTRUMENTS

FEE Global * FEE Block Cenfiguration (Basic Settings)

— FEE Virtual Sector Parameters

** FEE Virtual Sector Configuration (For Advanced Users)

FEE Virtual Sectors
Number of Virtual Sectors

_v

Virtual Sectors for EEP1 b

Flash Banks and Sectors

FEE Bank Mumber r
Total Mumber of Flash Sectors 4
Mapdmum Mumber of Virtual Sectors 4

— Corfigure Individual Virtual Sector
Sector Number Flash Banlk
Virtual Sector 1 1 7 -
Virtual Sector 2 2 7 -
Virtual Sector 3 3 7 -
Virtual Sector 4 4 7 -

Flash Flash
Start Sector End Sector
o |- 1 -
2 |- 3 |-
4 |- 4 |~
4 |- 4 |~

Step 3: Add blocks in FEE Block Configuration. Configure blocks on to EEPO/EEP1

FEE Global | * FEE Block Configuration (Basic Settings)

— FEE Black Corfiguration

** FEE Virtual Sector Configuration (For Advanced Users)

— FEE Blocks

Mumber of FEE Blocks : |

—Corfigure Individual FEE Block Size :

Block: Block: Size
Murmber (Bytes)
FEE Block Index 1[4 |:| q
FEE Block Index 2 2 |:| q

Data Sets EEP

-

¥| Enable Block(1) Immediate

¥| Enable Block(Z) Immediate

-

57

	TI FEE Driver User Guide
	Overview
	The EEPROM Emulation Flash bank is divided into two or more Virtual Sectors. Each Virtual Sector is further partitioned into several Data Blocks. A minimum of two Virtual Sectors are required for Flash EEPROM emulation.
	The initialization routine (TI_Fee_Init) identifies which Virtual Sector to be used and marks it as Active. The data is written to the first empty location in the Active Virtual Sector. If there is insufficient space in the current Virtual Sector to u...
	Virtual Sectors and Data Blocks have certain space allocated to maintain the status information which is described in more detail in the following sections.
	The Virtual Sector is the basic organizational unit used to partition the EEPROM Emulation Flash Bank. This structure can contain one or more contiguous Flash Sectors contained within one Flash Bank. A minimum of 2 Virtual Sectors are required to su...
	The internal structure of the Virtual Sector contains a Virtual Sector Header, a static Data Structure and the remaining space is used for Data Blocks.
	4.10 API Specification
	4.10.1 TI FEE Driver Functions
	4.10.1.1 Initilization Function (TI_Fee_Init)

	This function returns the version information for the TI Fee module.
	TI Fee specific version numbers MM.mm.rr
	This function returns the status of the TI FEE module.
	This function returns the result of the last job synchronously.
	4.11 Privilege Mode access
	4.12 Power Fail Behavior
	4.13 Known Issues / Not supported features
	4.14 Example Configurations

