[bookmark: _GoBack]I'm using the TMS570LS0432 and EM1402 for the battery active balancing. I've connected 16 Cells to the cell channels on the evaluation board.

The launchpad and the 1402EVM are connected via UART, I have some problems about the communication.

1. When I connect EM1402 directly to PC, the GUI is able to open, and the TX and RX on the EM1402 board have signals.
Then I connected EM1402 to TMS570 board, and run the example code on code composer studio, the program is able to run, but the program does not receive any signal from the board.

2. I downloaded the demo code tms570bms-1.0 from the web . During the running time, the code would be stuck in the while as shown in the following picture.
[image: C:\Users\nszm\AppData\Local\Temp\1553669171(1).png]

I noticed that the RXRDY and TXRDY are set in the notification.c shown below.
[image: C:\Users\nszm\AppData\Local\Temp\1553669573(1).png]
However, the RXRDY would never be set and maintain 0.
With regard to the function ‘sciNotification’, I confused that when and how would the function be executed.
[image: C:\Users\nszm\AppData\Local\Temp\1553671734.png]
I don’t find any other information in the code about the INTVECT0 , so I was confused that what’s the condition that the INTVECT0 would be set at value 11, so the RXRDY can be set 1.

3. By masking the while, the RX pin would response the signal.
This is the part where I communicate with the PL455 chip:
[image: C:\Users\nszm\AppData\Local\Temp\1553671122(1).png]
And I got the results shown below:
[image: C:\Users\nszm\AppData\Local\Temp\1553671267(1).png]I thought this results were not right, because the the file bq76PL455A-Q1 Software Design Reference (slva617a.pdf) have illustrated the meaning of the first byte is the length of data.
[image: C:\Users\nszm\AppData\Local\Temp\1553671470(1).png]
image5.png
v (# g_uiBPL455Data unsigned char(64]

- [0]
- [1]
-2
-3
- [
- 151
- [6]
-7
- [8]
- [9]
- [10]
- [11]
©-[12]
- [13]
- [14]
- [15]
- [16]
- 017
- [18]
©-[19]
- [20]
0 [21]

unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char

[186 "\xba',208 "\xd018... 0x080018DC

186 'wba'
208 "0’
186 'wba
208 "0’
186 'wba
208 "0’
186 'wba
208 "0’
186 'wba
208 "0’
186 'wba
208 "0’
186 'wba
208 "0’
186 'wba
208 "0’
186 'wba
208 "0’
186 'wba
208 "0’
186 'wba
208 "\xd0'

0x08001BDC
0x08001BDD.
0x08001BDE
0x080018DF
0x08001BE0
0x08001BET
0x08001BE2
0x08001BE3
0x08001BE4
0x08001BES
0x08001BE6
0x08001BE7
0x08001BE8
0x08001BE9
0x08001BEA
0x08001BE8.
0x08001BEC
0x08001BED
0x08001BEE
0x08001BEF
0x080018F0
0x08001BF1

image6.png
0B 99B7 998C 99B2 99B3 99B0 99BF 2CB1 (response) "

The response here contains the data for selected channels from device 2. In the
case of this response, the Command Channel Select register (address 3 through
6) was set to 0x05550000, which selects all odd cell channels from 1 to 11 and no
AUX nor ancillary channels. This is a total of six cell channels. Two bytes of data
are retured for each channel. The data are as follows

0B= Response header byte. The most significant bit in a response message
header byte is always 0, and the other bits represent the number of data
bytes in the packet minus 1 (thatis, in this case, 12 bytes of data bytes
for 6 cell channels). 0x0B = 11, which is 12~ 1

Channel 11 data (3.0022 V)
Channel 9 data (2.9990 V)
Channel 7 data (3.0019 V)
Channel 5 data (3.0019 V)
Channel 7 data (3.0017 V)
Channel 5 data (3.0029 V)
CRC

image1.png
while(g_ui32SCIRxReady == @U)
{

1/ Check for timeout.
F(RTI_TIMEOUT == 10)//
i
RTI_TIMEOUT = 03//
return 6; // timed out//
M/
¥ /% wait */

image2.png
void sciNotification(sciBASE_t *sci, uint32 flags)
{
j* enter user code between the USER CODE BEGIN and USER CODE
/* USER CODE BEGIN (29) */
f(flags == SCIAX_INT)
{
£_ui325CTRxReady

1
else if(flags
{

1

scI_m Ty

§£_ui325CITxReady

image3.png
'void linHighLevelInterrupt(void)

{

" Lint32 vec = scilinREG->INTVECTS;
. uints byte;

/% USER CODE BEGIN (29) */

:/* USER CODE END */

. suitch (vec)

o

 case w:

; scifiotification(scilinkes, (uint32)SCLWAKEINT);
) break;

. case 30,

z scifiotification(scilinkes, (uint32)SCL_PEINT);
; break;

. case 6:

: scifiotification(scilinkes, (uint32)SCL_FE_INT);
: break;

' case 70:

x scifiotification(scilinkes, (uint32)SCL_BREAK INT);
; break;

. case S0:

! scifiotification(scilinkes, (uint32)SCLOE_INT);
z break;

;

. case 110

! /= receive */

: byte = (uint8) (scilinREG->RD & GX0OOGOOFEL);
7

x i (g_sciTransfer_t.rx_length > 0U)

z <

, “g_sciTransfer_t.rx_data = byte;

image4.png
nSent = WriteReg(6, 0x03, 6x5550000, 4, FRMWRT_ALL_NR);
nSent = WiriteReg(e, 0x02, 0x00, 1, FRMRT_ALL_NR);
nSent = WiriteReg(e, x02, 0x02, 1, FRMWRT_ALL_R);
nSent = WaitRespFrame(datate ,57 , 8);

